
A NUCLEAR TRAINING SIMULATOR IMPLEMENTING A CAPABILITY FOR
MULTIPLE, CONCURRENT-TRAINING SESSIONS

KEY WORDS

7%3 2 3 1998
"3STI

B.J. Groeneveld, D.G. Bannister, K.R. Estes, M.R. Johns
Idaho National Engineering Laboratory
P.O. Box 1625, Idaho Falls, ID 83415

bjg @inel.gov

Concurrent training, interacting simulations, distri-
buted processing, client-server, peer-to-peer.

ABSTRACT

The Advanced Test Reactor (ATR) Simulator at the
Test Reactor Area of the Idaho National Engineering
Laboratory (INEL) has recently been upgraded to reflect
plant installation of a distributed control system @CS).
The ATR Simulator re-design implements traditional needs
for software extensibility and plant installation prototyping,
but the driving force behind its new design was an
instruction requirement for multiple, concurrent-training
sessions. Support is provided for up to three concurrent,
independent or interacting, training sessions of reactor,
balance of plant, and experiment loop operators. This
capability has been achieved by modifying the existing
design to consistently apply client-server, parent-child, and
peer-to-peer processing technologies, and then to
encapsulate concurrency software into all interfaces. When
the resulting component-oriented design is linked with
build and runtime flexibility in a distributed computing
environment, traditional needs for .extensibility and parallel
software and scenario development are satisfied with
minimal additional effort. Sensible configuration
management practices coupled with the ability to perform
piecewise system builds also greatly facilitate prototyping of
plant changes prior to installation.

INTRODUCTION

The first simulator for the Advanced Test Reactor was
built concurrently with the facility itself in the 1960s. That
simulator was fundamentally an analog computer with
hardware sized to the complexity of the ATR model. Though it
was sufficient for training in the early days, it offered no
flexibility, limited accuracy and poor reliability. The move to a
digital computer-based Simulator took place in the early 1980s.

Later, the Simulator was completelyredesigned and placed into
service in 1994. That latest upgrade is the subject of this paper.

The ATR is a 250 MW reactor designed to provide a
nuclear environment for the development and testing of nuclear
fuels and materials. It consists of three basic systems: the
reactor itself, the experiment loops, and what we shall refer to
as the balance of plant (BOP). The latter includes primary and
secondary coolant piping, pumps, heat exchangers, cooling
towers and fans, etc. Given the mission of ATR, there are no
turbines, generators, or output connections to a power grid.
ATR control philosophy is also partitioned into three distinct
areas: the control of reactor power, control of up to nine
(substantially independent) experiment loops, and the control
of the BOP.

The requirement to upgrade the ATR Simulator came
fiom a concurrent sister project involving the replacement of
most of the instrumentation and control equipment in the BOP,
Experiment Loops, and some aspects of Reactor Control, with
the latest generation of DCS equipment. Thus, the upgraded
Simulator had to include exact emulations of the DCS
equipment.

SYSTEM OVERVLEW

From a software perspective three subsystems comprise
the ATR Simulator:

Operator Consoles
Simulation Models
Instructor Station

These subsystems and their interactions are described
in the following sections.

Operator Consoles

The Operator Consoles subsystem includes not only the
duplication of all plant control interfaces, but also includes

mailto:inel.gov

software 3 hardware interfaces and remote processing units
(RPUs). From the software, run-time perspective, these
hardware interfaces are an extension of the user-interface.
There are three console display systems:

reactor console display system
0

0

experiment loops console display system
balance of plant console display system

Hardware interfaces include those to the reactor control
rods, sequential events recorder, annunciators, and PID
controllers in the P U S .

Simulation Models

47 models are combined to provide training capability
for all essential plant functions. Real time is simulated by
cycling all models in timeslots of 10 or 100 milliseconds.
The computer code of the models is divided into three bins
for ease of maintainability, one each corresponding to the
primary control functions of the plant, i.e.,

reactor operation
balance of plant operation
experiment loops operation

Model bins can be combined at run time to provide
several modes of training capability, including the
following independent modes:

reactor-only training (R)

experiment loops-only training (L)
balance of plant-only training (B)

Model bins are also combined to create several
interacting modes of training:

reactor, balance of plant, and experiment loops

reactor interacting with balance of plant (RBI
reactor interacting with experiment loops (RL)

interacting @BL)

In all but the RBL simulation, simplified models
representing otherwise missing elements of the plant are
added to maintain realistic plant-wide behavior. The ATR
Simulator is specifically designed to permit operation of
concurrent modes. These parallel training sessions are
limited in availability only by the need for hardware
consoles, The ATR Simulator accurately reflects the plant
using a single duplicate of all consoles restricting the
concurrent modes to:

0

0

0

parallel R, B, and L sessions
parallel RB and L sessions
parallel RL and B sessions.

Instructor Station

The Instructor Station subsystem extends deeply into
the software system, including all aspects of event
scheduling and management. In essence, these are all the
components of the simulator injecting changes into steady
state conditions of the model subsystem. The major
components include:

0 event management
scenario management

0 history management
state management

States and transitions are given in Figure 1 below. The
initial, Dormant state is of significance only to the ATR
Simulator as simulation mode selection occurs during
transition from this state to the Freeze state. The Models-
and IO-Only states separate running of Simulation Models
from Operator Console processes for development
flexibility, and are in fact special cases of the Run mode.

Figure 1. State transitions for the ATR Simulator.

Subsystem Interaction

Model state variables are recorded and maintained in a
networked, shared-memory segment. The state variables
together with all variables written to and read from
hardware interfaces form the Common Control Variables
(CCVs). The CCVs tie the three simulator subsystems
together and provide extensive operational as well as
development and test capabilities. For example, the CCVs
as initial condition vectors are used to start the simulator in
any previously recorded state. Instructors control the

simulator by fixing or ramping CCVs, and developers
design and test by observing CCVs. Continuous, real-time
recording of CCVs provides for rewind, playback, and fast-
forwarding capabilities. Figure 2 illustrates how the three
ATR Simulator subsystems interact through 9,652 CCVs in
the ATR Simulator.

serial
devices

n

- - Management Instructor = Computer ’ Computer
I

- loperaton1
ir Processes

/ -
Simulation Common

Model +--) Control 0 Processes Variables

& I Instructor1

Figure 2. ATR Simulator subsystem interaction overview.

Figure 3 shows the block diagram for the computer
hardware and network configuration. Simulation Model
processes run exclusively on the high-performance Model
computer, Instructor Station processes are distributed over
the Model, Management, and Instructor computers, and
Operator Console processes are distributed over the IO,
Model, and Console Display System (CDS) computers.
Note an additional dedicated network connecting the IO
and Model computers. Each CDS consists of three to five
workstations.

I
saiance Of
Plant CDS

IO
Computer

ethernets

Mode1
Computer

I

MODELS

The criterion for model accuracy was whether or not an
operator could see a particular plant response in the course of
operating the plant. If the response could be seen in the plant,
then it must be seen in the Simulator. This applied to both
static and dynamic responses. With this as a guideline, certain
assumptions were made. The accurate simulation of
catastrophic events such as guillotine primary coolant pipe
breaks was not requir4 under these extreme conditions the
operator’s action was simply to exit the facility, leaving the
safety systems to react as they were designed. Thus, for
example, the modeling of twc-phase coolant conditions was
unnecessary except in certain portions of the Experiment
Loops. Turbulent flow could be assumed in mast piping.

The models do, however, allow the simulation, of a great
variety of anomalies that are relevant to operator training, such
as smaller pipe breaks, heat exchanger leaking and blockage,
electrical power failures, pump trips, and so forth. The effects
of cooling fan speeds and weather conditions on cooling tower
efficiency are also included so that, for example, the effect of a
weather fiont or seasonal changes can be simulated.

The creation of computer-based models for the various
ATR subsystems proceeded as follows. Flrst, mathematical
models were created, using existing plant documentation,
actual static and dynamic measurements, and of course
appropriate physics. Model complexity, precision, and
accuracy were established on the basis of the mission, i.e.,
operator training, as opposed to precise engineering analysis.
Second, corresponding computer models were created using a
design package called XANALOG, a graphical simulation tool
similar to MATRE-X and CTRGC. Model response,
accuracy, and stability were carefully verified in this domain
before proceeding to the next step of creating corresponding
code that could be ported to the simulator computers.
XANALOG is capable of automatic code generation in either
C or Fortran, but as a practical matter this step was not quite as
trivial as expected.

Computer throughput was sized to accommodate the
required model response. Many thennal equations run on a
100 ms cycle time. Most of the flow and pressure equations
run at 20 ms, but some hydraulic model portions must run at 2
ms to maintain correct dynamic response.

DESIGNING FOR MANY OBJECTIVES

~ The goal of upgrading the ATR Simulator to reflect
plant changes had several objectives:

add balance of plant and experiment loops simulation
add independent, interacting, and concurrent
simulation modes
retain existing reactor simulator functionality

Buried in these objectives were requirements for plant
prototyping, scenario and software development, and
system extensibility.

Of most significance was the need to support additional
and concurrent simulations. Without regard to
implementation, this would increase computing demands
by two orders of magnitude. Not only would the lines of
commented source increase from 80,000 to more than
220,000, but up to three simulations would require
simultaneous processing. Simulation codes themselves
account for 45,000 lines of C implemented using Euler
(40%) and Runga Kutta 4 (lX4, 60%) numerical
integration methods. Modeling codes using RK4 linearly
increase time complexity 20 times, and for pressures and
flows (34% of modeling code) 200 times. Compute power
pee& were in part met by upgrading existing equipment,
Le., replacing a 4 specfp92 HP9000 series 350 with a 168
specfp92 HP9000 series 730. With the exception of turn-
key components, the ATR Simulator runs on HP-UX

' versions 7.05 and 9.07.

Clients, Servers, Peers, and Managers

Supporting the requirements without compromising
real time was further achieved through application of
detailed analysis and synthesis software engineering
procedures.

First, the existing reactor simulator was analyzed and
modularized into a set of interacting components. Berkeley
sockets and link-level communications were used to scale
processing from two to three hosts. Scenario management,
event management, and history management were
converted or extended to clients and servers. Simulation
models and hardware input and output were separated and
distributed into peer-to-peer processes using link-level
communications. The ethernet between the IO and Model
computers (Figure 3) is dedicated to connecting the peer
processes, which transmit 40 packets per second. While
this provides for high-speed network communications, it
dictates the need for custom, exception-based error
handling. This was accomplished through carefid
definition of interactions using a simple finite state-
machine shown in Figure 4 (e indicates an error state;
event sequences omitted for clarity).

IO Computer Model Computer

work (write / read IO;

-6 4 transmitdata

resendack

-6 transmit data

Figure 4. Finite state machine for IO-Model handshaking.

Second, a new service called the Mode Manager was
introduced for inclusion at all newly defined interfaces.
This layer of concurrency control software involves
correctly matching a service request to the service provider.
For example, with three concurrent simulations running a
request to ramp a variable must be properly matched with
the desired simulation. The Mode Manager accomplishes
this by maintaining a mode mask in the CCV containing
slots for each simulation and corresponding simulation
state. Three slots permit three concurrent simulations each
with a private set of CCVs. The mode mask itself resides
in a global CCV section. Only the Mode Manager may
manipulate the mode mask.

Parents And Children

The last step was the redesign of the Model Processes
to understand modes. A parent-child model was used to
implement the need for rapid state transitions, to manage
multiple simulation model processes, and to provide
development and test capability concurrent with operational
use. In fact, operational use of several fully tested ATR
Simulator modes commenced prior to full completion of the
upgrade.

A parent control process monitors the mode mask for
changes fiom and to the Dormant state, spawning and
killing up to three concurrent model processes, respectively.
Model processes themselves check the mode mask to
identify themselves, Le., what simulation mode they
represent. The model processes also use the mode mask to
determine what state they are in. For example, entry into

the Initialize state requires special first-time processing to
properly set hardware channels and state variables.

The parent, control process is responsible for running
the children, digital-tc-analog conversions, engineering
unit conversions, and network communications software
within a 100 ms timeslot. Semaphores are used to
synchronize processing within this timeslot. Network
communications involve sending several link-level packets
from the Model computer to tke IO computer, which is
dedicated to hardware writes and reads. Figure 5 shows the
resulting use of the CCV shared memory segment. In this
case three slots are in use by independent simulations. For
each simulation only those variables associated with the
operator console are IO bound.

i

R in slot-1 L in slot-:! B in slot-3

simulation-only
variables

:
Mode Mask & Glob& I I

Figure 5. CCV occupied by three independent simulations.

The interacting RL case is illustrated by Figure 6,
where variables for both Reactor and Experiment Loops are
IO bound.

...............

c] IO-bound variables

c] simulation-only
VariableS

I Mode Mask & Globals I

Figure 6. CCV occupied by two independent simulations of
which one uses an interacting mode.

Figure 7 shows a control panel available to instructors
for mode selection. This control panel is a tcl/tk wrapper
around the Scenario Manager, The Scenario Manager is
an interpreter that acts in a client-server relationship with
the Event Manager to inject changes into the Simulation
Model subsystem.

Figure 7. Simulation mode management control panel.

In this figure we see a REACTOR-PROCESS (Rl3)
simulation 15.1s into a run, a frozen LOOPS simulation,
and a third, dormant slot.

Besides controlling modes through points and clicks,
simulation selection from this control panel generates a
gnu-client request to an emacs-server responding with a
Scenario Manager interpreter for precise event scheduling.
Instructors can develop sophisticated scenario programs
using tcl/tk interactions with the Scenario Manager.

IMPLEMENTING FOR THE LONG TERM

Mature software development practices are a
prerequisite to the production of quality software. Software
experiences specific to nuclear training simulators have
been documented (Davis and Webb 1988). At the ATR
Simulator, several steps were taken to address the need to
develop within short time frames and produce intermediate
deliverables. These included

0

0 component-oriented development
0

0

sensible configuration management (CM) practices
tightly woven into the development process

strict adherence to build- and run-time flexibility rules
extensive use of Unix and other productivity tools

In order for CM to aid rather than restrict the
development process the software engineer must see its
benefits. Every developer must be accountable to perform
code checkouts and checkins, perform system builds,
establish baselines, and work directly with customers to
sign off change requests.

In a concept overloaded software world, many basic
computer science precepts retain high value. Data-driven
processing and loosely-coupled components are inherent to
producing flexible and maintainable code. This includes
decoupling source from its build- and run-time
environments to produce build and run anywhere software.
And, it also includes the requirement to permit piecewise
system builds.

.-

Applying CM sensibly and linking the component-
oriented design with build- and run-time flexibility in a
distributed computing environment has produced many
benefits. Several sofnyare Simulators, each offering
concurrent simulations, can run simultaneously without the
need for additional hardware, resulting in minimal
hindrance between the following activities:

software development
0 training sessions

scenario development
plant prototyping

This is in contrast to offering similar capabilities using
duplicate, independent hardware (Gregory et al. 1991).

As in any well-designed, distributed system, the ATR
Simulator’s clients and servers can run within the domain
of a single machine. This is illustrated in Figure 8 by the

This tool plots any CCV variable for any simulation mode
(concurrent and / or integrated) against time. The figure
below shows a selection of variables for RB (REACTOR-
PROCESS, interacting) and L (LOOPS, independent)
simulations.

1 use of the xCCV development tool under model-only mode.

FUTURE DlRECTIONS

The current generation technology ATR Simulator was
originally completed in 1989 (Burtt et al. 1989). This
upgrade was completed in 1994. The software life cycle is
currently at a maintenance stage where bug fixes and minor
enhancements are ongoing. Additional upgrades are
currently not planned.

Were additional simulation capabilities required, the
team involved with the ATR Simulator would draw heavily
from the ATR Simulator’s concepts and experiences. In
particular, the component-oriented approach would likely
be extended to include additional client-server and peer-to-
peer processing for decreased coupling of components.
This would result in yet more flexibility, maintainability,
and reliability. This would be of most interest when the use
of independent, interoperating, and concurrent simulation
modes are generalized without restrictions on instances
(currently three) or distribution resulting in a fully
scaleable simulator system. This would correspond to
several trends in simulation capability, including both
larger and smaller scale simulators (White 1992).

ACKNOWLEDGMENTS

Figure 8. xCCV’S unlimited variable display.

The authors wish to thank those involved in making
the work described in this paper possible, including Lee
Bowen, Dave Brooks, Ann Egger, Marti Ehlinger, Glynn
Ellis, Louise Richardson, Jim Rose, Chris Russell, Stan
Scown, and Rita Wells.

REFERENCES

Burtt, J.D., Laats, E.T., and Venhuizen, J.R. 1989. “The
Development Of A Reactor Training Simulator At The
ATR.” Transaction of the American Nuclear Society, Vol.
59: 191-2.

Davis, R.M. and Webb, N.J. 1988. “Updating a Nuclear
Training Simulator.” Simulators V. Proceedings of the
Society for Computer Simulation Simulators Conference:
419-421.

Gregory, M.V., Mann, J.L., and Sundal, H.W. 1991. “Use
Of The RTMC, A Full-Scope Training Simulator Clone
0.” Simulation Multiconference, Society for Computer
Simulation, New Orleans, Louisiana (April 1-5).

White, J. 1992. “Simulation Enters a New Era.” Nuclear
Engineering International, Vol. 37, No. 458 (September):
1992,46-47.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spc-
cific commercial product, process. or service by trade name, trademark, manufac:
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

