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Abstract 

The FN basis function expansion solution to the Boltzmann transport equation in Cartesian geometry is 
summarized and evaluated for several heterogeneous slabs of interest. The resultant scalar and angular fluxes 
and the critical slab thickness (when applicable) compare to the Monte Carlo transport evaluations by MCNP. 
A correspondence between the one-group macroscopic cross section used in the FN code is made to energy 
independent synthetic MCNP microscopic cross sections. The FN method produces comparable results to MCNP, 
requires fewer computer resources, but is limited to specific problem types. 

I. INTRODUCTION 

The demand for fast and accurate solutions to shielding and deep penetrating radiation problems is increasing 
for many kinds of technical applications. These extend from the traditional detailed shielding calculations required 
for nuclear power and research facilities to nuclear powered ships and spacecraft where protection of equipment 
and living organisms from external or on-board sources is required. Further, fast and accurate irradiation practices 
and activation rates are also in great demand for intricate applications such as medical radiation therapy where 
collateral damage is to be avoided. Any method used to solve these problems will always have some limitations. By 
considering the application's physical priorities, the computational method is chosen by comparing the efficiency 
of all the methods relevant to the application. 

The FN solution to the linear Boltzmann equations first suggested by Siewert, et. has been developed 
and extended in a solution to the neutron component of the galactic cosmic ray cascade7. n o m  this, a general 
multiple energy group, heterogeneous slab FN solution with" isotropic scattering has been created and compared 
successfully to an SN solution8. 

Considered in this work is the one speed, homogeneous and heterogeneous slab problem. The FN solution is 
compared to an equivalent Monte Carlo solution utilizing Mawg.  The MCNP solution employs energy independent 
absorption, scattering, and fission cross sections. While this new comparison adds to the confidence realized in 
the earlier comparison to the SN method, it allows an initial investigation into evaluation and comparison of the 

*Work supported by the U.S. Department of Energy, Reactor Systems, Development and Technology, under Contract W-31-109- 
Eng-38. 
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multiple speed solution to an energy dependent solution even though in this preliminary work the cross sections 
are one speed in the FN method and energy independent in MCNP. 

The FN method is a basis function expansion solution to the Boltzmann transport equation for a heterogeneous 
slab. This analysis looks only at one speed, isotropic scattering, and multiple sectionally homogeneous adjacent 
sub-slabs for simplicity. The compared outputs consist of scalar and angular fluxes and the critical thickness when 
applicable. 

11. SUMMARY OF THE FN METHOD DEVELOPED FOR PLANAR GEOMETRY 

For completeness, the FN method is summarized here briefly. The one speed, one dimensional Boltzmann 
transport equation can be written as 

with the boundary conditions 

where, ci is the scattering to total cross section ratio for slab i, xi-1 and zi are the left and right boundaries of 
slab i, S(z) is the distributed volumetric source, F i ( p )  is a known general function in the positive half range of p 
at zi-1, and F'(p) is a known general function in the negative half range of p at zi. 

The Boltzmann equation can be transformed into a pair of Redholm type singular integral equations by extend- 
ing the angular variable, p, into the upper and lower complex planes. The resultant equations are integrated over z 
and the complex variable. The singularities are treated with the Plemelj relations as described in MuskhelishvililO. 
Then, the flux values are expanded as 

and 

I ff=O 

where $=(p) are the basis functions and uh and bh are the expansion coefficients. The expansion coefficients 
are determined by a collocation scheme and matrix inversion. A post processing step is included to account for 
regularizing the singular integrals and to account for an instability in equations (1) when p is small and a is large. 
The same manipulations are performed to obtained a set of equations for the interior slab points except that one 
of the boundary points is defined as the interior point. 

111. DESCRIPTION OF THE MCNP SYNTHETIC CROSS SECTIONS 

Considered for this application is neutron transport in the energy range from 0 to 20 MeV. ~VICNP input 
requires microscopic cross sections, continuous in energy, to describing a two-body interaction with the events 
outcome consistent with real (e.g., quantum mechanical) reactions. Thus, three synthetic energy independent 
microscopic cross sections are developed for these comparisons consistent with MCNP input requirements. MCNP 
tracks the particle history as it traverses the problem geometry and interacts with its nuclei. The cross section sets 
control the interactions and stops the history when the energy falls below MeV. The pure elastic potential 
scattering and the pure capture cross sections were developed earlierll. 12, and an energy independent fission cross 
section with an all-prompt neutron yield of v = 3.0 and a fission neutron energy spectrum of 20.0 to 19.999 MeV is 
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developed for this work. The values of the macroscopic, one-speed cross section in the FN evaluations are related 
to these microscopic cross sections of type x, which are constant in energy without being spectrum weighted, i.e., 

i T \ - J  

since aa(E) = era. Further, since there is only one group, there are no inter-group transfer terms needed in the 
FN formulation. 

I v .  DESCRIPTION OF THE MODELS ANALYZED 

To compare and evaluate MCNP and the FN methods, three test case models are defined. The first is a ten 
mean free path thick homogeneous slab with a mono-directional beam impinging on the left face. The second 
model is the same slab with a distributed, isotropic source in the interior. Both of these sources are also used 
with a heterogeneous slab that is nine mean free paths thick. The third model is a critical homogeneous slab with 
a uniformly distributed fission source. The resultant scalar and angular flux values are compared along with the 
critical slab width when applicable. 

The slab characteristics for the first two models consist of a homogeneous slab that is ten mean free paths 
thick and the material identified by the value of c. Three cases are modeled for c values equal to 0.1, 0.5, and 
0.9. A heterogeneous slab, nine mean free paths thick, is divided into three equal sub-slabs with an increasing or 
decreasing set of c values. 

MCNP evaluates a k , f f  for a specific geometry and material configuration. Thus for the slab geometry, the 
critical slab width is obtained from Table 2.6 in Bell and Glasstone13 for c values of 1.02, 1.05, 1.1, 1.2, 1.4, and 
1.6. These slab thicknesses and material configurations are entered into the MCNP model and the corresponding 
eigenvalues calculated. If k e f f  bounds 1.0 within the level of confidence determined, then this configuration is 
defined as the critical width. 

To correspond to the one dimensional FN solution of the transport equation, the MCNP model represents a 
rectangular slab with two opposite faces corresponding to the end points of the FN solution, and the two sets of 
remaining parallel surfaces as reflected. Since MCNP reports all tallies per source neutron, the source definition 
in MCNP must weight each source neutron by the area or the volume of the source in order to correspond to the 
results reported by the FN method. For the critical slabs, the FN method normalizes its flux to the exiting flux as 
determined by McNP7. 

For the first model, the source is described in the FN method by a boundary condition. In MCNP, an extra region 
to the extreme left of the model is created where the mono-directional source is placed. For the second model, the 
distributed source is implemented as a volumetric source. For the MCNP critical slab model, the standard KCODE 
and KSRC definitions are implemented. For the FN method, the critically condition of the transport operator is 
used 

where A represents the critical width and is the value searched for in the above condition. 

The basic result from the FN method is the angular flux. These are integrated through the collocation coef- 
ficients and the basis functions to create a scalar flux. The uncollided scalar flux is included to compare to the 
MCNP results. In MCNP, the scalar flux is given by the F2 tally. The angular flux is obtain from the F1 tally by 

(3) 
F1 

2xAIpilwz' $J(z, pi> = 

where, A is the tally axea, pi and wi are the gauss-legendre abscissas and weights based on the cosine bins used to 
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J(F, E,  t ,  p) dE dt dp dA, 

where the scalar current9 is related to the flux by 

J(r',.ct,P) = lpl V , E , t )  A. 

For the MCNP runs, the default values of the physics and biasing parameters are used. This includes the use 
of implicit capture variance reduction. The parameters used in the FN method do not affect the final results, just 
whether the code converges to the answer (angular flux), the precision of that answer, and the number of terms 
needed in the basis expansion, i.e. computer resources needed. In this respect, a point-wise angular flux tolerance 
of was chosen for all FN models. 

V. COMPARISON OF COMPUTED RESULTS 

This analysis was performed on a VAX 4000-60 running VMS 5.5. Table 1 shows the relative computer times 
used to execute each model and some important parameters that drive the timing. Figures 1 and 2 show the FN 
and MCNP homogeneous slab scalar flux results for the beam source and the distributed source. Figures 3 and 4 
show the heterogeneous slabs scalar flux comparisons. Figures 5 through 10 show the scalar flux comparisons for 
the six critical slabs. 

Figures 11 and 12 show the angular flux comparisons at the edges and center of the homogeneous slab for the 
beam and distributed sources with a c value of 0.9. Figures 13 and 14 show the same angular flux comparisons 
for some of the heterogeneous slab cases. Figure 13 shows the angular flux comparison for the beam source with 
decreasing c values from the left face. Figure 14 shows the angular flux comparison for the distributed source with 
increasing c values. 

These comparisons are in very good agreement; however, a few discrepancies must be explained along with 
known behavior that must be exhibited by the FN method in order to be validated against IMCNP. The first 
discrepancy is from the beam source used by the FN method. It was implemented as a delta function boundary 
flux condition over position and angle. The MCNP model used an extra region with a volumetric beam source to 
approximate the delta function over position. All source histories were then started in the same direction as the 
FN source to approximate the delta function over angle. This causes MCNP to try and model an infinite source at 
a point. The angular flux values from MCNP at the 5 = 0 and p = 1, when plotted in Figures 11 and 13, cannot 
represent this effect correctly and therefore do not compare directly. 

The MCNP method is a statistical simulation of the input model. The resultant tally estimated errors should 
degrade the further away the tally is from the source in phase space. This is clearly shown for the mono-directional 
beam source in all slab combinations (see Figure 1, 11, or 13). The deeper the tally surface is in the slab or the 
further away the angle bin is from 1.0, the larger the flux error band. This is due to the number of particles (or 
the weight of the particles for implicit capture variance reduction) that traverse the slab and interact with the tally 
surface and the resultant statistical manipulations that follow. 

The distributed source results show a symmetry about the centerline of the slab (see Figures 2 and 12). For 
the heterogeneous results, a symmetry is shown in the scalar flux results between the slab with increasing c values 
and the slab with decreasing values since the slab and source combinations are just mirror images (see Figure 4). 
Because all points of the slab are the same distance away from the source, the statistical anomalies as seen in the 
mono-directional source are not present. 

The angular flux results do not compare well at all positions. This is due to an added error that is not a 
function of the Monte Carlo method. In equation (3), pi should be the mean value, but only the average p is 
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known for the bin. Therefore, if the flux gradient is large, the difference between the average and mean is large 
and thus the calculated angular flux is not correct. MCNP at present does not have an angular flux tally and our 
present method of estimating it from the F1 tally yields inaccurate results in these situations. 

Table 2 shows the results from the critical slab models. The critical widths input into MCNP determine a k e f f  
that bounds 1.0 within about two standard deviations (confidence level of 95%) for all values of c except 1.05. 
Various situations were modeled to explain this discrepancy, but a reasonable explanation has not been found. 
However, the flux comparisons for all cases are symmetric about the slab center and are in good agreement even for 
a c of 1.05. Since the fission source is distributed through-out the slab, the beam source model statistical problem 
does not arise for the same reason used in the distributed source model. 

VI. CONCLUSION 

The FN method calculates results very comparable to MCNP as shown in this paper. All discrepancies can be 
explained except for the k e f f  value determined by MCNP for a c of 1.05. The FN method as shown has a CPU 
utilization advantage when compared to MCNP; however, the FN method at this time is limited to planar geometry. 
MCNP may take longer to generate results, but its ability to model a multitude of geometric configurations allows 
more problems to he modeled and answers obtained. 

The comparison between a deterministic evaluation, such as the FN method, and MCNP is possible because 
the one group macroscopic cross section can be easily related to the continuous energy microscopic cross sections 
(see Equation 2). When a deterministic code employs multiple group cross sections, the two sets of deterministic 
multiple group cross section and synthetic MCNP cross sections will have to be shown to correspond before code 
comparisons can be made. 
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Source 
Type 

Beam 

Internal 

Critical 

'l'able 1 
Ci 

0.1 
0.5 
0.9 

0.9, 0.5, 0.1 
0.1, 0.5, 0.9 

0.1 
0.5 
0.9 

0.9, 0.5, 0.1 
0.1, 0.5, 0.9 

1.02 
1.05 
1.1 
1.2 
1.4 
1.6 

Relative C'PU Utilization 
Relative CPU Timings 

F N  MCNP 
Time N I To1 Time I NPS 
1.000 23 I 32.713 I 1,000,000 
1.290 27 
1.190 33 
5.333 33 
5.403 33 
1.141 21 
1.782 37 
1.505 29 
5.740 33 
5.844 33 
18.704 65 
13.985 65 
11.817 65 
10.569 65 
9.427 65 
8.944 65 

48.757 1,000,000 
lo-' 113.277 1,000,000 

88.067 1,000,000 
35.037 1,000,000 

10-5 29.483 1,000,000 
43.124 1,000,000 

lo-' 134.262 1,000,000 
56.563 1,000,000 
54.586 1,000,000 
354.122 599,150 
179.323 597,631 
104.243 599,423 
65.686 599,466 

lo-' 49.313 599,717 
43.227 599,974 

Table 2: Criticality Parameters for the MCNP and FN Models 
Bell & Glasstone F N  blCNP 

Confidence 
ci Critical Widths Width Used Combined Deviation Interval Level (%) 

Table 2.6 ' Critical Terms Averaged Standard keff 

(mfp) b f P )  N b f  
1.02 11.331 11.3310109 59 0.99951 0.00110 0.99730 - 1.00173 95 
1.05 6.6004 6.6005275 59 0.85725 0.00100 0.85524 - 0.85926 95 
1.1 4.2268 4.2266193 59 0.99930 0.00117 0.99694 - 1.00166 95 
1.2 2.5786 2.5787586 59 1.00038 0.00111 0.99813 - 1.00262 95 
1.4 1.4732 1.4732071 59 0.99866 0.00084 0.99698 - 1.00034 95 
1.6 1.0240 1.0239260 59 1.00057 0.00085 0.99885 - 1.00229 95 
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Figure 1: Scalar Flux for a Mono-directional Beam Source with Material c’s Equal to 0.1, 0.5, and 0.9 
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Figure 2: Scalar Flux for a Distributed Source with Material c’s Equal to 0.1, 0.5, and 0.9 
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Figure 3: Scalar Flux for a Mono-directional Beam Source with Material c’s Increasing and Decreasing 
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Figure 4: Scalar Flux for a Distributed Source with Material c’s Increasing and Decreasing 
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Figure 5: Scalar Flux for a Critical Slab with c=1.02 
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Figure 7: Scalar Flux for a Critical Slab with c=l.I 
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Figure 8: Scalar Flux for a Critical Slab with c=1.2 
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Figure 9: Scalar Flux for a Critical Slab with c=1.4 
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Figure 10: Scalar Flux for a Critical Slab with c=1.6 
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Figure 11: Angular FIux in the Slab for the Beam Source and a Material c of 0.9 
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Figure 12: Angular Flux in the Slab for a Distributed Source and a Material c of 0.9 
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Figure 13: Angular Flux in the Slab for the Beam Source and Decreasing Material c's 
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Figure 14: Angular Flux in the Slab for the Distributed Source and Increasing Material c's 
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