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Computer Science 

Optimizing Parallel Reduction Operations 

Abstract 

A parallel program consists of sets of concurrent and sequential tasks. Often, a 
reduction (such as array sum) sequentially combines values produced by a parallel 
computation. Because reductions occur so frequently in otherwise parallel programs, 
they are good candidates for optimization. 

Since reductions may introduce dependencies, most languages separate computa- 
tion and reduction. The Sisal functional language is unique in that reduction is a 
natural consequence of loop expressions; the parallelism is implicit in the language. 
Unfortunately, the original language supports only seven reduction operations. To 
generalize these expressions, the Sisal 90 definition adds user-defined reductions at 
the language level. 

Applicable optimizations depend upon the mathematical properties of the reduc- 
tion. Compilation and execution speed, synchronization overhead, memory use and 
maximum size influence the final implementation. This paper 

1. Defines reduction syntax and compares with traditional concurrent methods 

2. Defines classes of reduction operations 

3. Develops analysis of classes for optimized concurrency 

4. Incorporates reductions into Sisal 1.2 and Sisal 90 

5 .  Evaluates performance and size of the implementations 

.. 
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Chapter 1 

Introduction 

1.1 What is a reduction? 

A reduction transforms a set of values computed sequentially or in parallel. It gathers 
to define a scalar value or transforms to build an aggregate structure. Examples are: 

0 global sum operators 

0 finding the minimum value or index in an array 

0 histogram functions 

0 calculating the incident force on a molecular particle 

An array sum reduction produces a scalar value by adding together all array elements. 
The first minimum reduction returns the first occurrence of the minimum value in 
a list or array. A histogram is a transformational reduction that counts the number 
of occurrences of a value in one array and stores the count in another. A recurring 
theme in particle physics codes is the calculation of bond forces. Since the forces 
between particles are symmetric, each force is calculated once but accumulated on 
both affected particles. 
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I TYPeC I 
Figure 1.1: Reduction operator vs. function 

1.1.1 Reduction operators and functions 

A reduction consists of a set of input values, an operator or function, and an optional 
identity value. For the purposes of this discussion, an operator takes inputs of the 
same type and produces a value of the same type on output. A function takes inputs of 
different types and returns an output of possibly a third type as shown in Figure 1.1. 

Conceptually, a reduction operator is an infix binary operator placed between each 
of the input values. An example of a scalar reduction operator is global array sum 

input values [5.0,3.2,6.0,1.4,2.0] 

reduction operator + 
identity value 0.0 

expression 0.0 + 5.0 + 3.2 + 6.0 + 1.4 + 2.0 

left ((((5.0 + 3.2) + 6.0) + 1.4) + 2.0) 

right (5.0 + (3.2 + (6.0 + (1.4 + 2.0)))) 

tree ((5.0 + 3.2) + ((6.0 + 1.4) + 2.0)) 

random ((6.0 + 1.4) + ((5.0 + 3.2) + 2.0)) 

Note that since scalar sum is commutative and associative (barring machine round- 
off), order of reduction is not important for many applications. The expression may 
be evaluated left-to-right, right-to-left, or in random groupings [5] .  A tree mapping 
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5.0 3.2 6.0 1.4 2.0 

Y 
Figure 1.2: Reduction operator tree 

is shown in Figure 1.2. The mapping most appropriate for a particular computer 
architecture may be chosen. 

A reduction function takes different types. Consider a histogram with four bins 
represented as a four element array. The identity value is an array of four zeros. The 
input values are tuples to be accumulated into the histogram. The first element of a 
tuple selects the bin and the second is the value to add. The histogram function h() 
applies each input value pair to the bins consecutively. 

To optimize for parallel machines, this nested invocation is normally split into local 
groupings for each processor, then merged for the final result. This implementation 
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requires an initial value for each partial result and a merge function to combine local 
results. Consider a two processor system. The initial value for each processor is the 
identity value, a four-element zero array. The merge function M ( )  is array addition 
by element (e). M ( )  combines the two temporary array values computed on the two 
processors. Neither the initial value nor the merge function is usually specified by the 
source code of the reduction function, and must be synthesized. 

A histogram function can also be converted into a histogram operator by expand- 
ing types to match. The function F ( )  in the example converts the pair (4 , l )  to 
[0, O,O, 11. Array addition may then be used directly. 

1.2 How are they used? 

Computation-reduction pairs are a mainstay of traditional scientific programming. 
In a calculation evolving over time, iterative computation and reduction update the 
previous cycle to produce the new state. Because the efficient expression and im- 
plementation of reduction operations can reduce the cost of parallel programming, 
current compilers and libraries have targeted the most common variations. 

1.2.1 Imperative languages and libraries 

Languages like Fortran, C, and C++ have been used extensively for scientific pro- 
gramming. These languages use an explicit control flow and memory model. Compil- 
ers for these traditional sequential languages, such as Cray CF77 [6] and the Fortran 
D compiler [21], often find parallelization optimizations by pattern matching. The 
following inner product from the Livermore Loops [9] is a simple example. 

C Livermore Loop 3 

Q = 0.0 

DO 100 k = I, 100 

Q = Q + Z(k)*X(k) 

100 CONTINUE 
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Parallel pragmas may be given to force a parallel implementation such as in the 
SGI f17 compiler [18]. The DO loop is sliced so that each processor operates on a 
contiguous range of values. This method is limited to scalar reduction operators such 
as array sum: 

SUM = 0.0 

C$DOACROSS LOCAL(I), REDUCTION(SUM) 

DO 10 I = 1, N 

SUM = SUM + A(1) 

10 CONTINUE 

Since reductions may introduce dependencies, most languages separate the com- 
putation and reduction tasks. As an example, Fortran 90 [l] and HPF 1141 provide 
a rich set of predefined reduction functions on extant arrays. In this data parallel 
model, the array memory may actually be distributed across all of the processors. 

C find the minimum value in z-array 

z-min = MINVAL(z-array) 

C 

C return the first index of the minimum value in z-array 

z-min-loc = MINLOC(z,array) 

Neither of these methods provides for general reductions defined by the user. To 
compensate for these language deficiencies, message passing libraries for sequential 
threads on parallel computers often allow extension of their predefined reductions. 
The MPI [8] message passing interface adds elementwise array reductions defined by 
the user. 

C MPI predefined reduction to sum x’s from a l l  processors in Fortran 

CALL MPI-REDUCE(x, c, 1, MPI-REAL, MPI-SUM, 0, comm, ierr) 

C 

/* 
* MPI array product of complex numbers in C 
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* Define type, register function, call myProd0 
*/ 
MPI-Type-contiguous ( 2, MPI-DOUBLE, tctype 

MPI,Type-commit ( tctype ; 

MPI-Op-create( myprod, True , hy0p 
MPI-Reduce( a, answer, 100, Ctype, myop, root, Corn 

; 

; 

; 

Explicit locks are available as an extension in some shared memory compilers like 
PDDP [22]. User-defined reductions are still complex. Witness the code to reproduce 
the predefined PDDPSUMO global add: 

C Global sum of elements in array a(1:asize) 

subroutine globalsum(sum, a) 

shared real sum, a() ! shared by all processors 

real partial ! local to each processor 

integer i, asize 

lock sumlock ! critical section lock variable 

integer width 

MASTER ! only one processor initializes 
sum = 0 

ENDMASTER 

BARRIER ! wait for initialization 

asize = pddp-size (a) 

partial = 0 ! local partial sum 

width = (asize+-NPROCS-l)/-NPROCS ! slice per processor 

do i = (-IPROC-l)*width+l, MIN(-IPROC*width, asize) ! slice 

! length of array a 

partial = partial + a(i) 

end do 

LOCK(sumlock) ! critical section 

sum = sum + partial 
UNLOCK(sumlock) 

end 
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1.2.2 f inct  ional languages 

Functional languages [2] map input values to output values; since there is no explicit 
memory model there can be no variable aliasing, side effects, or time dependent (non- 
determinate) errors. With the program text defining a data dependency graph, the 
availability of inputs defines the order of execution. All synchronization, communi- 
cation, and scheduling are implicit. 

Despite the lack of explicit memory, functional languages also support optimized 
reduction operations. Haskell [12] provides reduction and accumulation operations 
on extant lists or list expressions. 

-- compute the sum of the integers 1 through 10 

SUmCl. .lo1 

-- return a table of the number of occurrences of each value 
-- within bounds i n  list z 

accumArray (+> 0 bounds [i := 1 I i <- z ,  (inRange bounds ill 

Sisal 1.2 [16] is unique in that reduction is a natural consequence of loop expres- 
sions. The reduction operation appears as a keyword in the returns clause of a for 
expression. 

% find the minimum value in z-array 
z-min := for z in z-array 

returns value of least z 

end for 

X compute the sum of the integers 1 through 10 
total := f o r  i in 1, 10 

returns value of sum i 

end for 

The Sisal 1.2 language definition supports only seven reduction operations: sum, 
product, least, greatest, array, stream, and catentate. Because the reduction is part 
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of the loop, the current optimizing compiler can often overlap computation and reduc- 
tion for these intrinsics. It generates tasks to take best advantage of the underlying 
architecture. 

1.2.3 Applications for user-defined reductions 

A shortcoming of all current languages is the support of only a limited set of predefined 
reduction operations. Many applications require very specific reductions. Sisal 1.2 
does not provide an intrinsic to find the index of the first minimum value. A new 
intrinsic would be required: 

% find the index of minimum value in z-array 
z-min-index := for z in z-array 

returns value of index-least z % NOT AVAILABLE 
end for 

The available Sisal 1.2 solutions are not optimal. The first doubles the computa- 
tion’s overhead, 

min-value := for x in A 

returns value of least x 

end f o r ;  

min-index := for x in A at i 

returns value of least i when 31: = min-value 

end f o r ;  

and the second solution eliminates all parallelism. 

min-index := f o r  initial 

i := 1; 

min-value, min-index := AD], 1 

while i < array-size(A) repeat 
i := old i + 1; 
min-value, min-index := 
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if A[i] < old min-value then A[i] , i 
else old min-value, old min-index 

end if 

returns value of min-index 

end for 

9 

The situation is more dire when generating a set of values to be counted or ac- 
cumulated by type as in a histogram. A recurring theme in particle codes is the 
calculation of forces between particles. Since the forces are symmetric, we want to 
calculate each force only once and then accumulate the forces on the affected particles. 
This computation cannot be done with the intrinsic reductions. 

For example, consider a set of n particles and m bonds. Each bond represents 
a force between two particles. In the code fragment below, the function end-points 
returns the indices of the two particles participating in the bond. Function energy 
returns a record with the input indices and the energy of the bond that is a function 
of the particle positions. Force-update is a list of these records. Force-out is an array 
of cumulative bond energies, one entry per particle. 

Force-update := 

for bond in 1, m 

index-1, index-2 := end,points(bond); 

Force-record := energy(index-1, index-2, Positions) 

returns array of Force-record 

end for; 

Force-out := 

for initial 

i := 0; Forces := array-fill(1, n, 0.0) 

while i < array-size (Force-update) repeat 
i := old i + 1; 
index-1 := Force-update [i] . index-1; 
index-2 := Force-update [il .index-2; 

be : = Force-update Cil . bond-energy ; 
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Forces := old Forces [index-1 : old Forces [index-11 + be ; 

index-2: old Forces[index-21 - be 1 
returns value of Forces 

end for 

The force update array can be calculated in parallel, but the calculation of total 
force on each particle uses a sequential for initial. On highly parallel computer sys- 
tems, the presence of the for initial expression curtails the code’s efficiency, an effect 
of Amdahl’s Law. Notice that the size of the sequential code grows linearly with prob- 
lem size. On medium or small systems, there may be insufficient memory to store the 
intermediate array of force records. The extra storage may increase the number of 
page faults and secondary memory accesses, diminishing performance. Programmers 
writing in an imperative language do not face this problem. They can write a single 
parallel loop (sliced by the compiler across processors) that includes a critical section 
to control access to the force array, 

do ibond = 1, m 

call end-points(bond, ibond, index-I, index-2) 

be = energy(index-1, index-2, Positions) 

lock (Force-out 1 
Force-out(index-1) = Force-out(index-1) + be 
Force-out(index-2) = Force-out(index-2) - be 

unlock(Force-out 1 
end do 

Since the energy calculation is typically much longer than the critical section, the 
concurrent tasks will contend for the lock infrequently. The code is parallel, efficient, 
safe, and minimizes memory use. An alternative is to use two loops with a temporary 
array per processor, 

iproc = processor-number(); 

do ibond = 1, m 

call end-points(bond, ibond, index-I, index-2) 
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be = energy(index-1, index-2, Positions) 

Force-temp(iproc, index-1) = Force-temp(iproc, index-1) + be 
Force-temp(iproc, index-2) = Force-temp(iproc, index-2) - be 

end do 

lock(Force-out ) 

do ipart = 1, n 

Force,out(ipart) = Force-out(ipart) + Force-temp(iproc, ipart) 

end do 

unlock(Force-out 1 

To address the issues of functionality and complexity, the HPF Journal of Devel- 
opment [13] and the HPF-2 draft [15] have suggested additional language features be 
added for user-defined reduction functions in Fortran. The final form of these features 
has not been determined. A problem with any of these approaches is that reductions 
take place on extant arrays. The size of the values to reduce becomes a limitation on 
problem size due to memory constraints [7]. Sisal 1.2 does not require extant arrays 
but lacks user-defined reductions. This paper describes how language features were 
included and implemented in Sisal 90 [19] to address both of these issues. 



12 

Chapter 2 

Implement at ion classification 

2.1 Aut ornat ic classification 

2.1.1 Analysis 

This paper classifies reductions to reveal possible methods of implementation for mul- 
tiprocessor computers. There are two types of classification: mathematical properties 
and data dependencies. Classifications determine the range of possible implementa- 
tions. The hardware characteristics of a real machine with finite primary memory and 
parallel overhead further restrict the possible implementations. Our analysis selects 
an implementation based upon the relationships between machine- and application- 
specific sizes and overhead costs. For example, we mark a parallel loop sequential if 
physical memory is exceeded or the parallel overhead outweighs the parallel speedup 
achievable. 

For the techniques tested, the factors used to select an implementation when 
classification allowed a choice were 

Size 

- Parallel reduction state replicated across processors exceeds memory 

- Parallel gathered reduction values exceeds memory threshold 
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0 Execution time 

- Parallel task overhead large compared to parallel work 

- Parallel shared memory lock contention too high for number of processors 
used 

We encode these cost criteria in IF2 [23]. The first phases of the IF2 optimization 
in the OSC compiler derive cost estimates and sizes for the execution. Costs are 
attached to the computation nodes with a %cc mark. The latter phases of the compiler 
use data dependencies, execution cost, synchronization, communication, and tasking 
startup estimates to select an implementation. 

2.1.2 Classes of reductions 

The amount of concurrency classifies the top level. This specifies whether the re- 
duction is to be fused with the computation. The mathematical properties of the 
reduction determine the next level, the range of possible reduction implementations. 
The analysis and effect of classification are the focus of this paper. 

1. sequential: match the reduction semantic, a single thread of execu- 
tion (sequential computation, sequential reduction) 

2. gathered: save parallel computation results in a temporary array 
for later sequential reduction (parallel computation, sequential re- 
duction) 

3. parallel: fuse portions of the sequential reduction with the parallel 
computation (parallel computation, parallel reduction) 

(a) independent: only one update to each element (a permutation 
for example) 

(b) accumulated: multiple updates are combined in a shared ac- 
cumulator for the final result (global sum or histogram) 
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(c) selected: a conditional update replaces the previous value (first 
minimum) 

(d) scanned: updates depend upon a recurrence relation, a non- 
associative function of the previous update 

2.1.3 Directives 

Source level pragrnas may be used to directly specify a complete implementation or 
general classification. Since OSC is an automatic optimizing compiler, this method 
should only be needed when performance from analysis is unavailable. 

The upper level directives match the implementation classification. A gathered 
loop reduction may consume too much memory, so a sequential version is selected 
by the user with returns sequential overriding the default. To invoke analysis to find 
parallel optimizations of the reductions as described below, the parallel directive may 
be used. 

@ragma returns sequential 

@ragma returns gathered 

Qragma returns parallel X run parallel analysis 

Hints are available to direct the analysis for each of the parallel implementation 
classes. 

Qragma returns independent 

##pragma returns accumulated 

Qragma returns selected 

@ragma returns scanned 

In addition, for accumulated and selected reductions, details of the method to 
combine values may be specified. This is discussed in more detail in later sections. 

@ragma reduction merge(master1 

#pragma reduction merge(tree1 
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Figure 2.1: Sequential and gathered executions of computation and reduction 

#pragma reduction merge(1ock) 

#pragma reduct ion merge (candidates) 

2.2 Sequential and gathered reductions 

In the first part of Figure 2.1, the sequential implementation execution proceeds 
from the top down. Nothing is done concurrently. The computation and reduction 
initializations are run. After that, each computation and reduction pair are executed 
in turn using results from the prior step. A sequential implementation may be the 
fastest correct implementation for a given reduction for several reasons: 

1. data dependencies may restrict concurrency, 
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Reduction Reduction 
Body 1 Body 3 - v 

Computation Computation 
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Reduction Reduction 
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Array 
Gather 

Final 
Value 
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Figure 2.2: Parallel independent computation and reduction and pattern match 

2. for small amounts of work, overhead may cause parallel slowdown rather than 
speedup, 

3. memory is minimized since there are no large gathered temporaries. 

A gathered implementation runs the computation in parallel and saves the results 
in a vector temporary. The reduction is then run sequentially. In the second example 
in Figure 2.1, two processors run in parallel. The four values are gathered in a 
temporary array. The reduction is then run sequentially by accessing elements from 
the array to produce a final value. The size of the temporary is a limitation for many 
applications. These problems are addressed by additional analysis for selection of a 
parallel implementation by class or user directive. 

2.3 Independent reductions 

Updates to the reduction value may be independent as in Figure 2.2. A reduction 
result array is given an initial value. Then each element of the array is updated no 
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more than once. The separate values generated in each body are gathered from the 
multiple processors and placed in the result array. Permutations of the complete index 
set are a common example. The value at every index is some one-to-one and onto 
mapping from an original set of indexes that cover the array. Typically an index set is 
permuted and used to assemble the final values in the new order as in FFT algorithms 
[17]. The general analysis to prove uniqueness in the update of each element of the 
array is approachable by integer linear programming as discussed in [ll]. 

The version implemented is a substantially simpler version, pattern-matching on 
the increment of the index variable. As also shown in the figure, an array old A 
and multiple values M[waZ] are input at the top and produce the new value A at 
the bottom. The values are placed at the monotonically increasing element old i. 
This index starts at 1 and increments by 1 for each value. Since no elements are 
multiply assigned, the array build can be done independently. Once analysis shows 
independent updates to the array elements, a fast and and simple parallel version 
is implemented. On a shared memory multiprocessor, the updates are performed in 
place with no locks or other synchronization. 

2.4 Accumulated reduct ions 

Accumulated reductions update a shared value in the reduction body. Examples 
are the Sisal 1.2 sum and Sisal 90 histogram. Analysis of the data dependencies 
determines the possible optimizations. Commutative and associative reductions re- 
move the requirement for sequential execution. For example, with initial value of old 

product set to  1, compare the commutative and associative expression 

product := old product * V a l  

with a non-commutative and non-associative expression requiring sequential execu- 
tion, 

product := old product * (old product + V a l )  
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The first reduction body may be implemented in any order, even in parallel if the 
multiply-update is an atomic operation. The second reduction body will produce 
different results when executed out of order. Consider input multiple values (2,5) 
to this second reduction. Left-to-right produces 3 * (3 + 5) = 24 while right-to-left 
produces 6 * (6 + 2) = 48. Pattern matching on data dependencies is used to select 
reductions for optimization. The previous accumulator value can be updated by add, 
subtract, multiply, or floating-point divide of values which are not a function of the 
accumulator. This automatic analysis is similar to the pragmas that must be inserted 
by hand in the latest HPF-2 draft 1151. 

The first stage analysis reveals that parallel optimization may be done. Addi- 
tional analysis defines two possible implementation subclasses. On shared memory 
machines, the accumulated values may be updated in place in a locked critical section. 
On any shared or distributed memory processors, intermediate per-processor results 
may be combined with a synthesized merge operator and initial identity element. 
Because of the limited number of operations on base types, we use a look-up table 
similar to Table 3.1. The method used for a particular shared memory application is 
chosen by using estimates of the ratio of computation to lock overhead and conflict in 
the critical section. One other criteria is available memory size. If it is not possible 
to duplicate the accumulator on every processor in the merge implementation, the 
locked version must be used. 

The accumulated with a rnerge(lock) version is shown in Figure 2.3 and global 
sum in Appendix A.2. The initial value for the reduction and computation is set in 
a master sequential region. Each computation may then proceed in parallel. The 
update of the shared accumulator is performed in a locked critical section. The read, 
update, write must be an atomic operation to prevent race conditions. The default 
lock method forms a critical region for all processors. Any processor access to the 
code updating the shared accumulator will be sequentialized. A processor executing 
the computation is unaffected. For load balance, more work requests (slices) may be 
allocated than the number of available processors. As each slice is finished, a new 
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Figure 2.3: Parallel accumulated reductions: lock and master merge 

one from the run queue is requested. This spreads the work more evenly among the 
processors. 

Building a local accumulation temporary exploits locality and reduces contention 
at  the expense of memory. For this reason, distributed memory machines favor this 
implementation. Figure 2.3 and the code in Appendix A.3 show how a local reduction 
value is initialized on each processor. This local value is synthesized by analyzing the 
operator used in the update of the accumulator. For the plus and minus operators, 
each element in the local accumulator starts at zero while times and divide start at 
one. Integer divide may not be done in any order however. Consider (10/1)/5 = 2 
with 10/(1/5) = 00. Integer roundoff loses information. For the boolean operators, 
logical and starts at true (one) and logical or at false (zero). 

Each processor computes a local reduction value. For shared memory, each pro- 
cessor stores its value in a known location. The master processor then waits until 
each processor finishes before retrieving the results and accumulating sequentially. 



CHAPTER 2. IMPLEMENTATION CLASSIFICATION 20 

'rocessor 0 Processor 1 

I Comuutation I 
I Initialisation e 

Candidate 1 
Candidate : 

Computation 
Body 1 

Reduction 
Select 1 

Computation 
Body 2 

Processor 0 
Candidate 

Reduction 
Final Body 

Final 
Value 

Candidate 3 1 Candidate 

Computation 
Body 3 

Reduction 
Select 3 
I 

I Computation I 
Body 4 

Processor 1 
Candidate 

Figure 2.4: Parallel selected reduction with candidate per processor 

2.5 Selected reductions 

The Sisal 1.2 keyword least as shown in Appendix A.4 implements the first minimum 
reduction. It is an example of the selected reduction. For each multiple value to 
be reduced, an if statement guards the replacement of the result. The final value is 
eventually selected from only one iteration. 

In Figure 2.4, the general form of the optimization is shown. For the first mini- 
mum reduction operator, the reduction is run left-to-right for each processor's input 
values. Then, the local value from each processor is supplied to the master processor 
(merge(master)) for the final merge. The merge reduction is identical to the local 
reduction. 

2.5.1 Indexed minimum reduct ion finct ion 

An additional complexity occurs when optimizing a selected reduction function rather 
than an operator. Since less data is returned by the reduction than is supplied as 
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inputs; the candidate inputs must be saved for the final merge. 
An example is the first minimum index reduction in Appendix A.5. Notice that 

the reduction only returns the index value. However, the minimum value is used also, 
to select the final result. They are both part of the reduction state. For the master to 
reduce the result, a candidate from each processor must present its complete candidate 
state. Therefore, the reduction implementation on each processor is modified to save 
the candidate inputs. The master merge is the original reduction run across all 
candidates. 

2.6 Additional code optimizations 

By fusing portions of the sequential reduction into the parallel computation, addi- 
tional possibilities for optimization are revealed. The code’s execution time is de- 
creased by eliminating: 

0 function calls by inlining, 

0 unnecessary copying and record builds, 

0 unnecessary locks and large critical section size, 

0 unnecessary reference counts. 

A reduction call can be made just like a function call. General purpose registers 
are saved to stack memory and arguments are passed to the call. Pulling the reduction 
inline eliminates this overhead. 

When the reduction is part of the body of the iterative computation, computation 
values are used as they are produced. A large temporary array to hold the interme- 
diate multiple values to be reduced is not needed. Since the consumer can use the 
produced values immediately, structured record variables are never stored to memory. 
This would normally involve an extra pack/unpack for each record. Instead, a record 
typically remains in registers for immediate use. 
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The reduction consumer directly follows the computation producer. Only one 
reference to the computation value is made. Therefore, no reference count on the 
produced value is needed. When the variable goes out of scope, it is no longer needed 
and can be deleted or reused. This eliminates the extra locks normally used to count 
the references to shared data. 

In the simplest implementation, locks would guard every shared reduction accu- 
mulator. By producing local copies only one lock per processor is needed. The size of 
the critical section can also be reduced by moving calculations that do not involve the 
accumulator outside. The values will be calculated in the computation loop body. 

I 

I 
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Chapter 3 

Reductions in Sisal 90 

3.1 Syntax and semantics 

Sisal for constructs are implicitly parallel loop expressions. The generator produces 
an independent loop body for each element in its range. 

for range-generator 
loop- body 

returns reduction of loop-multiple-values 
end for 

In the following range generators, each i is available for use in its corresponding loop 
body. 

for i in 1, 10 ... % 10 bodies 
for i in A ... 
for i in A cross j in B ... % one body for each possible pair 
for i in C at j, k 

% one body for each element in A 

% one body for each element in 2D array 

Loop multiple values created in the loop bodies are supplied as input values to the 
reduction in sequence. For example, a loop can return the final value that was bound 
to a loop name, build an array from the sequence, or take the sum of the list. To 
eliminate keywords, the seven Sisal 1.2 sum, product, least, greatest, catenate, value, 
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array, and stream reductions are predefined reductions in the Sisal 90 definitions file. 
Because of the separation of the variable name space, problematic name clashes with 
user functions and variables are eliminated. The invocation of either the predefined 
or user-defined reduction sum is the same. 

for i in 1, n 
x := i*i; 

returns sum of x % find sum of squares 

3.1.1 User-defined reduction language definition 

A reduction definition in Sisal 90 is similar to a Sisal function definition with an 
embedded sequential loop, the for initial. The key difference is that the call of the 
reduction may appear only in the returns clause of a for expression since it takes loop 
multiple values for input. These multiples are the values produced by the multiple 
parallel bodies of the for loop. 

reduct ion name ( initial-values repeat loop-multiple-values 
returns result-types 1 
for initial 

reduction-values 
repeat 

reduction- body 

returns value of reduction-values 
end for 

end reduction 

As the template above shows, the keyword reduction is followed by the reduction 
name, input values, and result types. The reduction is run in three phases. In the 
first phase, the initial values are used to produce a default reduction value. If no 
multiples are ever supplied (a zero-trip loop), this default value will be returned. In 
the second phase, the multiples are supplied to the body in order, for calculation 
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and update to the final reduction values. The third phase simply returns the final 
reduction value. 

3.1.2 Sisal 90 source examples 

Consider the predefined sum reduction from the previous section. In this sample 
similar to Appendix A.2, it is coded as a user-defined reduction. 

reduction sum( repeat i:integer returns integer ) 

f o r  init ial  

t o t a l  := 0 

repeat 

total := old total + x 
returns value of total 

end for 

end reduction 

The initial values (input values before the repeat) are blank since the sum reduction 
always begins at zero. There is one loop multiple value x supplied in sequence by the 
for loop at the call site. The result type is the same as the type of the multiple. In 
the first phase, total is initialized to 0. The second phase adds each multiple to the 
old total to produce a new total. In the last phase, the value of total is returned. If 
no multiples are supplied to the reduction, the final value of total is the initial value, 
0. 

The counting histogram in Appendix A.3 is similar. At index histo-update, a 

single element of the array is incremented by one to count the number of items in 
that histogram bin. The other examples in Appendix A follow a common pattern. 
State values are initialized, then updated with each parallel computation result. All 
are explained in more detail in the next chapter. 
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(a+b+4a) 1 1 (b+5a) 

Figure 3.1: IF1 data flow optimizations 

3.2 Dataflow in IF Intermediate Form 

3.2.1 Standard IF optimizations 

The Sisal 90 parser translates the source program into the IF1 [20] intermediate level 
data flow representation. Nodes in IF1 denote operations such as add or divide while 
edges represent values that are passed from node to node as in Figure 3.1. Functions 
are graph boundaries that surround groups of nodes and edges. Types can be attached 
to each edge or function. Nodes with embedded subgraphs are called compound nodes. 
These forms reveal the opportunity for many value-oriented optimizations in the Sisal 
OSC compiler [3] such as function inlining, record and array fission, loop invariant 
removal, common subexpression elimination? loop unrolling? and dead code removal. 

Additional optimizations are performed by the OSC compiler by a second transla- 
tion to IF2 [23], a representation with explicit memory management. Build-in place 
and update-in-place analysis is used to eliminate memory copy and management 
overhead. Loops that warrant parallel and vector execution are automatically made 
concurrent. Finally, variable temporaries are selected and C code is generated for 
final compilation to an executable. 

Although the Sisal 1.2 intrinsic reductions can be written in Sisal 90, they are 
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Reduction 

product 
l e a s t  
greatest  
catenate 
array 
stream 
user  defined 

SUm 

Literal 
SUM 
PRODUCT 
LEAST 
GREATEST 
CATENATE 
ARRAY 
STREAM 
user defined 

IF1 Equivalents 
Reduce( SUM) 
Reduce(PR0DUCT) 
Reduce( LEAST) 
Reduce( GREATEST) 
Reduce( CATENATE) 
AGather 
S Gat her 
None 

Zero trip result 
0 type 
1 type 
m m  type 
min type 
[I type 
[I array Ctypel 
CI stream [type] 
i n i t i a l  returns tuve 

Table 3.1: Reduction node translations and their zero trip return values 

predefined for convenience. During the OSC type resolution phase, type information 
is added to reduction node edges, and then the reductions are inlined using their IF1 
equivalent definitions. This allows existing compiler optimizations to be used directly. 
Table 3.1 shows the reductions and their IF1 equivalents. 

3.2.2 UReduce node 

Without analysis, user-defined reductions are translated directly into IF1. Such a 
translation often obscures the high-level reduction expression. Therefore, Sisal 90 
adds compound UReduce nodes that specify the reduction operation; they are left 
unexpanded in the IF0 [lo] high level representation. All IF0 nodes can be translated 
to IF1 with only the loss of succinctness and possibility of high-level optimization. 
Leaving the node in IF0 allows for efficient implementations based upon low-level 
control dependencies, sizes, and the amount of determinism required by the applica- 
tion. 

As Sisal 90 user-defined reductions remain unexpanded only in the returns clause 
of parallel for loops, IF0 UReduce nodes appear only in the returns subgraph of 
parallel F o r d  compound nodes, as shown in Table 3.2. Matching the three phases 
of a reduction, the UReduce node contains three subgraphs: initialization, body, and 
returns. The first graph sets up any initial values. The body graph takes multiples 
from the F o r d  loop node containing it. The UReduce returns graph contains the 
merge and FinaZVuZue node. When a UReduce node is used in the returns graph of 
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Forall Node 
[ subgraph 0: initialization J 
I subaaDh 1: bodv I 

subgraph 2: returns 
UReduce Node I subgraph 0: initialization I 
I subgraph 1: body I 
1 subgraph 3: returns 1 
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Table 3.2: UReduce node embedded in the returns subgraph of a Forall. 

a Forall, it enables postprocessing of the multiples produced by the Forall subgraph 
body. 

The IF language defines the ports on nodes and graphs. These ports are the 
locations where data edges attach. The definition of a node operation also defines 
the port number on which a value will be input or output. The port positions for the 
compound UReduce node are shown in Table 3.3. 

The IF1 for the scalar sum example is shown in Figure 3.2. Values set in the for 
initial clause, in this case total, of the reduction appear in the first subgraph. In the 
body subgraph, the old total is incremented with an IFPlus operation to produce the 
new total at the bottom of the subgraph. On the first iteration through the body, 
old total is the value supplied by the initialization subgraph. Later iterations feed 
the new value of total back in to the old total port since they share the same port 
number. The returns subgraph takes the final value from the body and returns it. 
This research seeks to optimize reductions for parallel machines in light of these data 
dependencies. 
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Chapter 4 

Performance study 

4.1 Sisal 1.2 classification prototype 

Before defining the reduction syntax and detailing all classes, I used the OSC Sisal 1.2 

compiler to prototype user-defined accumulated reductions. A parallel for loop fol- 
lowed by a call to a sequential loop function is recognized as a computation-reduction 
pair [7]. The parallel computation produces multiple update values in an array. A 
sequential loop consumes all values in order to produce the final accumulated array. 
These two bodies fuse to form a single parallel loop with a critical section. The 
compiler pulls most of the sequential calculations into the parallel computation. The 
general pattern mathing template is: 

let 

updates := for Val in I, n 

update := f(va1) 

returns array of update 

end for; 
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in 

reduce,function(old-accum, updates) ; 

end let 

function reduce,function(old-accum:accum-type updates:update,type 

returns accum-type) 

for initial 

i := 0 

accum := old-accum; 

while i < array-size(updates) repeat 
i := old i + 1; 

index := g(i); 

new-Val := old accumCindex1 + updates Cil ; 

accum := old accumCindex: new-vall ; 

returns value of accum 

end for; 

end function 

The - r  <function> option signals the OSC compiler to attempt to perform the re- 
quired analysis to turn the function into an optimized reduction. Since this technique 
was only meant to be used as a prototype, no changes to the Sisal 1.2 language were 
made. Only functions operating on extant arrays are recognized. The natura1 Sisal 
computation-reduction syntax is not extended to handle general reductions. That 
is saved for the Sisal 90 language. The sequential to parallel fusion optimization is 
applied to  pairs of for computations and for initial reduction expressions that satisfy 
a complex set of criteria. 
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Size 100000 200000 300000 400000 500000 
Sequential 11.6 MB 23.2 MB 34.8 MB 46.4 MB 58.0 MB 
Reduction 9.37 sec 18.97 sec 28.25 sec 38.18 sec 49.76 sec 
Parallel 8.4 MB 16.8 MB 25.2 MB 33.6 MB 42.0 MB 

Reduction 7.73 sec 15.60 sec 23.83 sec 31.47 sec 39.02 sec 
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Table 4.1: Time and memory usage of prototype accumulated reductions 

1. The for initial expression depends directly on the for expression, and does not 
depend on any descendant of the for expression. 

2. The initialization clause of the for initial expression is independent of the array 
of values consumed. 

3. The for initial expression consumes every value of the produced array, once and 
in order. 

4. The for initial expression has no loop carried dependencies other than an index 
value and the shared accumulator. 

5. The for initial expression depends on the for expression for only an array of 
values. 

A series of experiments were used to evaluate the performance of this optimization. 
An expanded version of the molecular dynamics example from Section 1.2.3 was used. 
Table 4.1 gives the execution times and space requirements for different problem sizes. 
Because the test computer had only 64MB of core memory, larger problem sizes for 
the sequential reduction could not be run. Memory page swapping would have skewed 
the results. The savings in this case was not just the execution speed, but memory 
size. 

Figure 4.1 shows the graph of execution times for the sequential and the original 
unoptimized four processor implementations (using the sequential reduction). The 
optimized four processor (using a parallel reduction) execution time is compared. As 
expected, the optimized code uses less space than the unoptimized code. For this 
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Figure 4.1: Execution times of prototype computation-reduction expressions. 

example, it also runs faster; however, appreciable performance gains did not always 
appear. 

There are many factors that influence the execution time of the optimized code 
versus the execution time of the unoptimized code: the time to set and release locks, 
the time to write and read a record, lock contention, size of the computation ex- 
pression, size of the reduction expression, number of processors, etc. If the size of 
the computation expression is at least p (number of processors) times greater than 
the size of the reduction expression, then there is little lock contention. Essentially, 
the concurrent tasks contend for the lock the first time, and then become staggered 
arriving at the critical section at  different times. 

In the molecular dynamics code, all computation expressions are much larger than 
the reduction expressions. However, small reduction expressions minimize the effect of 
parallelizing the reduction operation. On large systems, Amdahl’s Law may magnify 
the effect, but then the large number of processors increases lock contention. 

In response to these findings, a hand-coded version trading the locks for local 
temporaries was produced. Similar results were observed. Local memory usage was 
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up from the locked version sin e procc 

implementations available in Sisal 90. 

r had an tire intermediate copy. The 
speedups were however more consistent since lock contention did not increase with 
the number of processors. 

Both methods have application areas. Local memory is not always a scarce com- 
modity so using local temporaries is a good tradeoff on large memory machines. When 
memory is tight, the lock technique is more appropriate. The factors influenced the 

4.2 Sisal 90 compiler results 

User-defined reductions were added to the Sisal 90 1 ;e as d 

4.2.1 Execution time and memory consumption 

S ribed. D vel- 
opment of the sequential and gathered classes [19] continued during my addition of 
the independent, accumulated and selected subclasses. I measured one example of 
each subclass by direct specification with a #pragma. Chapter 2 of this document 
describes these samples. 

1. independent array permutation build in Appendix A.l 

2. accumulated merge(lock) scalar sum in Appendix A.2 

3. accumulated merge(master) histogram in Appendix A.3 

4. selected merge(master) first minimum in Appendix A.4 

5 .  selected merge(mndidates) first minimum index in Appendix A.5 

After tuning the optimization implementations, I added analysis to verify the 
applicability of specific user pragmas. The compiler, however, does not accept the 
-03 flag or #pragma returns parallel to invoke nondirected optimization analysis. 

The OSC Sisal 1.2 compiler performs comparably with optimized Fortran in its appli- 

cation areas [4]. This study compares reductions written in Sisal 90 with equivalent 
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Figure 4.2: Execution times of permuted update in-place. 

Sisal 1.2 benchmarks. For constructs unique to Sisal 90, simpler constructs in Sisal 1.2 
establish an execution time and memory usage lower bound. 

For example, a Sisal 90 independent array update in-place with permuted indexes 
can only be expressed in Sisal 1.2 as a sequential construct. The permutation update 
is however a parallel operation that can be optimized without any locks. Therefore, 
a parallel array build in-place in Sisal 1.2 sets the lower bound for comparison. 

In the Sisal 1.2 array build in-place, each processor has a contiguous range of 
values to produce. There are only cache conflicts at the boundaries of the range. A 
permutation of indexes however, will supply each processor with random locations to  
update, which changes the cache utilization. To test this, an optimized implementa- 
tion was run on an 8 processor SGI Challenge with and without actually permuting 
the indexes; both still ran from 1 to n just like the ordinary parallel array build. 
The caching effects for the two different versions are negligible on a heavily-loaded 
machine as shown in Figure 4.2. Both used the minimal array memory. 

The execution time a;nd memory is identical for the scalar Sisal 1.2 intrinsic and 
Sisal 90 user-defined reduction versions: least, greatest, sum, and product. The 



CHAPTER 4. PERFORMANCE STUDY 36 

seconds Global Scalar Sum 
4.5 I I I I I I I I 

4 
3.5 

3 
2.5 

2 
1.5 

1 
0.5 

0 
0 1 2 3 4 5 6 7 8 

processors 

Figure 4.3: Execution times of scalar reductions. 

emitted code is functionally equivalent, with differences only in the names of the 
temporaries used. This shows that the scalar accumulated merge(lock1 and selected 
merge(lock) can be effectively implemented with linear speedup as shown in Figure 4.3 
on a heavily loaded SGI (load average: 30). 

The accumulated merge(master) histogram can actually be compared against a 
parallel Sisal 1.2 benchmark. Although Sisal is implicitly parallel, it  is possible (us- 
ing poor programming style) to write an outer loop that is sliced among all (1.. . 
nprocs) processors as shown in Appendix A.3. The performance and memory usage 
is nearly identical for the two versions. The Sisal 90 user-defined reduction with im- 
plicit parallelism is much simpler. The histogram reduction histo-reduc is initialized 
to size and each element i in the update array is reduced. Local histograms are com- 
puted on each processor and reduced sequentially on the master in both versions. The 
selected merge(candzdates) implementation can also be expressed in Sisal 1.2 using a 
similar technique as shown in Appendix A.5. Comparable performance and memory 
use was observed. 
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Chapter 5 

Conclusions 

5.1 Conclusions 

5.1.1 Performance and Expressibility 

When executed on highly parallel machines, the presence of sequential expressions 
(such as the Sisal f o r  i n i t i a l )  diminish the code’s efficiency, an effect of Amdahl’s 
Law. I initially sought to maximize the amount of parallelism. Through attempts 
to increase the execution performance of reduction expressions, the techniques mini- 
mized memory as well in many implementations. Several applications critically need 
reduced memory size to fit within the computer’s real memory. Swapping large mem- 
ory programs to disk as they run greatly curtails execution performance. In addition, 
the type of memory a program uses matters. Shared memory is a more precious com- 
modity and usually much slower than local memory. Also, performance increases by 
using local memory because of lack of contention. The number of parallel instructions 
does not entirely reveal the total execution time of a program. 

However, parallelizing overhead sometimes outweighs the gains. A good imple- 
mentation must be chosen by careful analysis. In a locked reduction, if the parallel 
computation is thin and the reduction is thick, lock contention is common. In the re- 
verse case with even amounts of work, the processors contend the first time and then 
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are staggered. It must be considered that the greater the number of processors, the 
greater the opportunity for multiple processors to attempt to enter a critical section 
simultaneously. Time to broadcast initial values and gather results from multiple pro- 
cessors in comparison to expected speedup must analyzed. Without implementation 
classes and cost estimates or user pragmas feed into the analysis, parallel slowdown 
can occur. Fortunately, as problem sizes increase, the extra overhead can be paid. 

This research was originally motivated by problems faced in certain molecular 
dynamics applications. Not only could they not be expressed succinctly, they would 
not run on the available hardware. By adding user-defined reductions and time and 
memory optimizations, these codes can now be run. The source code is very readable 
and completely portable. The problems are parallelized to run efficiently. Express- 
ing the algorithm in a simple, implicitly parallel way leads to good performance. 
This achieves the goals of the Sisal 90 language by implementing a straightforward 
reduction syntax. 

The definition of classes of reduction operations aided optimization. Analysis 
revealed opportunities for concurrent execution. Compiler directives were added to 
override default choices. A prototype in Sisal 1.2 showed the utility of the techniques, 
especially for memory savings. The Sisal 90 compiler incorporated optimizations 
for examples from each class of reduction. The generated codes demonstrated the 
efficiency of fusing parallel computations with sequential reductions. 

5.2 Future Work 

Additional research is almost exclusively in analysis. High performance implementa- 
tions already appear in imperative code as programmers struggle for improvements. 
Analysis to automatically produce their results requires additional compiler develop- 
ment. Fewer hand-generated pragmas specifying an implementation will be needed. 
From a single source code, the compiler should produce better optimized programs 
for multiple machine targets. 
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The most straightforward extension of this work is to add an -03  compiler flag to 
automatically select an implementation from the three top-level classes: sequential, 
gathered, and parallel. An even more important addition would be to extend the 
simple independent analysis to handle a larger number of cases using work such as in 
[ll]. Without explicit declaration, most permutations of complete index sets should 
still be recognized. If the indexes are data dependent and are calculated infrequently, 
a run-time check would also allow update-in-place optimizations. 

Though HPF-2 Fortran is imperative, more functional elements are being added. 
This research should be applied to HPF reduction pragmas to  eliminate them as well. 
Since the high performance computing community is coming upon some common 
themes, cross-fertilization will continue. 
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Appendix A 

Code Samples 

All examples are shown with explicit pragmas to identify their class. With analysis, 
these pragmas are not required. 

A S  Parallel array permutation build 

reduction square-shift(n,shift:integer repeat i:integer returns 
array [integer] 
for initial 

repeat 

returns value of a 
end for 

a := array-fill(0, n-1, 0 ) ;  

a := old a[ (i+shift) mod n ! i*i 1 

end reduction 

#pragma returns independent 
function main(n, shift:integer returns arrayLinteger1) 

for i in 1, n / 

returns square-shift (n, shift) of i 
end for 

end function % main 
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define main 

function main(n: integer returns array [integer] ) 
for i in I, n 
returns array of iwi 
end for 

end function % main 

A.2 Parallel global sum 
A local array slice sum from each processor is added together on the master processor. 

#pragma reduction merge (lock) 
reduction tsum(initva1:integer repeat x:integer returns integer) 

for initial 

repeat 

returns value of total 
end for 

total := initval 

total := old total + x 

end reduct ion 

#pragma returns accumulated 
function main(n: integer returns integer) 

for i in 1, n 
returns tsum(l0) of i 
end for 

end function % main 

define main 

function main(n: integer returns integer) 
IO + for i in 1, n 

returns value of sum i 
end f o r  

end function % main 

I 
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A.3 Parallel counting histogram 
A local counting histogram array is produced for each processor slice and merged 
columnwise on the master processor. 

?+ragma reduction merge(master1 
reduction histo(histo,size:integer repeat histo-update:integer 

returns array [integer] 1 
for initial 

repeat 

returns value of bins 
end for 

bins := array-fill(1, histo-size, 0); 

bins := old bins[ histo-update ! old binsChisto-updatel+l 1 

end reduction 

?+ragma returns accumulated 
function main(histo,size: integer; histo-updates : array [integer] 

returns array [integer] 1 
for i in histo-updates 
returns histo(hist0-size) of i 
end for 

end function 

define main 

function histo-func(histo-size:integer; histo-updates:array[integer]; 
start, finish: integer returns array [integer] ) 
for initial 

i := start; 
local-histo := array-f ill (1 histo-size 0) ; 

while i<=finish repeat 
i := old i + 1; 
j : = histo-updates [old i] ; 
local-histo := old local-histo [j : old local-histo[jl+ll ; 

returns value of local-histo 
end for 

end function 

function main(npr0c:integer; histo-size:integer; 
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histo-updates : array [integer] returns array [integer] ) 
let 

% 

% 
% Create an array from local histograms (in parallel) 

slice-size := array-size(histo-updates)/nproc; 
remainder := mod(array-size(histo-updates), nproc); 
local-histos := 

for i in 1, nproc 
start := (i-l)*slice,size + 1 + min(i-1, remainder); 
finish := i*slice-size + min(i , remainder) ; 
% 
% Create a local histogram (sequential) 
% 
local-histo := histo,func(histo-size, histo-updates, 

start , finish) 
returns array of local-histo 
end for 

in 
% 
% Combine the local histograms (sequential) 
% 
for j in 1, histo-size 

column-sum := 

returns 
end for 

end let 
end function 

for i in 1, nproc 
returns value of sum local-histos [il [jl 
end for 
value of catenate array [I: column-sum1 

A.4 Parallel first minimum 

#pragma reduction merge(master1 
reduction first-min(repeat x:integer returns integer) 

for initial 

repeat 
min-val := $MAXINT; 

min-Val := if x<min-val then x else old min-Val; 
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returns value of min-val 
end f o r  

end reduct ion 

#pragma returns  selected 
function main(n: integer returns integer) 

f o r  i i n  1, n 
returns first-min of i 
end f o r  

end function % main 

define main 

function main(n: integer returns integer) 
f o r  i i n  1, n 
returns  value of least i 
end for 

end function % main 

A.5 Parallel first minimum index 
Index and value of first occurrence of the minimum value on each processor slice 
is returned to the master processor. Master sequentially reruns the reduction and 
returns the index. 

*ragma reduct ion merge (candidates) 
reduction firstmin-index(repeat x,i : integer returns integer) 

end 

f o r  i n i t i a l  
min-val := $MAXINT; 
min-index := 0; 

min-Val, min-index := 
repeat 

i f  x < old min-val then x, i 
else old min-Val, old min-index 
end i f ;  

re turns  value of min-index 
end for 
reduct ion 
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#@ragma returns selected 
function main(a:arrayCintegerl returns integer) 

for i in array-size(a) 
returns firstmin-index of aCil , i 
end for 

end function 

define main 

function local-cand(a:array [integer] ; start , finish: integer 

end 

returns integer, integer) 
for initial 

i := start; 
local-val : = a [start] ; 
local-index : = start ; 

while i<=finish repeat 
i := old i + 1; 
local-Val, local-index := 

if a[old il < old local-Val then 

else 

end if 

value of local-index 

aCold il , old i 

old local-Val, old local-index 

returns value of local-val 

end for 
function 

function main(nproc : integer ; 
let 

% 
% create an array of 
% 

a: array [integer] 

local candidates 

returns integer) 

(in parallel) 

slice-size := array-size(a)/nproc; 
remainder := mod(array-size(a) , nproc) ; 
local-cand-vals, local-cad-indexes := 

for i in I, nproc 
start := (i-l)*slice-size + 1 + min(i-1, remainder); 
finish := i*slice-size + min(i, remainder); 
% 
% create a local candidate (sequential) 
% 
local-cad-Val, local-cand-index := 

local-cand(a, start , finish) ; 
returns array of local-cand-val 
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array of local-cand-index 
end for 

in 
% 
% Rerun reduction on all candidates (sequentially) 
% 
for initial 

i := 1; 
f inal-Val : = local-cand-vals Cil ; 
f inal-index : = local-cand-indexes [il ; 

final-Val, final-index := 
while i<=nproc repeat 

if local-cand-vals [old il < old f inal-Val then 

else 
local-cand-vals [old i] 

old f inal-Val 

local-cad-indexes [old i] 

old f inal-index 
end if; 

i := old i + 
returns value of 
end for 

end let 
end function 

1 
f inal-index 
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