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Abstract 
New processing activities for the decommissioning of the 
Experimental Breeder Reactor II are being carried out at 
Argonne National Laboratory. The task addressed in this 
paper is a process to convert metallic sodium to sodium 
carbonate. The main idea is to characterize this sodium 
operation as a system that integrates real-time continuous 
and discrete-ment components and then apply hybrid 
system techniques to design and implement the control and 
supervisory policies. This paper introduces the research in 
progress at ANL on this conversion process, the flow of 
material, and the hybrid control solution. 

I. Introduction 

The Experimental Breeder Reactor41 (EBR-II) is 
a liquid metal reactor operated by Argonne National 
Laboratory (ANL,). In 1994, it was shutdown and defueling 
was started. Part of the planned decommissioning activities 
includes disposal of the sodium used as coolant for the 
EBR-I1 and FERMI reactors. The plan is to convert the 
chemically reactive radioactive sodium coolant to sodium 
carbonate, which is a chemically inert form suitable for 
near-surface burial as a low level waste. The schedule goal 
is to convert approximately 660,000 liters of sodium. This 
goal demands a system with high reliability, productivity 
and safety. 

II. Operations for Sodium Processing. 

The chemical conversion process will be conducted 
in the Sodium Process Facility (SPF) at Am-West. The 
conversion will be performed in two steps. The first step, 
which converts sodium to sodium hydroxide, will be 
conducted at the SPF Sodium Hydroxide Process System 
(SHPS). In particular, SHPS will transfer sodium stored on 
site to a reaction vessel, combine it with water in the 
presence of sodium hydroxide to produce caustic, and 
deliver the caustic for the following step. As seen in Figure 

1, sodium is first moved fiom two different sources to the 
Sodium Storage Tank (SST). The first source of sodium 
comes fiom about 1400 208 liter barrels that contain 
FERMI sodium. The second source is the Secondary 
Sodium Storage Tank containing EBR-11 sodium that has 
been transferred there by a piping system. With sodium in 
the SST, it is first moved to the Day Tanks @T) for 
reaction. The sodium at a DT is then transferred to the 
Reaction Vessel (RV) where it is combined with water in 
the presence of caustic to form additional caustic. The 
resulting caustic is moved fiom the RV to the Caustic 
Cooling Tank (CCT). Caustic fiom the CCT is pumped out 
and used in the next conversion process. This second step, 
which converts sodium hydroxide to sodium carbonate, will 
be performed at the SPF Sodium Carbonate Process System 
(SCPS). As seen in Figure 2, the sodium hydroxide is 
pumped out fiom the CCT(at SHPS) and fed to a horizontal 
thin-film evaporator blanketed with a carbon dioxide 
atmosphere. Here, the caustic reacts with the carbon 
dioxide to form sodium carbonate. The reaction is 
exothermic and produces most of the heat necessary to 
evaporate the excess water, leaving a dry sodium carbonate 
product. The evaporated water is condensed and draiied to 
a water holding tank, and the carbonate is discharged into 
drums for landfill disposal. 

III. Process Control System. 

SPF will be monitored, controlled, and supervised 
by a computer system. The sense, control, and operator 
interface functions for each process will be incorporated 
into a distributed control system consisting of a control and 
an input and output (VO) fiont-end computer as seen in 
Figure 3. All of the process sensor and actuator wiring 
comes into the I/O fiont-end (STD Bus based) computer via 
terminal strips connected to the I/O boards. The fiont-end 
computer communicates with the control computer via a 
serial link. The control computer drives a graphic terminal 
used to monitor and control the SPF systems. These two 
computers contain all the software needed to read the 
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Figure 1. Sodium Hydroxide Process System (SHPS). 

process sensors, to drive process actuators, to condition 
data, to control the SPF through its various operating 
modes, and to display process graphics and interact with the 
operator. To this end, the major development efforts 
include: 1) Development of a hybrid model of the sodium 
processing operation and 2) Utilization of hybrid system 
analysis techniques to characterize and validate the behavior 
of the actual process under the control of a supervisory 
agent. Specifically, this industrial system is hybrid by 
nature consisting of continuous time processes controlled by 
discrete-event processes running on real-time computers. In 
principle, the integration of real-time continuous and 
discrete-event components into a control system can be 
done in an ad hoc manner. However, feasible operational 
states, changes and conditions may be far more difficult to 
categorize, correctly interpret, and respond to if a formal 
approach is not used. Software engineering methods are 
being utilized in the design and implementation of the SPF 
control system to improve the tasks of verifying software 
correctness, debugging, updating, and maintenance. 

The proposed system architecture is a hierarchical 
configuration primarily built from three types of 
components as seen in Figure 4: 1) low-level objects, 2) 
high-level objects, and 3) inter-level interfaces. The 

hierarchy is structured in such a way that intelligence 
increases while precision decreases as one moves fiom the 
bottom to the top. The flow of information is well defined 
in that communication is only possible among directly 
adjacent (abovehelow) objects. For example, the scheduler 
cannot directly communicate to a given supervisor without 
first going through the coordinator. Similarly, information 
flow among objects at a same level is kept to a minimum. 
In case information fiom a given object is required by 
another, their higher supervisory object would serve as their 
communications mediator. The aim of these information 
flow design criteria is to increase the robustness of the final 
code. With respect to the components of the proposed 
architecture, the low level objects correspond to the low 
level controllers that interact directly with the physical 
process. Their control actions, which modify manipulated 
variables, result from measured process variables and 
commands received fiom higher level objects. Four types 
of high-level objects are identified, namely, the scheduler, 
the coordinator, supervkors, and high-level controllers. In 
particular, the scheduler interacts with the user to define the 
set of concurrent activities (to be defined later) to be 
executed at any time. The coordinator then directs and 
coordinates its subordinate supervisors in such a way to 
complete the set of commanded activities. Supervisors are 

Figure 2. Sodium Carbonate Process Systems. 
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Figure 3. Sodium Process Facility Computer Control Systems. 

then defined based on functional and physical partitioning. 
Each supervisor has a defined range of possible action and 
responsibilities for configuring its underline control scheme 
in such a way that every required activity is supported. For 
example, based on Figures 2 and 3, instances of 
implemented supervisors include the DrainBarrel 
Supervisor, the Reaction Supervisor, the DayTanks 
Supervisor, the' Causticstorage Supervisor, the Carbonate 
Supervisor and the Support Supervisor. For instance, the 
DrainBarrel Supervisor is responsible in assuring that its 
assigned end-effectors, i.e., sensors and actuators, operate 
properly in support of each activity it may be involved in at 
any time. Depending upon the underlying complexity of 
the supervisory task, a supervisor may rely on subordinate 
supervisors or sub-supervisors to accomplish the assigned 
activities. For example, the DayTank Supervisor relies on 
two sub-supervisors, each one defined for one of the 
existing two day tanks in the plant. Finally, the objects at 
the lowest level of the hierarchy shown in Figure 4 
correspond to the high-level controllers, which gather 
information on the current operational conditions of the 
controlled process and direct commands to the low-level 
controllers to govern the behavior of the physical process. 

As mentioned before, the desired behavior of the 
plant is given in the form of a set of required (concurrent) 
activities that should be performed by the system. This 
activity set is enforced by the scheduler which verifies that 
this set is consistent in the sense that all listed activities can 
be executed concurrently without violating safety and 
performance constraints. In particular, an activity is defmed 
as a task in a given mode. A task specifies a given 
operation. Instances of tasks include DrainSodium, 
ReactSodium, Storecaustic and Makecarbonate. For 
example, as seen in Figure 1, the task DrainSodium defmes 
all the operations required for extracting the sodium 
contained in a number of drums (FERMI Drums) and 
transferring it to the Sodium Storage Tank. On the other 
hand, a mode identifies the operational status of a given 
task. Examples of modes are Shutdown, Coldstandby, 
Hotstandby and Run. For example, a task in mode 
Coldstandby defmes all the setup conditions that must be 
met in order to maintain the tanks associated with the given 
activity at a specified operating temperature. Similarly, in 
Hotstandby, not only the associated tanks but also valves, 
pumps and piping are taken to proper operational 
conditions. Thus, a task (e.g., Storecaustic), in a mode (e.g, 
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Figure 4. Hierarchy of the Control and Supervisory System. 



Hotstandby), defines an activity 
StoreCaustic.HotStandby). 

An activity may require the participation of one or 
more supervisors in order to be executed. The set of 
supervisors involved in supporting a given activity is called 
the Activity Supervisors Set. Each of these supervisors is 
responsible for assuring that its end-effectors are operated 
in support to the commanded activity. For example, to 
execute the activity “MakeCarbonate.Run,” the 
CausticStorage, the Carbonate and the Support supervisors 
are needed; however, the DayTank supervisor is not 
involved in this case. Supervisors could have also been 
defined in relation to the completion of activities, with only 
one supervisor being responsible for each activity. Because 
of the possibility of concurrent execution of activities, this 
approach could result in a controller receiving commands 
from several supervisors whenever its end-effectors are 
involved in executing more than one activity. To resolve 
these multiple supervisory order situations, it would have 
been required to provide controllers with decision-making 
capabilities. This would have somewhat violated the 
principle of decreasing intelligence while increasing 
precision when moving down in the proposed hierarchy and 
potentially complicated the final implementation. 
Partitioning supervisors based on underlying physical 
boundaries assures that only one supervisor can govern the 
operation of any given controller and places the 
coordinating functions on higher level objects. 

To assert the current operational phase or condition 
of the given activity, status is introduced. Possible activity 
status includes Idle, Setting, Ready, Working, Suspend and 
Down. For instance, an activity in a “Suspend” status will 
indicate that it has been suspended momentarily in order to 
resolve an abnormality in the system. The status of each 
activity is used by higher modules to coordinate the 
operation of their subordinate objects. For example, to 
compute the status of a given activity, the coordinator looks 
at the statuses reported by each of its supervisors involved 
in supporting the activity. Based on the reported statuses (at 
the supervisory level) and given guidelines, the coordinator 
assigns the status for the activity as seen at its level. For 
instance, assume that a given activity involves three 
supervisors. Two supervisors indicate to their coordinator 
that the commanded activity is Ready to be executed while 
the third supervisor reports the activity as still being Setting 
at its domain. The coordinator thus reports to the scheduler 
that the activity as still being in a Setting status; the activity 
will be declared Ready to be executed when all supervisors 
indicate so. This activity status (at the coordinator level) is 
then utilized by the scheduler to resolve operational 
inquires. Similarly, if an actively involved supervisor relies 
on a set of subordinated sub-supervisors to support a 
commanded activity, it asserts the activity status by 

gathering the reports communicated by its subordinates. 
This procedure extends all the way to the control level 
where no further division of operation occurs. Controllers, 
which are the only objects in direct contact with the 
physical system, finally retrieve the information required to 
assert activity statuses at higher levels. 

To ease implementation and verification of the 
correctness of the control software, a real-time object 
oriented approach is being utilized. Object-oriented 
concepts such as inheritance and class abstraction can be 
beneficially employed in the design of real-time systems to 
enhance reusability, understandability and software quality. 
In addition, formal-modeling approaches are being used to 
clearly characterize the behavior of objects. In particular, 
each activity executed by a given object is modeled as a 
hybrid mechanism. A hybrid mechanism [3] is here defined 
as a tuple M: (r,Y) where r and Y are the static and the 
dynamic components of My respectively. The static 
component is the tuple r : (N,E,T,X,P) with N denoting the 
set of nodes, Z: set of possible events, T a tuple of timers, 
X a tuple of state variables, and P: collection of state 
predicates. The set is further divided into controllable 
events (e.g., actions) and uncontrollable events (e.g., 
environmental responses). On the other hand, the dynamic 
component is the tuple Y (d,f,h,I) with d possible events 
function, f: the state transition function, g: the internal 
evolution function, h associated constraints function, and 
I: initial conditions. Each object verifies that its set of 
current activities is consistent, with their progress following 
this hybrid model. In particular, an activity being in a given 
node precisely defines the operational conditions and 
possible responses that could be observed to occur in the 
event of operational changes. To specify the requirements, 
real-time logic techniques are being investigated [l, 21. It 
is expected that the limited and similar responsibility 
attached to each object and the formal modeling strategy 
characterizing their behaviors will increase the overall 
quality of the implemented software. Further discussion of 
the system will be given in subsequent papers. 
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