
http://www.aps.anl.gov/asd/ag/manuals/APSlogDaemon/APSlogDae~n4. html Page: 1

APS logDaemon and Client Library

Claude Saunders, Jim Kowalkowski

The submined manuscript has been authored
by a contractor of the U.S. Government 1
under contract No. W-31-104ENG-38.
Accordingly, the U. S Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

I

Table of Contents

1. Introduction
2. Client Librarv Reference

Operations Analysis Group, Controls Group
Accelerator Systems Division
Argonne National Laboratory
Dec. 13,1995

1. Introduction

This document serves as a User's Manual and Reference for the logDaemon and client library.
This package provides a general distributed message logging system. A logDaemon may be
started anywhere on a subnet. A client which has linked in the client library is provided functions
to open a connection to the logDaemon, log messages, and close the connection. The logDaemon
maintains one or more log files (in simple ascii or SDDS format) and an e-mail list based on
specifications in a configuration file. Incoming messages are logged to the appropriate file and/or
result in e-mail being sent.

1.1. Client Overview

The client library provides the following calls:

int logOpen(L0GHANDLE *h, char *sourceId, char *serviceId);
int logGetVerbosity(L0GHLE h);
int logSetVerbosity(L0GKLE *h, int verbosity);
int logMessage(L0GHANDLE h, char *system, char *subsystem,

int logClose(L0GHLE h);
int verboselevel, char *format, . . .) ;

A connection to the logDaemon is opened with logopen(). The user provides a pre-allocated
LOGHANDLE for use in subsequent calls. The sourceId is an arbitrary string designed to identify
the general class of user (ie. IOC, SCRIPT, etc..). The serviceId ptr may be NULL, in which case
the default logDaemon is contacted. Alternately, a specific logDaemon may be requested by
name (must agree with name given 1ogDaemon at startup).

http://www.aps.anl.gov/asdoag/manuals/APSlogDae~~APSlogDae~n4. html

The LOGHANDLE is then valid for all other calls until logclose() is called on it, at which time it
may be re-used.

All messages have a VerbosityLevel from 1 to 99. By default, all levels are accepted by
logMessage(). You may disallow messages above a certain level via the 1ogGetVerbosityO and
logSetVerbosity() calls. Any logMessage() call above the set verbosity level is ignored.

The IogMessageO function has a number of fixed arguments followed by an arbitrary message
string in the printf() style. The system name is required, and should denote the context in which
your log message is being produced. For example, an EPICS record support module would supply
the record support module name. The subsystem name is optional, but should denote the
subsystem from which an error originated. For example, the same record support module may
know it’s error resulted from a failed call in a given device support module. The subsystem should
be the name of the device support module.

In this fashion, a hierarchy of error messages may later be reconstructed, showing the
propagation of errors up from low level software.

High detail messages would typically be given a high VerboseLevel value. Low detail, routine
messages would be given a low value. The user is free to utilize the verboseLeve1 argument in any
fashion, though.

1.2. IogDaemon Overview

The IogDaemon may be started anywhere on a subnet. It is a single-threaded, UDP based server.
Various environment variables and/or command-line options specify what port to use, where the
log file directory is, etc Most importantly, a configuration file is read which specifies how
incoming log messages are to be distributed among one or more files based on the various fields,
and whether e-mail should be sent.

The client library will broadcast for the logDaemon using a specific id. The logDaemon with that id
will respond, notifying the client library of its Ip address and port. All subsequent log messages are
transmitted via a single UDP packet. No acknowledgement of successful receipt is given.

The 1ogDaemon can be configured to write a simple ascii file format, one log message per line, or
to write an SDDS format log file.

A max-log-file-size may be given. In this case, the log file will be copied to a save directory
whenever the size is exceeded. The save directory utilizes file generations, so the log files will
reside in the save directory as log.0, log.l,log.2, etc. A simple browsing tool can reconstruct the
full history of messages, including those in the currently active log file.

2. Client Library Reference

#include <logDaemonLib.b

Page: 2

~ittp://www.aps.anl.gov/~~oag/manuls/APSlogDaemon/APSlogDae~n4. html

logopen

int logOpen(L0GHANDLE *h, char *sourceId, char *serviceId);

Open a connection with the logDaemon (not in TCP sense, though, since library is UDP based).
User must provide a ptr to a pre-allocated LOGHANDLE. The sourceId is an arbitrary string up
to 254 chars in length. The serviceId ptr may be NULL, in which case the default logDaemon is
contacted. Otherwise, serviceId is an arbitrary string up to 254 chars in length.

0 h - ptr to pre-allocated LOGHANDLE struct
0 sourceId - ptr to null terminated string up to 254 chars in length
0 serviceId - NULL, or ptr to null terminated string up to 254 chars in length.

Returns:

0-ok
0 -1 -error

IogGetVerbosity

int logGetVerbosity(L0GHANDLE h);

Retrieve current upper verbosity limit. After a logopeno, it is set to 99 (max) by default.

0 h - LOGHANDLE from logopen() call

Returns:

0 current upper verbosity limit

IogSetVerbosity

int logSetVerbosity(L0GHANDLE *h, int verbosity);

Set the verbosity upper limit for the currently open log session.

0 h - ptr to LOGHANDLE from logopen() call
0 verbosity - new upper verbosity limit

Returns:

0 new upper verbosity limit

IogMessage

int logMessage(L0GHANDLE h, char *system, char *subsystem, int verboselevel, char

Page: 3 I

http://www.aps.anl.gov/asdoag/manuals/APSlogDaemon/APSlogDae~n4.h~1 Page: 4

"format, ...);

Sends a log message to the logDaemon. The message is time-stamped with secs and usecs past
UNIX epoch automatically. A system name must be provided, but subsystem may be a NULL
ptr. The verbosekvel may be from 1 to 99. The remaining arguments function like a printfo call
and provide the arbitrary text portion of the message.

0 h - LOGHANDLE from logopeno call
0 system - ptr to null terminated string up to 254 chars in length
0 subsystem - ptr to null terminated string up to 254 chars in length, or NULL
0 verboseLeve1- from 1 to 99
0 format - printf style format string
0 ...

Returns:

0-ok
0 -1 -error

IogClose

int logClose(L0GHANDLE h);

Close up logDaemon "connection". LOGHANDLE may be reused after closing.

3. IogDaemon Reference

Command line options:

1 ogDaemon
[-m (textlSDDS)] Log file format. This option only available if SDDS compiled
in.
[-i <serviceId>] Text name for 1ogDaemon. Defaults if not given.
[-f <config file name>] Configuration file name. Defaults to log-confg (see -e
option).
[-p < m P port>] UDP port for daemon to listen on. Defaults if not given.
[-a <log file name>] Default log file if no config file is given. Defaults to
1og.file.
[-r] Remove any current log files at startup, and start with fresh ones.
[-h <home dir>] Use this directory for log files. Defaults to current dir.
[-o <save dir>] Use this directory for saved log files. Defaults to ./save.
[-s <max size>] Copy a log file to save dir if it exceeds this size.
[-e] Print example of a config file to stdout.

Environment Variables (corresponds to above options in general):

LOG-SERVER-ID

http://www.aps.anl.gov/asd/oag/manuals/APSlogDaemon/APSlogDae~n4. html

LOG-PORT
LOG-CONFIG
LOG-DEFAULT
LOG-HOME
LOG-SAVEDIR
LOG-MAXSIZE

A sample config file (1og.config) is as follows:

#Example 1og.config file
#-----------------------
Fields are : separated, and as follows:
source1d:system:verboseLevel:dest:destName
where sourceId is string or *
system is string or *
verboseLeve1 is # or range #-# from 1 to 99
dest is the string log or mail
destName is a log file name if dest is log,
or space delimited list of email addrs if
dest is mail.
Specify two log files for msgs from IOC sourceId
IOC:*:l-49:log:iocLogLow.log
10C:*:50-99:log:iocLogHigh.log
Next, specify email for msg from any system named DOOM
Note, if sourceId is IOC, above lines take precedence.
:DOOM::mail:me@aps.anl.gov you@aps.anl.gov
Finally, specify catch all log for all else
::*:log:catch-all.log

The logDaemon writes the following fields for each log message received. The exact format of the
output depends on whether you have chosed text or SDDS mode at startup time.

secs - seconds past unix epoch (time stamp from client clock)
usecs - microseconds part
sourceId - string from logopen() call
verboseLeve1- integer from 1 to 99
system -
subsystem -
message

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thcreof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Page: 5

- -

mailto:DOOM:*:mail:me@aps.anl.gov
mailto:you@aps.anl.gov

