
UCRGLR-122354

Optimizing Parallel Reduction Operations

Scott M. Denton

June 1995

t A
c

DISCLAIMER

"his .dacument was prepared as an account of work sponsored by an agency of the United States
Gctmmment. Neither the United States Government nor the University of California nor any of their
e q h p , makes any warranty, express or implied, or assumes any legal liability or responsibility for
the amrracy, completenes, or usefulness of any information, apparatus, product, or process disclosed,
or -ts that its use would not infringe privately owned rights. Reference herein to any specific
comrarrdal product, process, or service by trade name, trademark, manufachuer, or otherwise, does
not azeQaanl y constitute or imply its endorsement, recommendatia or favoring by the United States
Goyenanent or the University of California. The views and opinions of authors expressed herein do
not mmssssarily state or reflect thase of the United States Government or the University of California,
anddd not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, lTS 626-8401

Available to the public from the
National Technical Information Service

U S Department of Commerce
5285 Port Royal Rd,

Springfield, VA 22161

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract W-7405-ENG48.

UCRL-LR-122354
Distribution Category UC-705

Optimizing Parallel Reduction Operations

Scott M. Denton
University of California, Davis

Master of Science Thesis

Manuscript date: June 1995

LAWRENCE LIVERMORE NATIONAL LABORATORY
University of California Livermore, California 94551

Optimizing Parallel Reduction Operations

Scott Michael Denton
BSCS, Northeast Louisiana University, 1985

THESIS

Submitted in partial satisfaction of the requirements for the degree of
MASTER OF SCIENCE

in
Computer Science

in the
OFFICE OF GRADUATE STUDIES

of the
UNIVERSITY OF CALIFORNIA

DAVIS

Committee in Charge

June 1995

1

Scott Michael Denton
June 1995

Computer Science

Optimizing Parallel Reduction Operations

Abstract

A parallel program consists of sets of concurrent and sequential tasks. Often, a
reduction (such as array sum) sequentially combines values produced by a parallel
computation. Because reductions occur so frequently in otherwise parallel programs,
they are good candidates for optimization.

Since reductions may introduce dependencies, most languages separate computa-
tion and reduction. The Sisal functional language is unique in that reduction is a
natural consequence of loop expressions; the parallelism is implicit in the language.
Unfortunately, the original language supports only seven reduction operations. To
generalize these expressions, the Sisal 90 definition adds user-defined reductions at
the language level.

Applicable optimizations depend upon the mathematical properties of the reduc-
tion. Compilation and execution speed, synchronization overhead, memory use and
maximum size influence the final implementation. This paper

1. Defines reduction syntax and compares with traditional concurrent methods

2. Defines classes of reduction operations

3. Develops analysis of classes for optimized concurrency

4. Incorporates reductions into Sisal 1.2 and Sisal 90

5 . Evaluates performance and size of the implementations

..
11

Acknowledgements
My wife Nikki, who forced me to complete it.

My thesis advisors for advice and encouragement.

Dr. Patrick Miller, who should have been on the front page.

...
111

Contents

Acknowledgements

List of Tables

List of Figures

1 Introduction
1.1 What is a reduction? .

1.1.1 Reduction operators and functions
How are they used? .
1.2.1 Imperative languages and libraries

1.2

1.2.2 Functional languages .
1.2.3 Applications for user-defined reductions

2 Implement at ion classification
2.1

2.2
2.3
2.4
2.5

Automatic classification .
2.1.1 Analysis .
2.1.2 Classes of reductions .
2.1.3 Directives .
Sequential and gathered reductions
Independent reductions .
Accumulated reductions .
Selected reductions .

iii

vi

vii

1

1

2
4

4
7
8

12

12

12
13
14
15
16
17
20

iv

2.5.1 Indexed minimum reduction function 20
2.6 Additional code optimizations . 21

3 Reductions in Sisal 90 23
3.1 Syntax and semantics . 23

3.1.1 User-defined reduction language definition 24
3.1.2 Sisal 90 source examples . 25

3.2 Dataflow in IF Intermediate Form . 26
3.2.1 Standard IF optimizations . 26
3.2.2 UReduce node . 27

4 Performance study 30
4.1 Sisal 1.2 classification prototype . 30
4.2 Sisal 90 compiler results . 34

4.2.1 Execution time and memory consumption 34

5 Conclusions 37
5.1 Conclusions . 37

5.1.1 Performance and Expressibility 37
5.2 Future Work . 38

Bibliography 39

A Code Samples 43
A.l Parallel array permutation build . 43

A.2 Parallel global sum .
A.3 Parallel counting histogram . 45
A.4 Parallel first minimum . 46
A.5 Parallel first minimum index . 47

44

V

List of Tables

3.1
3.2

Reduction node translations and their zero trip return values 27
28 UReduce node embedded in the returns subgraph of a Ford

3.3 UReduce port assignments . 29

4.1 Time and memory usage of prototype accumulated reductions 32

vi

List of Figures

. 1.1
1.2 Reduction operator tree .
2.1 Sequential and gathered executions of computation and reduction . .
2.2 Parallel independent computation and reduction and pattern match .
2.3 Parallel accumulated reductions: lock and master merge

Parallel selected reduction with candidate per processor
3.1 IF1 data flow optimizations .
3.2 IF0 UReduce node for global sum .
4.1
4.2 Execution times of permuted update in-place
4.3 Execution times of scalar reductions

Reduction operator vs . function

2.4

Execution times of prototype computation-reduction expressions . . .

2
3

15
16
19
20
26
29
33
35
36

vii

1

Chapter 1

Introduction

1.1 What is a reduction?

A reduction transforms a set of values computed sequentially or in parallel. It gathers
to define a scalar value or transforms to build an aggregate structure. Examples are:

0 global sum operators

0 finding the minimum value or index in an array

0 histogram functions

0 calculating the incident force on a molecular particle

An array sum reduction produces a scalar value by adding together all array elements.
The first minimum reduction returns the first occurrence of the minimum value in
a list or array. A histogram is a transformational reduction that counts the number
of occurrences of a value in one array and stores the count in another. A recurring
theme in particle physics codes is the calculation of bond forces. Since the forces
between particles are symmetric, each force is calculated once but accumulated on
both affected particles.

CHAPTER 1. INTRODUCTION 2

I TYPeC I
Figure 1.1: Reduction operator vs. function

1.1.1 Reduction operators and functions

A reduction consists of a set of input values, an operator or function, and an optional
identity value. For the purposes of this discussion, an operator takes inputs of the
same type and produces a value of the same type on output. A function takes inputs of
different types and returns an output of possibly a third type as shown in Figure 1.1.

Conceptually, a reduction operator is an infix binary operator placed between each
of the input values. An example of a scalar reduction operator is global array sum

input values [5.0,3.2,6.0,1.4,2.0]

reduction operator +
identity value 0.0

expression 0.0 + 5.0 + 3.2 + 6.0 + 1.4 + 2.0

left ((((5.0 + 3.2) + 6.0) + 1.4) + 2.0)

right (5.0 + (3.2 + (6.0 + (1.4 + 2.0))))

tree ((5.0 + 3.2) + ((6.0 + 1.4) + 2.0))

random ((6.0 + 1.4) + ((5.0 + 3.2) + 2.0))

Note that since scalar sum is commutative and associative (barring machine round-
off), order of reduction is not important for many applications. The expression may
be evaluated left-to-right, right-to-left, or in random groupings [5] . A tree mapping

CHAPTER 1. INTRODUCTION 3

5.0 3.2 6.0 1.4 2.0

Y
Figure 1.2: Reduction operator tree

is shown in Figure 1.2. The mapping most appropriate for a particular computer
architecture may be chosen.

A reduction function takes different types. Consider a histogram with four bins
represented as a four element array. The identity value is an array of four zeros. The
input values are tuples to be accumulated into the histogram. The first element of a
tuple selects the bin and the second is the value to add. The histogram function h()
applies each input value pair to the bins consecutively.

To optimize for parallel machines, this nested invocation is normally split into local
groupings for each processor, then merged for the final result. This implementation

CHAPTER 1. INTRODUCTION 4

requires an initial value for each partial result and a merge function to combine local
results. Consider a two processor system. The initial value for each processor is the
identity value, a four-element zero array. The merge function M () is array addition
by element (e). M () combines the two temporary array values computed on the two
processors. Neither the initial value nor the merge function is usually specified by the
source code of the reduction function, and must be synthesized.

A histogram function can also be converted into a histogram operator by expand-
ing types to match. The function F () in the example converts the pair (4 , l) to
[0, O,O, 11. Array addition may then be used directly.

1.2 How are they used?

Computation-reduction pairs are a mainstay of traditional scientific programming.
In a calculation evolving over time, iterative computation and reduction update the
previous cycle to produce the new state. Because the efficient expression and im-
plementation of reduction operations can reduce the cost of parallel programming,
current compilers and libraries have targeted the most common variations.

1.2.1 Imperative languages and libraries

Languages like Fortran, C, and C++ have been used extensively for scientific pro-
gramming. These languages use an explicit control flow and memory model. Compil-
ers for these traditional sequential languages, such as Cray CF77 [6] and the Fortran
D compiler [21], often find parallelization optimizations by pattern matching. The
following inner product from the Livermore Loops [9] is a simple example.

C Livermore Loop 3

Q = 0.0

DO 100 k = I, 100

Q = Q + Z(k)*X(k)

100 CONTINUE

CHAPTER 1. INTRODUCTION 5

Parallel pragmas may be given to force a parallel implementation such as in the
SGI f17 compiler [18]. The DO loop is sliced so that each processor operates on a
contiguous range of values. This method is limited to scalar reduction operators such
as array sum:

SUM = 0.0

C$DOACROSS LOCAL(I), REDUCTION(SUM)

DO 10 I = 1, N

SUM = SUM + A(1)

10 CONTINUE

Since reductions may introduce dependencies, most languages separate the com-
putation and reduction tasks. As an example, Fortran 90 [l] and HPF 1141 provide
a rich set of predefined reduction functions on extant arrays. In this data parallel
model, the array memory may actually be distributed across all of the processors.

C find the minimum value in z-array

z-min = MINVAL(z-array)

C

C return the first index of the minimum value in z-array

z-min-loc = MINLOC(z,array)

Neither of these methods provides for general reductions defined by the user. To
compensate for these language deficiencies, message passing libraries for sequential
threads on parallel computers often allow extension of their predefined reductions.
The MPI [8] message passing interface adds elementwise array reductions defined by
the user.

C MPI predefined reduction to sum x’s from a l l processors in Fortran

CALL MPI-REDUCE(x, c, 1, MPI-REAL, MPI-SUM, 0, comm, ierr)

C

/*
* MPI array product of complex numbers in C

CHAPTER 1. INTRODUCTION 6

* Define type, register function, call myProd0
*/
MPI-Type-contiguous (2, MPI-DOUBLE, tctype

MPI,Type-commit (tctype ;

MPI-Op-create(myprod, True , hy0p
MPI-Reduce(a, answer, 100, Ctype, myop, root, Corn

;

;

;

Explicit locks are available as an extension in some shared memory compilers like
PDDP [22]. User-defined reductions are still complex. Witness the code to reproduce
the predefined PDDPSUMO global add:

C Global sum of elements in array a(1:asize)

subroutine globalsum(sum, a)

shared real sum, a() ! shared by all processors

real partial ! local to each processor

integer i, asize

lock sumlock ! critical section lock variable

integer width

MASTER ! only one processor initializes
sum = 0

ENDMASTER

BARRIER ! wait for initialization

asize = pddp-size (a)

partial = 0 ! local partial sum

width = (asize+-NPROCS-l)/-NPROCS ! slice per processor

do i = (-IPROC-l)*width+l, MIN(-IPROC*width, asize) ! slice

! length of array a

partial = partial + a(i)

end do

LOCK(sumlock) ! critical section

sum = sum + partial
UNLOCK(sumlock)

end

CHAPTER 1. INTRODUCTION 7

1.2.2 f inct ional languages

Functional languages [2] map input values to output values; since there is no explicit
memory model there can be no variable aliasing, side effects, or time dependent (non-
determinate) errors. With the program text defining a data dependency graph, the
availability of inputs defines the order of execution. All synchronization, communi-
cation, and scheduling are implicit.

Despite the lack of explicit memory, functional languages also support optimized
reduction operations. Haskell [12] provides reduction and accumulation operations
on extant lists or list expressions.

-- compute the sum of the integers 1 through 10

SUmCl. .lo1

-- return a table of the number of occurrences of each value
-- within bounds i n list z

accumArray (+> 0 bounds [i := 1 I i <- z , (inRange bounds ill

Sisal 1.2 [16] is unique in that reduction is a natural consequence of loop expres-
sions. The reduction operation appears as a keyword in the returns clause of a for
expression.

% find the minimum value in z-array
z-min := for z in z-array

returns value of least z

end for

X compute the sum of the integers 1 through 10
total := f o r i in 1, 10

returns value of sum i

end for

The Sisal 1.2 language definition supports only seven reduction operations: sum,
product, least, greatest, array, stream, and catentate. Because the reduction is part

CHAPTER 1. INTRODUCTION 8

of the loop, the current optimizing compiler can often overlap computation and reduc-
tion for these intrinsics. It generates tasks to take best advantage of the underlying
architecture.

1.2.3 Applications for user-defined reductions

A shortcoming of all current languages is the support of only a limited set of predefined
reduction operations. Many applications require very specific reductions. Sisal 1.2
does not provide an intrinsic to find the index of the first minimum value. A new
intrinsic would be required:

% find the index of minimum value in z-array
z-min-index := for z in z-array

returns value of index-least z % NOT AVAILABLE
end for

The available Sisal 1.2 solutions are not optimal. The first doubles the computa-
tion’s overhead,

min-value := for x in A

returns value of least x

end f o r ;

min-index := for x in A at i

returns value of least i when 31: = min-value

end f o r ;

and the second solution eliminates all parallelism.

min-index := f o r initial

i := 1;

min-value, min-index := AD], 1

while i < array-size(A) repeat
i := old i + 1;
min-value, min-index :=

CHAPTER 1. INTRODUCTION

if A[i] < old min-value then A[i] , i
else old min-value, old min-index

end if

returns value of min-index

end for

9

The situation is more dire when generating a set of values to be counted or ac-
cumulated by type as in a histogram. A recurring theme in particle codes is the
calculation of forces between particles. Since the forces are symmetric, we want to
calculate each force only once and then accumulate the forces on the affected particles.
This computation cannot be done with the intrinsic reductions.

For example, consider a set of n particles and m bonds. Each bond represents
a force between two particles. In the code fragment below, the function end-points
returns the indices of the two particles participating in the bond. Function energy
returns a record with the input indices and the energy of the bond that is a function
of the particle positions. Force-update is a list of these records. Force-out is an array
of cumulative bond energies, one entry per particle.

Force-update :=

for bond in 1, m

index-1, index-2 := end,points(bond);

Force-record := energy(index-1, index-2, Positions)

returns array of Force-record

end for;

Force-out :=

for initial

i := 0; Forces := array-fill(1, n, 0.0)

while i < array-size (Force-update) repeat
i := old i + 1;
index-1 := Force-update [i] . index-1;
index-2 := Force-update [il .index-2;

be : = Force-update Cil . bond-energy ;

CHAPTER 1. INTRODUCTION 10

Forces := old Forces [index-1 : old Forces [index-11 + be ;

index-2: old Forces[index-21 - be 1
returns value of Forces

end for

The force update array can be calculated in parallel, but the calculation of total
force on each particle uses a sequential for initial. On highly parallel computer sys-
tems, the presence of the for initial expression curtails the code’s efficiency, an effect
of Amdahl’s Law. Notice that the size of the sequential code grows linearly with prob-
lem size. On medium or small systems, there may be insufficient memory to store the
intermediate array of force records. The extra storage may increase the number of
page faults and secondary memory accesses, diminishing performance. Programmers
writing in an imperative language do not face this problem. They can write a single
parallel loop (sliced by the compiler across processors) that includes a critical section
to control access to the force array,

do ibond = 1, m

call end-points(bond, ibond, index-I, index-2)

be = energy(index-1, index-2, Positions)

lock (Force-out 1
Force-out(index-1) = Force-out(index-1) + be
Force-out(index-2) = Force-out(index-2) - be

unlock(Force-out 1
end do

Since the energy calculation is typically much longer than the critical section, the
concurrent tasks will contend for the lock infrequently. The code is parallel, efficient,
safe, and minimizes memory use. An alternative is to use two loops with a temporary
array per processor,

iproc = processor-number();

do ibond = 1, m

call end-points(bond, ibond, index-I, index-2)

CHAPTER 1. INTRODUCTION 11

be = energy(index-1, index-2, Positions)

Force-temp(iproc, index-1) = Force-temp(iproc, index-1) + be
Force-temp(iproc, index-2) = Force-temp(iproc, index-2) - be

end do

lock(Force-out)

do ipart = 1, n

Force,out(ipart) = Force-out(ipart) + Force-temp(iproc, ipart)

end do

unlock(Force-out 1

To address the issues of functionality and complexity, the HPF Journal of Devel-
opment [13] and the HPF-2 draft [15] have suggested additional language features be
added for user-defined reduction functions in Fortran. The final form of these features
has not been determined. A problem with any of these approaches is that reductions
take place on extant arrays. The size of the values to reduce becomes a limitation on
problem size due to memory constraints [7]. Sisal 1.2 does not require extant arrays
but lacks user-defined reductions. This paper describes how language features were
included and implemented in Sisal 90 [19] to address both of these issues.

12

Chapter 2

Implement at ion classification

2.1 Aut ornat ic classification

2.1.1 Analysis

This paper classifies reductions to reveal possible methods of implementation for mul-
tiprocessor computers. There are two types of classification: mathematical properties
and data dependencies. Classifications determine the range of possible implementa-
tions. The hardware characteristics of a real machine with finite primary memory and
parallel overhead further restrict the possible implementations. Our analysis selects
an implementation based upon the relationships between machine- and application-
specific sizes and overhead costs. For example, we mark a parallel loop sequential if
physical memory is exceeded or the parallel overhead outweighs the parallel speedup
achievable.

For the techniques tested, the factors used to select an implementation when
classification allowed a choice were

Size

- Parallel reduction state replicated across processors exceeds memory

- Parallel gathered reduction values exceeds memory threshold

CHAPTER 2. IMPLEMENTATION CLASSIFICATION 13

0 Execution time

- Parallel task overhead large compared to parallel work

- Parallel shared memory lock contention too high for number of processors
used

We encode these cost criteria in IF2 [23]. The first phases of the IF2 optimization
in the OSC compiler derive cost estimates and sizes for the execution. Costs are
attached to the computation nodes with a %cc mark. The latter phases of the compiler
use data dependencies, execution cost, synchronization, communication, and tasking
startup estimates to select an implementation.

2.1.2 Classes of reductions

The amount of concurrency classifies the top level. This specifies whether the re-
duction is to be fused with the computation. The mathematical properties of the
reduction determine the next level, the range of possible reduction implementations.
The analysis and effect of classification are the focus of this paper.

1. sequential: match the reduction semantic, a single thread of execu-
tion (sequential computation, sequential reduction)

2. gathered: save parallel computation results in a temporary array
for later sequential reduction (parallel computation, sequential re-
duction)

3. parallel: fuse portions of the sequential reduction with the parallel
computation (parallel computation, parallel reduction)

(a) independent: only one update to each element (a permutation
for example)

(b) accumulated: multiple updates are combined in a shared ac-
cumulator for the final result (global sum or histogram)

CHAPTER 2. IMPLEMENTATION CLASSIFICATION 14

(c) selected: a conditional update replaces the previous value (first
minimum)

(d) scanned: updates depend upon a recurrence relation, a non-
associative function of the previous update

2.1.3 Directives

Source level pragrnas may be used to directly specify a complete implementation or
general classification. Since OSC is an automatic optimizing compiler, this method
should only be needed when performance from analysis is unavailable.

The upper level directives match the implementation classification. A gathered
loop reduction may consume too much memory, so a sequential version is selected
by the user with returns sequential overriding the default. To invoke analysis to find
parallel optimizations of the reductions as described below, the parallel directive may
be used.

@ragma returns sequential

@ragma returns gathered

Qragma returns parallel X run parallel analysis

Hints are available to direct the analysis for each of the parallel implementation
classes.

Qragma returns independent

##pragma returns accumulated

Qragma returns selected

@ragma returns scanned

In addition, for accumulated and selected reductions, details of the method to
combine values may be specified. This is discussed in more detail in later sections.

@ragma reduction merge(master1

#pragma reduction merge(tree1

CHAPTER 2. IMPLEMENTATION CLASSIFICATION

Processor 0

Reduction

Reduction
Value 1

Reduction
Value 2

Reduction

Final
Value

'rocessor 0

Computation
Initialization

Gather

Reduction
Body 1

Reduction I Body 2

Reduction
Body 3

Final
Value

rocessor 1

1 I
Computation

Computation

15

Figure 2.1: Sequential and gathered executions of computation and reduction

#pragma reduction merge(1ock)

#pragma reduct ion merge (candidates)

2.2 Sequential and gathered reductions

In the first part of Figure 2.1, the sequential implementation execution proceeds
from the top down. Nothing is done concurrently. The computation and reduction
initializations are run. After that, each computation and reduction pair are executed
in turn using results from the prior step. A sequential implementation may be the
fastest correct implementation for a given reduction for several reasons:

1. data dependencies may restrict concurrency,

CHAPTER 2. IMPLEMENTATION CLASSIFICATION

Processor 0 Processor 1

Initialization

1 1
Computation Computation
Body 1 Body 3 + 4
Reduction Reduction
Body 1 Body 3 - v

Computation Computation
Body 2 Body 4 + +
Reduction Reduction
Body 2 Body 4

7

Array
Gather

Final
Value

16

Figure 2.2: Parallel independent computation and reduction and pattern match

2. for small amounts of work, overhead may cause parallel slowdown rather than
speedup,

3. memory is minimized since there are no large gathered temporaries.

A gathered implementation runs the computation in parallel and saves the results
in a vector temporary. The reduction is then run sequentially. In the second example
in Figure 2.1, two processors run in parallel. The four values are gathered in a
temporary array. The reduction is then run sequentially by accessing elements from
the array to produce a final value. The size of the temporary is a limitation for many
applications. These problems are addressed by additional analysis for selection of a
parallel implementation by class or user directive.

2.3 Independent reductions

Updates to the reduction value may be independent as in Figure 2.2. A reduction
result array is given an initial value. Then each element of the array is updated no

CHAPTER 2. IMPLEMENTATION CLASSIFICATION 17

more than once. The separate values generated in each body are gathered from the
multiple processors and placed in the result array. Permutations of the complete index
set are a common example. The value at every index is some one-to-one and onto
mapping from an original set of indexes that cover the array. Typically an index set is
permuted and used to assemble the final values in the new order as in FFT algorithms
[17]. The general analysis to prove uniqueness in the update of each element of the
array is approachable by integer linear programming as discussed in [ll].

The version implemented is a substantially simpler version, pattern-matching on
the increment of the index variable. As also shown in the figure, an array old A
and multiple values M[waZ] are input at the top and produce the new value A at
the bottom. The values are placed at the monotonically increasing element old i.
This index starts at 1 and increments by 1 for each value. Since no elements are
multiply assigned, the array build can be done independently. Once analysis shows
independent updates to the array elements, a fast and and simple parallel version
is implemented. On a shared memory multiprocessor, the updates are performed in
place with no locks or other synchronization.

2.4 Accumulated reduct ions

Accumulated reductions update a shared value in the reduction body. Examples
are the Sisal 1.2 sum and Sisal 90 histogram. Analysis of the data dependencies
determines the possible optimizations. Commutative and associative reductions re-
move the requirement for sequential execution. For example, with initial value of old

product set to 1, compare the commutative and associative expression

product := old product * V a l

with a non-commutative and non-associative expression requiring sequential execu-
tion,

product := old product * (old product + V a l)

C H A P T E R 2. IMPLEMENTATION CLASSIFICATION 18

The first reduction body may be implemented in any order, even in parallel if the
multiply-update is an atomic operation. The second reduction body will produce
different results when executed out of order. Consider input multiple values (2,5)
to this second reduction. Left-to-right produces 3 * (3 + 5) = 24 while right-to-left
produces 6 * (6 + 2) = 48. Pattern matching on data dependencies is used to select
reductions for optimization. The previous accumulator value can be updated by add,
subtract, multiply, or floating-point divide of values which are not a function of the
accumulator. This automatic analysis is similar to the pragmas that must be inserted
by hand in the latest HPF-2 draft 1151.

The first stage analysis reveals that parallel optimization may be done. Addi-
tional analysis defines two possible implementation subclasses. On shared memory
machines, the accumulated values may be updated in place in a locked critical section.
On any shared or distributed memory processors, intermediate per-processor results
may be combined with a synthesized merge operator and initial identity element.
Because of the limited number of operations on base types, we use a look-up table
similar to Table 3.1. The method used for a particular shared memory application is
chosen by using estimates of the ratio of computation to lock overhead and conflict in
the critical section. One other criteria is available memory size. If it is not possible
to duplicate the accumulator on every processor in the merge implementation, the
locked version must be used.

The accumulated with a rnerge(lock) version is shown in Figure 2.3 and global
sum in Appendix A.2. The initial value for the reduction and computation is set in
a master sequential region. Each computation may then proceed in parallel. The
update of the shared accumulator is performed in a locked critical section. The read,
update, write must be an atomic operation to prevent race conditions. The default
lock method forms a critical region for all processors. Any processor access to the
code updating the shared accumulator will be sequentialized. A processor executing
the computation is unaffected. For load balance, more work requests (slices) may be
allocated than the number of available processors. As each slice is finished, a new

CHAPTER 2. IMPLEMENTATION CLASSIFICATION 19

'rocessor 0

Computation
Initialization

Body 1

Body 1

Computation

Final
Value

Processor 1

Computation
Body 3 w Body 3
Reduction

I

Processor 0

Initialization

Computation
Body 1

-
Computation
Body 2

4 = - Reduction
Body 2

Reduction 1
Merge

Final
Value

Processor 1

Computation

I I
Computation
Body 4

Reduction i Body 4

Figure 2.3: Parallel accumulated reductions: lock and master merge

one from the run queue is requested. This spreads the work more evenly among the
processors.

Building a local accumulation temporary exploits locality and reduces contention
at the expense of memory. For this reason, distributed memory machines favor this
implementation. Figure 2.3 and the code in Appendix A.3 show how a local reduction
value is initialized on each processor. This local value is synthesized by analyzing the
operator used in the update of the accumulator. For the plus and minus operators,
each element in the local accumulator starts at zero while times and divide start at
one. Integer divide may not be done in any order however. Consider (10/1)/5 = 2
with 10/(1/5) = 00. Integer roundoff loses information. For the boolean operators,
logical and starts at true (one) and logical or at false (zero).

Each processor computes a local reduction value. For shared memory, each pro-
cessor stores its value in a known location. The master processor then waits until
each processor finishes before retrieving the results and accumulating sequentially.

CHAPTER 2. IMPLEMENTATION CLASSIFICATION 20

'rocessor 0 Processor 1

I Comuutation I
I Initialisation e

Candidate 1
Candidate :

Computation
Body 1

Reduction
Select 1

Computation
Body 2

Processor 0
Candidate

Reduction
Final Body

Final
Value

Candidate 3 1 Candidate

Computation
Body 3

Reduction
Select 3
I

I Computation I
Body 4

Processor 1
Candidate

Figure 2.4: Parallel selected reduction with candidate per processor

2.5 Selected reductions

The Sisal 1.2 keyword least as shown in Appendix A.4 implements the first minimum
reduction. It is an example of the selected reduction. For each multiple value to
be reduced, an if statement guards the replacement of the result. The final value is
eventually selected from only one iteration.

In Figure 2.4, the general form of the optimization is shown. For the first mini-
mum reduction operator, the reduction is run left-to-right for each processor's input
values. Then, the local value from each processor is supplied to the master processor
(merge(master)) for the final merge. The merge reduction is identical to the local
reduction.

2.5.1 Indexed minimum reduct ion finct ion

An additional complexity occurs when optimizing a selected reduction function rather
than an operator. Since less data is returned by the reduction than is supplied as

CHAPTER 2. IMPLEMENTATION CLASSIFICATION 21

inputs; the candidate inputs must be saved for the final merge.
An example is the first minimum index reduction in Appendix A.5. Notice that

the reduction only returns the index value. However, the minimum value is used also,
to select the final result. They are both part of the reduction state. For the master to
reduce the result, a candidate from each processor must present its complete candidate
state. Therefore, the reduction implementation on each processor is modified to save
the candidate inputs. The master merge is the original reduction run across all
candidates.

2.6 Additional code optimizations

By fusing portions of the sequential reduction into the parallel computation, addi-
tional possibilities for optimization are revealed. The code’s execution time is de-
creased by eliminating:

0 function calls by inlining,

0 unnecessary copying and record builds,

0 unnecessary locks and large critical section size,

0 unnecessary reference counts.

A reduction call can be made just like a function call. General purpose registers
are saved to stack memory and arguments are passed to the call. Pulling the reduction
inline eliminates this overhead.

When the reduction is part of the body of the iterative computation, computation
values are used as they are produced. A large temporary array to hold the interme-
diate multiple values to be reduced is not needed. Since the consumer can use the
produced values immediately, structured record variables are never stored to memory.
This would normally involve an extra pack/unpack for each record. Instead, a record
typically remains in registers for immediate use.

C H A P T E R 2. IMPLEMENTATION CLASSIFICATION 22

The reduction consumer directly follows the computation producer. Only one
reference to the computation value is made. Therefore, no reference count on the
produced value is needed. When the variable goes out of scope, it is no longer needed
and can be deleted or reused. This eliminates the extra locks normally used to count
the references to shared data.

In the simplest implementation, locks would guard every shared reduction accu-
mulator. By producing local copies only one lock per processor is needed. The size of
the critical section can also be reduced by moving calculations that do not involve the
accumulator outside. The values will be calculated in the computation loop body.

I

I

23

Chapter 3

Reductions in Sisal 90

3.1 Syntax and semantics

Sisal for constructs are implicitly parallel loop expressions. The generator produces
an independent loop body for each element in its range.

for range-generator
loop- body

returns reduction of loop-multiple-values
end for

In the following range generators, each i is available for use in its corresponding loop
body.

for i in 1, 10 ... % 10 bodies
for i in A ...
for i in A cross j in B ... % one body for each possible pair
for i in C at j, k

% one body for each element in A

% one body for each element in 2D array

Loop multiple values created in the loop bodies are supplied as input values to the
reduction in sequence. For example, a loop can return the final value that was bound
to a loop name, build an array from the sequence, or take the sum of the list. To
eliminate keywords, the seven Sisal 1.2 sum, product, least, greatest, catenate, value,

CHAPTER 3. REDUCTIONS IN SISAL 90 24

array, and stream reductions are predefined reductions in the Sisal 90 definitions file.
Because of the separation of the variable name space, problematic name clashes with
user functions and variables are eliminated. The invocation of either the predefined
or user-defined reduction sum is the same.

for i in 1, n
x := i*i;

returns sum of x % find sum of squares

3.1.1 User-defined reduction language definition

A reduction definition in Sisal 90 is similar to a Sisal function definition with an
embedded sequential loop, the for initial. The key difference is that the call of the
reduction may appear only in the returns clause of a for expression since it takes loop
multiple values for input. These multiples are the values produced by the multiple
parallel bodies of the for loop.

reduct ion name (initial-values repeat loop-multiple-values
returns result-types 1
for initial

reduction-values
repeat

reduction- body

returns value of reduction-values
end for

end reduction

As the template above shows, the keyword reduction is followed by the reduction
name, input values, and result types. The reduction is run in three phases. In the
first phase, the initial values are used to produce a default reduction value. If no
multiples are ever supplied (a zero-trip loop), this default value will be returned. In
the second phase, the multiples are supplied to the body in order, for calculation

CHAPTER 3. REDUCTIONS IN SISAL 90 25

and update to the final reduction values. The third phase simply returns the final
reduction value.

3.1.2 Sisal 90 source examples

Consider the predefined sum reduction from the previous section. In this sample
similar to Appendix A.2, it is coded as a user-defined reduction.

reduction sum(repeat i:integer returns integer)

f o r init ial

t o t a l := 0

repeat

total := old total + x
returns value of total

end for

end reduction

The initial values (input values before the repeat) are blank since the sum reduction
always begins at zero. There is one loop multiple value x supplied in sequence by the
for loop at the call site. The result type is the same as the type of the multiple. In
the first phase, total is initialized to 0. The second phase adds each multiple to the
old total to produce a new total. In the last phase, the value of total is returned. If
no multiples are supplied to the reduction, the final value of total is the initial value,
0.

The counting histogram in Appendix A.3 is similar. At index histo-update, a

single element of the array is incremented by one to count the number of items in
that histogram bin. The other examples in Appendix A follow a common pattern.
State values are initialized, then updated with each parallel computation result. All
are explained in more detail in the next chapter.

26 CHAPTER 3. REDUCTIONS IN SISAL 90

(a+b+4a) 1 1 (b+5a)

Figure 3.1: IF1 data flow optimizations

3.2 Dataflow in IF Intermediate Form

3.2.1 Standard IF optimizations

The Sisal 90 parser translates the source program into the IF1 [20] intermediate level
data flow representation. Nodes in IF1 denote operations such as add or divide while
edges represent values that are passed from node to node as in Figure 3.1. Functions
are graph boundaries that surround groups of nodes and edges. Types can be attached
to each edge or function. Nodes with embedded subgraphs are called compound nodes.
These forms reveal the opportunity for many value-oriented optimizations in the Sisal
OSC compiler [3] such as function inlining, record and array fission, loop invariant
removal, common subexpression elimination? loop unrolling? and dead code removal.

Additional optimizations are performed by the OSC compiler by a second transla-
tion to IF2 [23], a representation with explicit memory management. Build-in place
and update-in-place analysis is used to eliminate memory copy and management
overhead. Loops that warrant parallel and vector execution are automatically made
concurrent. Finally, variable temporaries are selected and C code is generated for
final compilation to an executable.

Although the Sisal 1.2 intrinsic reductions can be written in Sisal 90, they are

27 CHAPTER 3. REDUCTIONS IN SISAL 90

Reduction

product
l e a s t
greatest
catenate
array
stream
user defined

SUm

Literal
SUM
PRODUCT
LEAST
GREATEST
CATENATE
ARRAY
STREAM
user defined

IF1 Equivalents
Reduce(SUM)
Reduce(PR0DUCT)
Reduce(LEAST)
Reduce(GREATEST)
Reduce(CATENATE)
AGather
S Gat her
None

Zero trip result
0 type
1 type
m m type
min type
[I type
[I array Ctypel
CI stream [type]
i n i t i a l returns tuve

Table 3.1: Reduction node translations and their zero trip return values

predefined for convenience. During the OSC type resolution phase, type information
is added to reduction node edges, and then the reductions are inlined using their IF1
equivalent definitions. This allows existing compiler optimizations to be used directly.
Table 3.1 shows the reductions and their IF1 equivalents.

3.2.2 UReduce node

Without analysis, user-defined reductions are translated directly into IF1. Such a
translation often obscures the high-level reduction expression. Therefore, Sisal 90
adds compound UReduce nodes that specify the reduction operation; they are left
unexpanded in the IF0 [lo] high level representation. All IF0 nodes can be translated
to IF1 with only the loss of succinctness and possibility of high-level optimization.
Leaving the node in IF0 allows for efficient implementations based upon low-level
control dependencies, sizes, and the amount of determinism required by the applica-
tion.

As Sisal 90 user-defined reductions remain unexpanded only in the returns clause
of parallel for loops, IF0 UReduce nodes appear only in the returns subgraph of
parallel F o r d compound nodes, as shown in Table 3.2. Matching the three phases
of a reduction, the UReduce node contains three subgraphs: initialization, body, and
returns. The first graph sets up any initial values. The body graph takes multiples
from the F o r d loop node containing it. The UReduce returns graph contains the
merge and FinaZVuZue node. When a UReduce node is used in the returns graph of

CHAPTER 3. REDUCTIONS IN SISAL 90

Forall Node
[subgraph 0: initialization J
I subaaDh 1: bodv I

subgraph 2: returns
UReduce Node I subgraph 0: initialization I
I subgraph 1: body I
1 subgraph 3: returns 1

28

Table 3.2: UReduce node embedded in the returns subgraph of a Forall.

a Forall, it enables postprocessing of the multiples produced by the Forall subgraph
body.

The IF language defines the ports on nodes and graphs. These ports are the
locations where data edges attach. The definition of a node operation also defines
the port number on which a value will be input or output. The port positions for the
compound UReduce node are shown in Table 3.3.

The IF1 for the scalar sum example is shown in Figure 3.2. Values set in the for
initial clause, in this case total, of the reduction appear in the first subgraph. In the
body subgraph, the old total is incremented with an IFPlus operation to produce the
new total at the bottom of the subgraph. On the first iteration through the body,
old total is the value supplied by the initialization subgraph. Later iterations feed
the new value of total back in to the old total port since they share the same port
number. The returns subgraph takes the final value from the body and returns it.
This research seeks to optimize reductions for parallel machines in light of these data
dependencies.

CHAPTER 3. REDUCTIONS IN SISAL 90 29

K, M
K

subgraph 0: initialization I
L

K, L, M

K, L, M

I subgraph 1: body
L

I subgraph 2: returns
R
R

nK 4- 1 ... nK +nM
nK + nM + 1.. . n ~ + nM + nL loop carried values

Table 3.3: UReduce port assignments

Mlxl - , -

old total

IFFinalVal

“tota l

Figure 3.2: IF0 UReduce node for global sum

30

Chapter 4

Performance study

4.1 Sisal 1.2 classification prototype

Before defining the reduction syntax and detailing all classes, I used the OSC Sisal 1.2

compiler to prototype user-defined accumulated reductions. A parallel for loop fol-
lowed by a call to a sequential loop function is recognized as a computation-reduction
pair [7]. The parallel computation produces multiple update values in an array. A
sequential loop consumes all values in order to produce the final accumulated array.
These two bodies fuse to form a single parallel loop with a critical section. The
compiler pulls most of the sequential calculations into the parallel computation. The
general pattern mathing template is:

let

updates := for Val in I, n

update := f(va1)

returns array of update

end for;

CHAPTER 4. PERFORMANCE STUDY 31

in

reduce,function(old-accum, updates) ;

end let

function reduce,function(old-accum:accum-type updates:update,type

returns accum-type)

for initial

i := 0

accum := old-accum;

while i < array-size(updates) repeat
i := old i + 1;

index := g(i);

new-Val := old accumCindex1 + updates Cil ;

accum := old accumCindex: new-vall ;

returns value of accum

end for;

end function

The - r <function> option signals the OSC compiler to attempt to perform the re-
quired analysis to turn the function into an optimized reduction. Since this technique
was only meant to be used as a prototype, no changes to the Sisal 1.2 language were
made. Only functions operating on extant arrays are recognized. The natura1 Sisal
computation-reduction syntax is not extended to handle general reductions. That
is saved for the Sisal 90 language. The sequential to parallel fusion optimization is
applied to pairs of for computations and for initial reduction expressions that satisfy
a complex set of criteria.

CHAPTER 4. PERFORMANCE STUDY

Size 100000 200000 300000 400000 500000
Sequential 11.6 MB 23.2 MB 34.8 MB 46.4 MB 58.0 MB
Reduction 9.37 sec 18.97 sec 28.25 sec 38.18 sec 49.76 sec
Parallel 8.4 MB 16.8 MB 25.2 MB 33.6 MB 42.0 MB

Reduction 7.73 sec 15.60 sec 23.83 sec 31.47 sec 39.02 sec

32

Table 4.1: Time and memory usage of prototype accumulated reductions

1. The for initial expression depends directly on the for expression, and does not
depend on any descendant of the for expression.

2. The initialization clause of the for initial expression is independent of the array
of values consumed.

3. The for initial expression consumes every value of the produced array, once and
in order.

4. The for initial expression has no loop carried dependencies other than an index
value and the shared accumulator.

5. The for initial expression depends on the for expression for only an array of
values.

A series of experiments were used to evaluate the performance of this optimization.
An expanded version of the molecular dynamics example from Section 1.2.3 was used.
Table 4.1 gives the execution times and space requirements for different problem sizes.
Because the test computer had only 64MB of core memory, larger problem sizes for
the sequential reduction could not be run. Memory page swapping would have skewed
the results. The savings in this case was not just the execution speed, but memory
size.

Figure 4.1 shows the graph of execution times for the sequential and the original
unoptimized four processor implementations (using the sequential reduction). The
optimized four processor (using a parallel reduction) execution time is compared. As
expected, the optimized code uses less space than the unoptimized code. For this

CHAPTER 4. PERFORMANCE STUDY 33

execution time (seconds)
80
70
60 a optimized-4
50
40
30
20
10
0

100000 200000 300000 400000 500000
problem size (number of bonds)

o sequential
0 unoptimized-4

Figure 4.1: Execution times of prototype computation-reduction expressions.

example, it also runs faster; however, appreciable performance gains did not always
appear.

There are many factors that influence the execution time of the optimized code
versus the execution time of the unoptimized code: the time to set and release locks,
the time to write and read a record, lock contention, size of the computation ex-
pression, size of the reduction expression, number of processors, etc. If the size of
the computation expression is at least p (number of processors) times greater than
the size of the reduction expression, then there is little lock contention. Essentially,
the concurrent tasks contend for the lock the first time, and then become staggered
arriving at the critical section at different times.

In the molecular dynamics code, all computation expressions are much larger than
the reduction expressions. However, small reduction expressions minimize the effect of
parallelizing the reduction operation. On large systems, Amdahl’s Law may magnify
the effect, but then the large number of processors increases lock contention.

In response to these findings, a hand-coded version trading the locks for local
temporaries was produced. Similar results were observed. Local memory usage was

CHAPTER 4. PERFORMANCE STUDY 34

up from the locked version sin e procc

implementations available in Sisal 90.

r had an tire intermediate copy. The
speedups were however more consistent since lock contention did not increase with
the number of processors.

Both methods have application areas. Local memory is not always a scarce com-
modity so using local temporaries is a good tradeoff on large memory machines. When
memory is tight, the lock technique is more appropriate. The factors influenced the

4.2 Sisal 90 compiler results

User-defined reductions were added to the Sisal 90 1 ;e as d

4.2.1 Execution time and memory consumption

S ribed. D vel-
opment of the sequential and gathered classes [19] continued during my addition of
the independent, accumulated and selected subclasses. I measured one example of
each subclass by direct specification with a #pragma. Chapter 2 of this document
describes these samples.

1. independent array permutation build in Appendix A.l

2. accumulated merge(lock) scalar sum in Appendix A.2

3. accumulated merge(master) histogram in Appendix A.3

4. selected merge(master) first minimum in Appendix A.4

5 . selected merge(mndidates) first minimum index in Appendix A.5

After tuning the optimization implementations, I added analysis to verify the
applicability of specific user pragmas. The compiler, however, does not accept the
-03 flag or #pragma returns parallel to invoke nondirected optimization analysis.

The OSC Sisal 1.2 compiler performs comparably with optimized Fortran in its appli-

cation areas [4]. This study compares reductions written in Sisal 90 with equivalent

CHAPTER 4. PERFORMANCE STUDY 35

seconds Update In-place Permutation
3.5

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6 7 8 processors

Figure 4.2: Execution times of permuted update in-place.

Sisal 1.2 benchmarks. For constructs unique to Sisal 90, simpler constructs in Sisal 1.2
establish an execution time and memory usage lower bound.

For example, a Sisal 90 independent array update in-place with permuted indexes
can only be expressed in Sisal 1.2 as a sequential construct. The permutation update
is however a parallel operation that can be optimized without any locks. Therefore,
a parallel array build in-place in Sisal 1.2 sets the lower bound for comparison.

In the Sisal 1.2 array build in-place, each processor has a contiguous range of
values to produce. There are only cache conflicts at the boundaries of the range. A
permutation of indexes however, will supply each processor with random locations to
update, which changes the cache utilization. To test this, an optimized implementa-
tion was run on an 8 processor SGI Challenge with and without actually permuting
the indexes; both still ran from 1 to n just like the ordinary parallel array build.
The caching effects for the two different versions are negligible on a heavily-loaded
machine as shown in Figure 4.2. Both used the minimal array memory.

The execution time a;nd memory is identical for the scalar Sisal 1.2 intrinsic and
Sisal 90 user-defined reduction versions: least, greatest, sum, and product. The

CHAPTER 4. PERFORMANCE STUDY 36

seconds Global Scalar Sum
4.5 I I I I I I I I

4
3.5

3
2.5

2
1.5

1
0.5

0
0 1 2 3 4 5 6 7 8

processors

Figure 4.3: Execution times of scalar reductions.

emitted code is functionally equivalent, with differences only in the names of the
temporaries used. This shows that the scalar accumulated merge(lock1 and selected
merge(lock) can be effectively implemented with linear speedup as shown in Figure 4.3
on a heavily loaded SGI (load average: 30).

The accumulated merge(master) histogram can actually be compared against a
parallel Sisal 1.2 benchmark. Although Sisal is implicitly parallel, it is possible (us-
ing poor programming style) to write an outer loop that is sliced among all (1.. .
nprocs) processors as shown in Appendix A.3. The performance and memory usage
is nearly identical for the two versions. The Sisal 90 user-defined reduction with im-
plicit parallelism is much simpler. The histogram reduction histo-reduc is initialized
to size and each element i in the update array is reduced. Local histograms are com-
puted on each processor and reduced sequentially on the master in both versions. The
selected merge(candzdates) implementation can also be expressed in Sisal 1.2 using a
similar technique as shown in Appendix A.5. Comparable performance and memory
use was observed.

37

Chapter 5

Conclusions

5.1 Conclusions

5.1.1 Performance and Expressibility

When executed on highly parallel machines, the presence of sequential expressions
(such as the Sisal f o r i n i t i a l) diminish the code’s efficiency, an effect of Amdahl’s
Law. I initially sought to maximize the amount of parallelism. Through attempts
to increase the execution performance of reduction expressions, the techniques mini-
mized memory as well in many implementations. Several applications critically need
reduced memory size to fit within the computer’s real memory. Swapping large mem-
ory programs to disk as they run greatly curtails execution performance. In addition,
the type of memory a program uses matters. Shared memory is a more precious com-
modity and usually much slower than local memory. Also, performance increases by
using local memory because of lack of contention. The number of parallel instructions
does not entirely reveal the total execution time of a program.

However, parallelizing overhead sometimes outweighs the gains. A good imple-
mentation must be chosen by careful analysis. In a locked reduction, if the parallel
computation is thin and the reduction is thick, lock contention is common. In the re-
verse case with even amounts of work, the processors contend the first time and then

CHAPTER 5. CONCLUSIONS 38

are staggered. It must be considered that the greater the number of processors, the
greater the opportunity for multiple processors to attempt to enter a critical section
simultaneously. Time to broadcast initial values and gather results from multiple pro-
cessors in comparison to expected speedup must analyzed. Without implementation
classes and cost estimates or user pragmas feed into the analysis, parallel slowdown
can occur. Fortunately, as problem sizes increase, the extra overhead can be paid.

This research was originally motivated by problems faced in certain molecular
dynamics applications. Not only could they not be expressed succinctly, they would
not run on the available hardware. By adding user-defined reductions and time and
memory optimizations, these codes can now be run. The source code is very readable
and completely portable. The problems are parallelized to run efficiently. Express-
ing the algorithm in a simple, implicitly parallel way leads to good performance.
This achieves the goals of the Sisal 90 language by implementing a straightforward
reduction syntax.

The definition of classes of reduction operations aided optimization. Analysis
revealed opportunities for concurrent execution. Compiler directives were added to
override default choices. A prototype in Sisal 1.2 showed the utility of the techniques,
especially for memory savings. The Sisal 90 compiler incorporated optimizations
for examples from each class of reduction. The generated codes demonstrated the
efficiency of fusing parallel computations with sequential reductions.

5.2 Future Work

Additional research is almost exclusively in analysis. High performance implementa-
tions already appear in imperative code as programmers struggle for improvements.
Analysis to automatically produce their results requires additional compiler develop-
ment. Fewer hand-generated pragmas specifying an implementation will be needed.
From a single source code, the compiler should produce better optimized programs
for multiple machine targets.

CHAPTER 5. CONCLUSIONS 39

The most straightforward extension of this work is to add an -03 compiler flag to
automatically select an implementation from the three top-level classes: sequential,
gathered, and parallel. An even more important addition would be to extend the
simple independent analysis to handle a larger number of cases using work such as in
[ll]. Without explicit declaration, most permutations of complete index sets should
still be recognized. If the indexes are data dependent and are calculated infrequently,
a run-time check would also allow update-in-place optimizations.

Though HPF-2 Fortran is imperative, more functional elements are being added.
This research should be applied to HPF reduction pragmas to eliminate them as well.
Since the high performance computing community is coming upon some common
themes, cross-fertilization will continue.

40

Bibliography

[l] J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wa-
gener. Fortran 90 Handbook: Complete ANSI/ISO Reference, chapter 13.
Intert ext /McGraw-Hill, 1992.

[2] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall,
1988. ISBN 0-13-484189-1.

[3] D. C. Cann. The Optimizing SISAL Compiler. Lawrence Livermore National
Laboratory, Livermore, CA, April 1992.

[4] D. C. Cann. Retire Fortran? A Debate Rekindled. Communications of the ACM,
35(8):81-89, August 1992.

[5] P. Castillo. A mathematical framework for reduction operators. Master's thesis,
University of Puerto Rico, Mayaguez, Mayaguez, Puerto Rico, December 1994.

[6] Cray Research, Inc., 2360 Pilot Knob Road, Mendota Heights, MN 55120. CFT77
Reference Manual, sr-0018 edition, October 1988.

171 S. Denton, J. Feo, and P. Miller. Realizing parallel reduction operations in SISAL

1.2. In Parallel Architectures and Compilataon Techniques (PACT) '94. IFIP
Transact ions, 1994.

181 J. Dongarra, D. Walker, et al. Mpi: A message-passing inter-
face standard. Technical Report 1.0, Message Passing Interface Forum,
http: //www .mcs. anl.gov/mpi/index. html, 5 May 1995.

BIBLIOGRAPHY 41

[9] J. T. Feo. The livermore loops in sisal. Technical Report UCID-21159, Lawrence
Livermore National Laboratory, Livermore, CA, August 1987.

[lo] J. T. Feo, P. J. Miller, S. Skedzielewski, S. M. Denton, and C. J. Solomon.
Sisal 90. In High Performance Functional Computing Conference, Livermore,
CA, April 1995. Lawrence Livermore National Laboratory.

[ll] D. Garza and W. Bohm. Uniqueness analysis of array comprehensions using the
omega test. In Proceedings of the First International Static Analysis Symposium.
Lecture Notes in Computer Science 864, Springer-Verlag, 1994.

[12] P. Hudak and J. H. Fasel. Report on the programming language Haskell: A
non-strict, purely functional language. In SIGPLAN Notices. ACM, May 1992.

[13] High Performance Fortran Forum. High Performance Fortran Journal of Devel-
opment: Version 1.0. Rice University, Houston, TX, May 1993.

[141 High Performance Fortran Forum. High Performance Fortran Language Specifi-
cation: Version 1.0. Rice University, Houston, TX, May 1993.

[l5] High Performance Fortran Forum. HPF-2 Scope of Activities and Motivating
Applications: Version 0.8. Rice University, Houston, TX, November 1994.

[16] J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham,
B. Noyce, and R. Thomas. SISAL: Streams and iteration in a single assign-
ment language: Reference manual version 1.2. Manual M-146, Rev. 1, Lawrence
Livermore National Laboratory, Livermore, CA, March 1985.

[17] J. Sequel and D. Bollman. Even and quarter-even prime length symmetric
ffts and their sisal implementations. In Proceedings Sisal '93 CONF-9310206.
Lawrence Livermore National Laboratory, Springer-Verlag, October 1993.

[18] Silicon Graphics Inc., Mountain View, CA. Fortran 77 Programmers's Guide,
007-0711-030 edition, 1991.

BIBLIOGRAPHY 42

[19] S. Skedzielewski, J. Feo, P. Miller, and S. Denton. Sisal 90 Language Reference
Manual. Lawrence Livermore National Laboratory, Livermore, CA, 0.9 edition,
April 1995.

[ZO] S. Skedzielewski and J. Glauert. IF1: An intermediate form for applicative
languages. Manual M-170, Lawrence Livermore National Laboratory, Livermore,
CA, July 1985.

[21] C.-W. Tseng and J. H. Saltz. Compilation and runtime support for massively
parallel processors. Supercomputing '93 Tutorial F3, November 1993.

[22] K. Warren, B. Gorda, and E. D. B. 111. Using pddp. Technical Report DRAFT
for review, Lawrence Livermore National Laboratory, Livermore, CA, October
1984.

[23] M. L. Welcome, S. K. Skedzielewski, R. K. Yates, and J. E. Ranelletti. If2: An
applicative language intermediate form with explicit memory management. Man-
ual M-195, Lawrence Livermore National Laboratory, Livermore, CA, December
1986.

43

Appendix A

Code Samples

All examples are shown with explicit pragmas to identify their class. With analysis,
these pragmas are not required.

A S Parallel array permutation build

reduction square-shift(n,shift:integer repeat i:integer returns
array [integer]
for initial

repeat

returns value of a
end for

a := array-fill(0, n-1, 0) ;

a := old a[(i+shift) mod n ! i*i 1

end reduction

#pragma returns independent
function main(n, shift:integer returns arrayLinteger1)

for i in 1, n /

returns square-shift (n, shift) of i
end for

end function % main

APPENDIX A. CODE SAMPLES 44

define main

function main(n: integer returns array [integer])
for i in I, n
returns array of iwi
end for

end function % main

A.2 Parallel global sum
A local array slice sum from each processor is added together on the master processor.

#pragma reduction merge (lock)
reduction tsum(initva1:integer repeat x:integer returns integer)

for initial

repeat

returns value of total
end for

total := initval

total := old total + x

end reduct ion

#pragma returns accumulated
function main(n: integer returns integer)

for i in 1, n
returns tsum(l0) of i
end for

end function % main

define main

function main(n: integer returns integer)
IO + for i in 1, n

returns value of sum i
end f o r

end function % main

I

APPENDIX A. CODE SAMPLES 45

A.3 Parallel counting histogram
A local counting histogram array is produced for each processor slice and merged
columnwise on the master processor.

?+ragma reduction merge(master1
reduction histo(histo,size:integer repeat histo-update:integer

returns array [integer] 1
for initial

repeat

returns value of bins
end for

bins := array-fill(1, histo-size, 0);

bins := old bins[histo-update ! old binsChisto-updatel+l 1

end reduction

?+ragma returns accumulated
function main(histo,size: integer; histo-updates : array [integer]

returns array [integer] 1
for i in histo-updates
returns histo(hist0-size) of i
end for

end function

define main

function histo-func(histo-size:integer; histo-updates:array[integer];
start, finish: integer returns array [integer])
for initial

i := start;
local-histo := array-f ill (1 histo-size 0) ;

while i<=finish repeat
i := old i + 1;
j : = histo-updates [old i] ;
local-histo := old local-histo [j : old local-histo[jl+ll ;

returns value of local-histo
end for

end function

function main(npr0c:integer; histo-size:integer;

APPENDIX A. CODE SAMPLES 46

histo-updates : array [integer] returns array [integer])
let

%

%
% Create an array from local histograms (in parallel)

slice-size := array-size(histo-updates)/nproc;
remainder := mod(array-size(histo-updates), nproc);
local-histos :=

for i in 1, nproc
start := (i-l)*slice,size + 1 + min(i-1, remainder);
finish := i*slice-size + min(i , remainder) ;
%
% Create a local histogram (sequential)
%
local-histo := histo,func(histo-size, histo-updates,

start , finish)
returns array of local-histo
end for

in
%
% Combine the local histograms (sequential)
%
for j in 1, histo-size

column-sum :=

returns
end for

end let
end function

for i in 1, nproc
returns value of sum local-histos [il [jl
end for
value of catenate array [I: column-sum1

A.4 Parallel first minimum

#pragma reduction merge(master1
reduction first-min(repeat x:integer returns integer)

for initial

repeat
min-val := $MAXINT;

min-Val := if x<min-val then x else old min-Val;

APPENDIX A. CODE SAMPLES 47

returns value of min-val
end f o r

end reduct ion

#pragma returns selected
function main(n: integer returns integer)

f o r i i n 1, n
returns first-min of i
end f o r

end function % main

define main

function main(n: integer returns integer)
f o r i i n 1, n
returns value of least i
end for

end function % main

A.5 Parallel first minimum index
Index and value of first occurrence of the minimum value on each processor slice
is returned to the master processor. Master sequentially reruns the reduction and
returns the index.

*ragma reduct ion merge (candidates)
reduction firstmin-index(repeat x,i : integer returns integer)

end

f o r i n i t i a l
min-val := $MAXINT;
min-index := 0;

min-Val, min-index :=
repeat

i f x < old min-val then x, i
else old min-Val, old min-index
end i f ;

re turns value of min-index
end for
reduct ion

APPENDIX A. CODE SAMPLES 48

#@ragma returns selected
function main(a:arrayCintegerl returns integer)

for i in array-size(a)
returns firstmin-index of aCil , i
end for

end function

define main

function local-cand(a:array [integer] ; start , finish: integer

end

returns integer, integer)
for initial

i := start;
local-val : = a [start] ;
local-index : = start ;

while i<=finish repeat
i := old i + 1;
local-Val, local-index :=

if a[old il < old local-Val then

else

end if

value of local-index

aCold il , old i

old local-Val, old local-index

returns value of local-val

end for
function

function main(nproc : integer ;
let

%
% create an array of
%

a: array [integer]

local candidates

returns integer)

(in parallel)

slice-size := array-size(a)/nproc;
remainder := mod(array-size(a) , nproc) ;
local-cand-vals, local-cad-indexes :=

for i in I, nproc
start := (i-l)*slice-size + 1 + min(i-1, remainder);
finish := i*slice-size + min(i, remainder);
%
% create a local candidate (sequential)
%
local-cad-Val, local-cand-index :=

local-cand(a, start , finish) ;
returns array of local-cand-val

APPENDIX A. CODE SAMPLES 49

array of local-cand-index
end for

in
%
% Rerun reduction on all candidates (sequentially)
%
for initial

i := 1;
f inal-Val : = local-cand-vals Cil ;
f inal-index : = local-cand-indexes [il ;

final-Val, final-index :=
while i<=nproc repeat

if local-cand-vals [old il < old f inal-Val then

else
local-cand-vals [old i]

old f inal-Val

local-cad-indexes [old i]

old f inal-index
end if;

i := old i +
returns value of
end for

end let
end function

1
f inal-index

APPENDIX A. CODE SAMPLES 50

This work was supported by Lawrence Livermore National Laboratory under DOE con-
tract W-7405-Eng-48. This document was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States Government nor
the University of California nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific commer-
cial products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or the University of California, and shall not be used for advertising or product
endorsement purposes.

	Acknowledgements
	List of Tables
	List of Figures
	1 Introduction
	1.1 What is a reduction?
	1.1.1 Reduction operators and functions

	How are they used?
	Imperative languages and libraries
	1.2.2 Functional languages
	Applications for user-defined reductions

	2 Implement at ion classification
	Automatic classification
	2.1.1 Analysis
	2.1.2 Classes of reductions
	2.1.3 Directives

	Sequential and gathered reductions
	Independent reductions
	Accumulated reductions
	Selected reductions
	2.5.1 Indexed minimum reduction function

	2.6 Additional code optimizations

	3 Reductions in Sisal
	3.1 Syntax and semantics
	3.1.1 User-defined reduction language definition
	3.1.2 Sisal 90 source examples

	3.2 Dataflow in IF Intermediate Form
	3.2.1 Standard IF optimizations
	3.2.2 UReduce node

	4 Performance study
	4.1 Sisal 1.2 classification prototype
	4.2 Sisal 90 compiler results
	4.2.1 Execution time and memory consumption

	5 Conclusions
	5.1 Conclusions
	5.1.1 Performance and Expressibility

	5.2 Future Work

	Bibliography
	A Code Samples
	A.l Parallel array permutation build
	A.2 Parallel global sum
	A.3 Parallel counting histogram
	A.4 Parallel first minimum
	A.5 Parallel first minimum index
	Reduction node translations and their zero trip return values
	UReduce node embedded in the returns subgraph of a Ford
	3.3 UReduce port assignments
	4.1 Time and memory usage of prototype accumulated reductions
	Reduction operator vs function
	1.2 Reduction operator tree
	Sequential and gathered executions of computation and reduction
	Parallel independent computation and reduction and pattern match
	2.3 Parallel accumulated reductions: lock and master merge
	Parallel selected reduction with candidate per processor
	3.1 IF1 data flow optimizations
	3.2 IF0 UReduce node for global sum
	Execution times of prototype computation-reduction expressions
	Execution times of permuted update in-place
	Execution times of scalar reductions

