
Bob Zieman, Janet Anderson and Marty Kraimer
Argonne National Laboratory, Advanced Photon Source
appSR R1.3, May 1,1995
EPICS Release 3.12

Table of Contents

1.Introduction ... 1
2. Application System Area Architecture. .. .4
3. Procedures for Application System Area.7
4. Shadow Node Procedures. .. .9
5. AddingModifying Components. ... 10
6. Source/Release Tools15
7. APPENDIX Application System Area18
8. APPENDIX Application Production Area Evolution20

1. Introduction

Overview This manual describes a set of Application SourcdRelease Control tools (appSR) that can be
used to develop software for EPICS based control systems.

Overview to
EPICS R3.12
Version

The Application Source/Release Control System (appSR) has been unbundled from base
EPICS and is now available as an EPICS extension. Due to this unbundling, two new
directories must be added to a user's path (see section "Environment" on page 3 for more
information) and a new command getapp must be issued after the getrel command to get a
specific version of appSR (see section "Creating The Initial Application System Area" on
page 7 for more information).

It is now required that GNU m a k e version 3.71 or later be used for makes instead of SUN
m a k e . Users should now type g m a k e instead of m a k e .

EPICS Release: R3.12 EPICS Application Source/Release Control 1

DISTRIBUTION OF THlS DOCUMENT IS UNLIMIED 6s
$+. ;,

. . . _I - __I___.

1. Introduction

Features

Definitions

CIas es of us rs

A new method of adding application specific source files is now supported. This method
allows the user to create and use simple Makefiles in an application source directory (see
section “Adding Application Specific Source Files” on page 13 for more information).
Makefile templates are provided. Imakefiles and the Buildit command are no longer
necessary. Targets built from these Makef iles will reside in target-architecture specific
subdirectories of this source directory. New makefile targets, clean, depends and build,
have been added to support the Makefile method. For upward compatibility, Imakef iles and
the Buildit command are still supported but their use is not encouraged.

There are two changes to the Imakefile method. Depends are no longer available for Unix
architectures and the “gmake buildMakef iles” command now executes ‘‘make clean”
before executing “gmake” after the Makefiles are rebuilt.

The Application Source/Release Control System (appSR) provides the following features:

Multiple Applications: The entire system is composed of an arbitrary number of applications.

Source/Release Control: All files created or modified by the application developers can be
put under SCCS, which is a Unix source/release control utility.

Multiple Developers: It allows a number of application developers to work separately during
the development phase but combine their applications for system testing and for a production
system.

Makefiles: Makefiles are provided to automatically rebuild various application components.
For C and state notation programs Makefile templates are provided. For compatibility
Imakefiles are supported.

Application System Area: The set of directories and files managed by the tools described in
this document. Everything is stored in one directory tree. The top level directory contains
information common to all applications in this area as well as a subtree for each application.

Application: A subtree under the application system area that contains all the files for a single
application.

Application Shadow Area: A set of directories and soft links to an application system area
for use by the application developer. It appears to the user just like a copy of the system area.
It is used for individual development and testing of application changedfixes.

Application Production Area: A copy of a working application system area for use by
operations.

Application System Manager: The Application System Manager is responsible for the
Application System area.

Application Developer: Anyone who tests, modifies, or extends an application’s software. If
multiple developers are working on the same system each should develop in a private shadow
area.

Application Production Manager: A person responsible for production application software.

2 EPICS Application Source/Release Control Document Revision: Draft

1. Introduction

Document The following conventions and/or representations apply to the remainder of this document.
Conventions and
Information

Environment

SourceLRelease
Control
Commands

create

edit

<appSR> Represents the full path name of an appSR release
<epics> Represents the full path name of an EPICS release
<top> Represents the root node of an application system area. It is the directory from

<shadow> Represents the top node of an application shadow node. “shadow node”

<archV> Represents the vxworks target architecture. Cunrently hkv2 f for the 68020

<archU> Represents the Unix architecture. Currently sun4.
% Indicates a prompt for user input or activity.
<EDIT>

which we can access EPICS components.

and ”shadow area” are synonymous.

and mv167 for the 68040.

Means: edit the file according to the sccs rules. Refer to the sccs
procedures section “SourceRelease Control Commands” on page 3. Note: <EDIT>
includes doing a delget if in the system area.

In order to use the Application SourceRelease tools and executables you need to have the
following item in your path:

./appSR/bin/<archU> $path

Ask your EPICS site manager for the name of a file which you can source from your .cshrc file
to satisfy the above appSR path requirements as well as all the EPICS Unix environment and
path requirements.

At APS an EPICS user needs only the following statement in hisher .cshrc file placed after any
set path statements.

source /usr/local/etc/Cshrc.aps

The Unix sccs utility is used to put all user editable files under sourcehelease control. The
Unix documentation should be consulted for a complete description of sccs. This section
gives a brief description of the commands normally used by application developers. Wherever
<filename> is shown a list of filenames is allowed.

%sccs create <filename>

This command places a file under sccs control for the lint time. After the file is placed under
sccs control a read only copy is created, i.e. an sccs edit command must be issued before
the file can be modified.

This command also creates a backup copy of the original file. It is the original file with a
comma prepended to the name. It is a good idea to remove this file, now.

%sccs edit <filename>

This command checks out a file so that it can be modified. If a file is checked out in an
application shadow area, other developers will not see any modifications until an sccs delta
is ,executed.

If a developer checks out a file in a shadow area it is actually checked out from the system area,
i.e. no other developer can try to modify the same file. Other developers do not, however, see
any changes made in the shadow area until the developer checks in the modified files.

EPICS Release: R3.12 EPICS Application Source/Release Control 3

2. Application System Area Architecture

unedit %sccs unedit <filename>

This command causes the SCCS directory to revert to the state it was in before the last sccs
edit <filename> command was issued.

delta

info

%sccs delta <filename>

This command checks in a modified file. This should only be done during an Application
System area integration when everyone attached to an application system area is expected to
see the changes. A new sccs version of the file is created. It is possible to retrieve previous
versions.

It is also possible to issue an “sccs delget”, which combines an sccs delta with an sccs
get, and an “sccs deledit”, which combines an sccs delta with an sccs edit.

%sccs get <filename>

This command retrieves a read only version of the file. It is useful in a shadow area when the
user wants to make a temporary change to a file, e.g. for debugging purposes. In this case the
user must change the file protections before it can be modified.

%sccs info

This command displays a list of all checked out files in the directory from which the command
is issued.

Getting Started The normal procedure for getting started is to:

1. Create System Area: This is done by the application system manager. See section
“Procedures for Application System Area” on page 6.

2. Get Application Specific ASCII Definition Files: All application developers using
this application system area must agree on a common set of ASCII definition files. See
section “ASCII Definition Files” on page 12 for instructions.

3. Run Makesdr: After all ASCII files are installed run makesdr in <top>.
4. Populate Each Application: The developers for each application should install all files

related to each application. This includes Unix sources, IOC sources, and databases. See
section “AddingModifying Components“ on page 10, which explains how to install
each component. It is up to the application system manager and the application
developers to decide if it is easier to do this in the system area or if each application
developer should do hisher part in a shadow area.

5. Prepare Each IOC For Booting: Modify the startup files in each IOC directory.
6. Perform The Normal Integration Steps: Perform the steps given in section

“Integration” on page 8.

At this time you should have a working application system area.

2. Application Svstem Area Architecture

The root directory of the Application System Area and its contents is referred to as <top>.
Appendix A shows the file structure stored under <top>.

4 EPICS Application Source/Release Control Document Revision: Draft

2. Application System Area Architecture

<top>

User Editable
Files

EPICS related
links andJiles

<top>/cat-ascii

<top>/
replace-ascii

<top>/ioc/
<iocNarne>/

applist: List of all applications
ioclist: List of all IOCs used by these applications

The following are soft links to the EPICS base and appSR directories and files.

base@: EPICS release base directory
appSR@: appSR release directory

The following are soft links to EPICS directories or files.

ascii@: ASCII definition files
base@: EPICS release base directory
config@: Directory containing files needed by sourcehelease tools
epicsH@: Include files
include@: Include files (same as epicsH)
makefile@: Top-level makefile
targetcarchV>@: Directory containing EPICS vxWorks executables
vw@: Location of vxworks components

9 vxWorkscarchV>@: vxworks boot image

The following file identifies EPICS releases.

.current-rel-hist: History of all getrel commands for this system

The following files contain the record and device support definitions. The default files are
initially links to EPICS and s d r ~ does not exist. makesdr creates these if they are missing or
out-of-date.

defaultdctsdr: Record definitions
defaultsdrSum: Checksum file for record definitions
sdrwreck The include files for each record type.

This is the place to store the application specific ASCII definition files to be added to the end of
the existing EPICS definition files.

This directory contains the application specific ASCII definition files that are not part of
EPICS and also files that replace the existing EPICS supplied files. It is also the place to store
C include files containing definitions used in ASCII definition files.

These directories (one for each IOC) contain soft links to the EPICS components needed to
boot an IOC. Each also contains a st .cmdiarchV> file which must be customized for the
particular IOC. Any modules to be loaded into the IOC must be referenced from the
st. cmd<archV> file in a relative fashion. If other IOC specific files are needed, this is the
place to put them. All user created files should be placed under SCCS control.

EPICS Release: R3.12 EPICS Application Source/Release Control 5

2. Application System Area Architecture

Root node of an application.

<top>/<app>App/src/: This directory contains files that are meant to be edited by the

C source
Include files
State sequence programs
Makef ile, Makef ile .Unix, and Makef ile .Vx andor Imakef ileVx and

This is the directory for building both application specific IOC and Unix components
from the Makef ile. The Makef ile will use the Makef ile .Unix and Makef ile .Vx
files to build the components.

Directory created by <sro/Makef ile for
application specific IOC components. It contains a link to <sro/Makef ile .vx so that
gmake can be executed.

Directory created by <sro/Makef ile for
application specific Unix components. It contains a link to <src>/Makefile .mix so
that gmake can be executed.
<top>/<app>App/archLst: This file does not exist in new application system areas.
if it exists, it contains entries for each target architecture directory to be built (ex: sun4,
mv167, hkv2f) using Imakefiles. You may remove the entries you do not want built
from the Imakefiles.
<top>/<app>App/<archV>/: This directory does not exist in new application system
areas. If it exists, it is the directory for building application specific IOC components
using Imakefiles. It contains a link to <src>/ImakefileVx so that Buildit and
make can be executed.
<top>/<app>App/<archU>/: This directory does not exist in new application system
areas. If it exists, it is the directory for building application specific Unix components
using Imakefiles. It contains a link to <sro/ImakefileUnix so that Buildit and
F a k e can be executed.

Each application can have an arbitrary set of database
directories and each database directory can contain an a rb i t rq number of IOC
databases.

adV
alh/
arr

application developer. This includes the following:

Imakef ileunix

<top>/<app>App/src/O.<archV>/:

<top>/<app>App/src/O.<archU>/:

<top>/<app>App/<db>Db/:

<top>/<app>App/op/: This directory initially contains the following subdirectories:

arChan/
arReq/
=Set/

hurt/
doc1

*km/
These directories contain files, for the specified tools, that the application
developer wants to place under sccs control. The user may also define other
directories and contents in this area.

. I

6 EPICS Application Source/Release Control Document Revision: Draft

3. Procedures for Application System Area
~~

3. Procedures for Application System Area

This section describes procedures that can only be executed in the system area not in a shadow
area. In general any procedure that creates a new directory must be executed in the system
area. This includes:

New application directories
New IOC directories
New database directories within an application

It is up to the application developer to notify the application system manager of any new
structures to be introduced.

Any <EDIT> commands shown in this chapter could also be executed in a shadow area but it
is often easier to perform them in the system area.

Creating The
Initial
Application
System Area

Setup the <top> Directory.
hkdir <top>
%cd <top>
%<epics>/base/tools/qetrel <epics>

The getrel command to be executed must be executed from the same EPICS release that you
will be using.

%<appSIU/bin/carchU>/qetapp cappSRw

The getapp command to be executed must be executed from the same appSR release that you
will be using.

%apCreateTop

This command creates any missing <top> directory components of an application system area.
%apFixLinks

Creating
Application
Specific
Directories

Creating New
Applications

In order to create the initial applications or add new applications execute the following
commands:

%cd <top>
% <EDIT> appList

If appList is not out for edit issue the command “sccs edit applist”. Use your favorite
editor to add one or more application names to the file. Example: appNamel or appName2

%apCrea t eApp

If you are using the Imakefile method of building IOC and Unix components execute the
following two commands and then use your favorite editor to remove unwanted target
architecture names from the archList file.

%cd <top>/<app>App
% <EDIT> archList

EPICS Release: R3.12 EPICS Application Source/Release Control 7

3. Procedures for Application System Area

%cd <top>/<app>App/
%apCreateDbDir

Creating New
Database
Directories This tool is interactive. You are prompted for each database name, followed by a prompt for

the database editing tool (GDCT or DCT) to be used in that directory.

Note that only one database editor (either GDCT or DCT) may be used in a given directory.

Creating IOC
Directories

Integration

%cd <top>
%<EDIT> iocList

Use your favorite editor to add the new IOC names to the file. Example: iocNamel or
io cName2

%apCreateIocName

For each name in ioclist, this tool creates a <top>/ioc/<iocName> directory and
populates it with "default" templates and links. Each new directory contains an IOC startup
file. The user should modify each s t . cmd<archV> file to include the application components
and/or instructions to load and run the application.

Integration means going to a new release of EPICS and/or going to a new release of appSR or
updating the application system area to reflect changes made by application developers in their
shadow nodes.

The primary steps are as follows:

1.
2.

3.

4.

5.

6.

The application system manager coordinates with the application developers.
The application developers should make sure that all DCT databases have an up to date
short form report (. rpt files) which is not out for sccs edit. The application developer
can issue the apSccsInfo command at the <top> level to get a list of files out for edit.
The application developers check in (sccs delta) from their shadow nodes any files
they want to be part of the new system.
The application system manager issues the following commands:

where <epics> is the full path name to the new version of EPICS.
and/or

where <appSR> is the full path name to the new version of appSR and <archU> is the
Unix architecture.

%cd <top>
%<epics>/base/tools/getrel <epics>

%<appSR>/bin/<archU>/getapp <appSR>

%doGets
%apCreateTop
%apCreateApp
%apCreateIocName
%apFixLinks
%gmake doFixRptDct

Note: DCT rpt files must NOT be out for sccs edit. gmake doFixRpt may be run
instead of gmake doFixRptDct if gmake doFixRptDct has been run once in the
application system area.
The application system area is rebuilt by the command:

See section "Building A Single Application" on page 14 for what this command does.
After the application system area has rebuilt successfully, application developers can
resync their shadow nodes as described in section "Synchronizing An Application
Shadow Node" on page 9.

%gmake world

8 EPICS Application Source/Release Control Document Revision: Draft

4. Shadow Node Procedures

4. Shadow Node Procedures

This section describes procedures that apply only to an application shadow node. An
application shadow node is an image of a complete application system area. When created it
contains soft links to files in the application system area. The application developer should
perform all development in a shadow area rather than the system area so that other developers
do not see hisher changes until SCCS deltas are executed.

Creating An
Application
Shadow Node

Synchronizing
An Application
Shadow Node

hkdir <shadow>

NOTE: Do not do this in an application system area.
%cd <shadow>
%<top>/appSR/bin/sun4/apCreateShadow <top>

You will be asked to create a file with the touch command.
%touch .applShadow
%<top>/appSR/bin/sm4/apCreateShadow <top>

An application shadow area is identical to an application system area with the following
exceptions:

1. All files in an application shadow node are initially links.
2. All directories in an application shadow node are real except for each SCCS directory

3. DCT D b directories have only the <*>Db. database file as a link initially.
which is a symbolic link.

Any time the application system area is rebuilt or changed the application developer must
synchronize his or her application shadow node.

%cd <shadow>

Repeat the followingthree lines until the status is correct.
%apStatusSync
%<edit apRemoveScript via your favorite editor>
%apRemoveScript

Repeating the above lines removes the out-of-date files and directories.
%apCreateShadow <top>

The apstatussync tool is designed to be invoked one or more times before producing the
correct apRemoveScript file. Status reports go to standard out and commands to remove
shadow area components are placed into the apRemoveScript file. apstatussync should
be repeated until it runs successfully. It is the application developer’s responsibility to
determine when the status is correct. apRemoveScript contains a set of (commented out)
Unix commands to remove obsolete or illegal files andor directory components in the
application shadow area. It is the application developer’s responsibility to edit the
apRemoveScript file.

EPICS Release: R3.12 EPICS Application Source/Release Control 9

5. Adding/Modifying Components

5. AddingModifying Components

This section describes procedures for adding or modifying application components. These
procedures will work in the either the application system area or in a shadow area. If they are
issued in the system area remember that all users may be affected. Wherever this chapter refers
to <shadow> it is also possible to use <top>.

IOC Databases The procedures given in this section assume that the user is in a database directory, i.e. one of
the following commands has been issued:

%cd cshadow>/capp>App/cdb>Db

OR
%cd <top>/<app>App/<db>Db

NOTE: It is recommended that GDCT, rather than DCT, be used to create and modify
database files.

GDCT Databases Refer to the GDCT User’s Manual for details. For each database the following files exist:

cdbname> The file containing graphical information.
cdbname>.db A loadable ASCII file used by GDCT.

All new <&name> and <&name>. db files must be placed under source release control via
sccs create commands. The sccs edit, sccs get, and sccs delta commands may be
issued as necessary.

It is recommended that GDCT databases are loaded with the dbLoadRecords and
dbLoadTemplate commands rather than &Load.

DCT Databases DCT can be used to create new databases and/or modify existing databases. This subsection
describes application sourcehelease tools that allow the . rpt files to be placed under source/
release control.

DCT causes a problem for source/release control because DCT generates many files for a
single database. What is put under sccs control is the short form report file, which must have
a file extension of .rpt.

For each database in a database directory the following files can exist:

cdbname>.rpt File that is placed under sourcehelease control.
cdbname>.rptO File generated by the gmake utility described below. If such files
appear after running gmake, the user should resolve the differences and make sure that
only d.bname>. rpt remains.
cdbnamexrptl, etc If the user runs gmake without resolving differences then make
keeps creating new files.
<dbname>.rpt.err After checking for real errors these can be deleted.
cdbname>Db.database File generated by DCT. The gmake utility described below

cdbname>Db.ai, etc The other files generated by DCT.
automatically adds “Db” to the report file name.

10
~

EPICS Application Source/Release Control Document Revision: Draft

_ -

5. AddingModifying Components

Report files and
SourceLUelease
Control

All report files should be managed via the dbsccs commands described in section "dbsccs
For DCT Databases" on page 11.

Update
Databases From
.rpt Files That
Are Under sccs
Control

dbsccs For DCT
Databases

create

edit

delget

%make

For each <dbname>Db. database file with a report file that is under sccs control, gmake
performs the following steps when the <dbname>Db. database is out of date with respect to
the<dbname>.rpt, default-dctsdr, 0rdefault.sdrsumfiles.

1. If <dbname>Db.database does not agree with its associated <dbname>.rpt then a
new short form report <&name>. rpto is generated (NOTE: If this file already exists it
uses <&name>. rp t l , etc). In this case a warning message is also issued.

2. It deletes existing dbname>Db. * files and uses atdb to create a read only
<dbname>Db. database file from the <dbname>. rpt .

Note that the new .database file agrees with the original .rpt NOT the .rptO file.

Each database is normally represented as a single link to the <dbname>Db. database. This
eliminates a lot of clutter in the DCT database directory. The dbsccs tool allows an
application developer to edit specific databases.

DCT should be used to create a new <dbname>Db database, and dbsccs create should be
used to create the d.bname>.rpt file and put it under sccs control. Once the
<dbname>. r p t is under sccs control, DCT can be used to modify the <dbname>Db database
only when the <dbname>. r p t file is out for edit.

%dbsccs create <dbname>.rpt

This command performs the following functions:

If <dbname>. r p t is already under sccs control the command aborts.
If <dbname>Db. database is missing, a link or not writable the command aborts.
If a <&name>. r p t file already exists, it is renamed <&name>. rpt0. (NOTE: If this
file already exists it uses <dbname>. rp t l , etc)
dbta is invoked to create a <dbname>. r p t file.
sccs create is invoked on the new <dbname>. r p t file. The writable dbname>Db

atdb is used to create a read only <dbname>Db.database file from <dbname> .rpt.
database files are removed.

%dbsccs edit <dbname>.rpt

This command performs the following functions:

If <dbname>Db. database is writable the command aborts.
sccs ed i t is used to take <dbname>. r p t out for edit.
The <dbname>Db. * files are removed.
DCT is invoked to create a writable <dbname>Db database.

NOTE: If a writable dbname>Db database exists, DCT can be used to delete the database
before issuing dbsccs edit .

%dbsccs delget <dbname>.rpt

This command performs the following functions:

EPICS Release: R3.12 EPICS Application Source/Release Control 11

5. Adding/Modifying Components

If <&name>. rpt is missing, a link or not writable dbsccs aborts
dbta is invoked to create -dbname>. rpt file from the <dbname>Db database.
The writable DCT <dbname>Db database files are removed.
atdb is invoked to create a read only <dbname>Db. database file.
sccs delget is invoked for <&name>. rpt.

unedit

IOC
Configuration
Piles

vxworks Startup
Files

resource.def Files

ASCII Definition
Files

%dbsccs unedit cdbname>.rpt

This command performs the following functions:

sccs unedit is invoked on <&name> .rpt.

A backup rpt is made if dhmme>Db. database was modified.
The writable <dbname>Db.database files are removed.
atdb is used to create a read only dbname>Db. database file from <&name>. rpt.

For each IOC an ioc directory exists under <top>/ioc. In each such directory a vxworks
startup file exists for each supported vxworks board support package. In addition resource files
can also be placed under source/release control.

The startup files (for example <top>/ioc/<iocname>/st. cmd<archV>) must be modified
after initial creation and when the set of databases to be loaded changes. The normal sccs
edit and sccs delta commands should be used as necessary. When initially created the
startup files are prototypes, which contain modification instructions.

The iocInit command in the startup file can have an optional “reso~rce.def~~ parameter. If
it does, then the resource. def file is processed. This file should appear in the same directory
as the startup file. It should be placed under source/release control with the sccs create
command. Commands sccs edit and sccs delta can be used as necessary.

All applications under <top> must share the same set of ASCII definition files. Two
directories are available for application ASCII files. <top>/replace-ascii/ is the place to
store files that are replacements for EPICS files and <top>/cat-ascii/ is the place to store
files that don’t exist in EPICS and files that should be added to the end of EPICS files.

The command makesdr must be run any time there is a change to any ASCII input file used by
makesdr. After makesdr completes all databases must be rebuilt and any affected record or
device support must be rebuilt.

After makesdr is executed all applications must be rebuilt. The following commands will
rebuild all applications:

%cd <top>
%make

This will rebuild all out-of-date applications.

If, however, you are working in a shadow area and are only dependent on a single application,
the following commands can be used to rebuild the single application:

%cd <shadow
%makes&
%cd capp>App
%make

12 EPICS Application Source/Release Control Document Revision: Draft

5. AddinglModifying Components

Adding
Application
Specific Source
Files

Unix Source Files
(Makejle method)

IOC Source Files
(Makejle method)

Unix Source Files
(Ima kejle method)

All application specific source files are put in <top>/<app>App/src. When any new file is
placed in this directory it should be put under sourcehelease control via the SCCS create
command. Depending on the type of file other files will have to be edited.

The Makefiles for building application specific source files have the same structure and
features as the Makefiles described in the EPICS SourceRelease Control: How to Build and
Develop EPICS Software document. See Chapter 6 in that document for information on
creating and using Makefiles.

NOTE: The Imakefile method is provided for compatibility. Users are encouraged to use the
Makefile method.

This includes C sources and include files.
%cd <src>
%<EDIT>Makefile.Unix

Edit this file to build the new Unix component.
%gmake

Components are built in the 0. <archU> subdirectories.
%make depends

A .DEPENDS file containing dependency information will be built in the O.<arch>
subdirectories.

The following makefile targets are supported:

clean, build (default) and depends, for all site supported architectures, and
clean.<arch>, build.<arch> and depend.<arch> for a single architecture.

This includes C sources, include files and sequence programs. If the sources are for record,
device, or driver support remember that ASCII definition files must be prepared and makesdr
executed as described above. In addition the following must be performed

%cd <src>
%<EDIT>Makefile.Vx

Edit this file to build the new IOC component.
%make

Components are built in the 0. carchV> subdirectories.
%make depends

A .DEPENDS file containing dependency information will be built in the O.<arch>
subdirectories.

The following makefile targets are supported

clean, build (default) and depends, for all site supported architectures, and
clean.<arch>, build.<arch> and depend.<arch> for a single architecture.

This includes C sources and include files.
%cd <src>
%<EDIT>ImakefileUnix

Edit this file to build the new Unix component.

EPICS Release: R3.12 EPICS Application Source/Release Control 13

.- . - -_ - ~ ___--

5. Adding/Modifying Components

%cd <app>App/<archU>
%Buildi t
%make

IOC Source files
(Im&e$le method)

This includes C sources, header files and sequence programs. If the sources are for record,
device, or driver support remember that ASCII definition files must be prepared and makesdr
executed as described above. In addition the following must be performed:

%cd <src>
%<EDIT>IrnakefileVx

Edit this file to build the new IOC component.
%cd <app>App/<archV>
%Buildit
%make
%make depend

Modifying
Existing
Application
Sources

Operator Files

Building A Single
Application

In this case just edit the source in <src> and then execute either the gmake command in the
<src> directory (Makefile method) or the gmake command in either the <archU> or
<archV> directory (Imakefile method).

All files placed in the op directory should be managed via the sccs commands.

%cd <shadow>/<appName>/
%make

This does a gmake in each defined carchV> and <archU> directory, in the src directory,
and in each <*>Db directory. If a "makef ile .pvt" makefile exists it is then invoked.

Individual application components can be rebuilt by qualifying the gmake command:
%make doGets

This brings all sccs files in this directory and below up-to-date.
%make bldDb

This recreates each database as described in section "IOC Databases" on page 10.
%make bui ld

This performs a gmake build in the src directory (Makefile method).
%make depends

This performs a gmake depends in the src directory (Makefile method).
%make bldMakefiles

This performs a Buildit and make in each defined <archV> and <archU> directory
(Imakefile method).

%make bldhrt

If a file named makef ile .pvt exists then a gmake is performed using this file.

All of the above can be performed by issuing the command
%make world

14
~

EPICS Application Source/Release Control Document Revision: Draft

6. Source/Release Tools

6. SourceLRelease Tools

Application
System Area

Tools invoked in
the <top>
directory

Tools invoked in
the <top>/
<aPP>APP/
directory

Tools invoked
anywhere

Application
Shadow Area

This section describes tools that should be issued only in an application system area, NOT in a
shadow area.

getrel: This command is executed in <top> to get a new release of EPICS. It is always issued
in <top>. When issued it must be executed with a full path name to the release of EPICS
desired.

getapp: This command is executed in <top> to get a new release of appSR. It is always
issued in <top>. When issued it must be executed with a full path name to the release of
appSR desired.

apCreateTop: This command must always be issued in directory <top>. The first time this
command is issued, it creates all directories and files needed for an application system area. It
must also issued whenever a new release of epics is obtained via the getrel command. In this
case it makes sure that application system area is correct for the new release.

apCreateApp: This command creates the directories needed for each application that resides
under <top>. It is executed in <top> whenever new applications are added to file <top>/
appLi s t .
apCreateIocName: This command creates the directories needed for each IOC that resides
under <top>/ioc. It is executed in <top> whenever new IOCs are added to file <top>/
ioclist.

apFixlinks: This command will regenerate generic links.

apFiuDctRpt This command will convert DCT short form reports to dbta report format.
Executing apFixDctRpt with parameter dct will force use of dct instead of atdb to read the
short form report.

apCreateDbDir:
application. It is executed in <top>/<app>App and is an interactive tool.

This command creates the database directories used by a particular

doGets: This command uses make to ensure that all SCCS controlled files in this directory and
below are up-to-date.

This section describes tools that only apply to a shadow area.

apCreateShadow: The first time this command is executed in a directory it creates a complete
shadow area. It is also issued to fill in missing links whenever the application system area has
been rebuilt.

apStatusSync: This command is issued whenever the shadow area must be resynced with the
system area because the system area was rebuilt. It issues error messages to standard out and
also writes Unix commands into a file apRemoveScript. If it reports errors the user should fix
the errors and reissue the apstatussync command. When the user is satisfied then the

EPICS Release: R3.12 EPICS Application Source/Release Control 15

6. Source/Release Tools

Development
Tools

gmake

apRemoveScript must be edited and executed. apRemoveScript contains a number of r m
commands but they are commented out @receded by #). The user should decide which files
should really be removed.

dbsccs: A tool for managing databases in a shadow directory. See section “dbsccs For DCT
Databases” on page 11 for details

This section describes tools that can be issued in either a system area or in a shadow area. They
are issued in shadow areas during development and in the system area during integration.

apSccsInfo: This tool will search all directories below the current directory and list all sccs
controlled files that are currently out-for-edit.

makesdr: The purpose of the makesdr tool is to allow application developers to build a
private default. dctsdr file. makesdr allows application developers to modify, by
appending to or replacing, any EPICS ASCII definition file used in creating the
default-dctsdr file. The default .dctsdr file is required by DCT/GDCT. The makesdr
tool also allows new ASCII definition files to be introduced into the application environment.

makesdr first searches the EPICS ascii directory followed by the cat-ascii directory and
then the replace-ascii directory in order to determine the composition of each ASCII
definition file. The composed ASCII files are then processed by cpp and the various SDR
“bld” tools in order to produce SDR structures for the default .dctsdr file, record header
files, and the default. sdrsum file. The end result of a successful makesdr run is that EPICS
record header files etc. are either replicated or updated into a new sdrH/rec
directory. makesdr corrects any EPICS files according to the contents of the local ASCII
directories. If the default .dctsdr or default. sdrsum filesninks changed they are
replaced with the new versions. ASCII files placed in the replace-ascii directory
supercede all other ASCII input files with the same name. The application developer is
expected to include the sdrH/rec directory when doing a vxworks build.

Directory sdrH/rec/ is created from scratch the first time makesdr is run. It contains either
copies of EPICS header files or the versions created by makesdr.

Note: makesdr only rebuilds if something is out-of-date.

Buildit This command creates a Makef ile from an Imakef ile. Whenever an Imakef ile
is modified Buildit must be executed. Note that the Imakefiles are stored in <src>, but
Buildit is executed in <archV> for vxworks and in <archU> for unix.

This command rebuilds various application components. What it does depends on where it is
executed.

<top>
gmake doFix: Runs apFixLinks
gmake doFixRptDct Runs apFixDctRpt dct
gmake doFixRpt: Runs apFixDctRpt
gmake doGets: Runs doGets
gmake domakesdr: Runs makesdr
gmake bldMakef3es: Rebuilds Makefiles from the Imakefiles, runs

clean” and then “gmake” for each Imake architecture in each CL gmake
application
gmake doapplications: Runs “gmake” on the makef ile in each application

16 EPICS Application Source/Release Control Document Revision: Draft

6. Source/Release Tools

Runs “gmake world” on the makefile in each gmake doappworld:
application
gmake world: Does all of the above
gmake: Defaults to “make doapplications” above.
gmake dotar: Creates a compressed tar file in the directory above <top> and
names the file “c top>. Tar. z”. Ex: if this was the <top> directory for par the
file would be named par. Tar. Z.
gmake tarinfo: Displays directions for unpacking the compressed tar file.
gmake clean: Runs “make clean” in the src directory of each application to
remove all temporary files from the o.<arch> directories.
gmake build: Runs “make build” in the src directory of each application to
compile and link objects. The objects reside in the O.<arch> subdirectories.
gmake depends: Runs “gmake depends” in the src directory of each
application to create, in each O.<arch> subdirectory, a .DEPENDS file of header
file dependencies.

9 <shadow>: The same as except that apFixLinks is a NOP.
<app>App: See section “Building A Single Application” on page 14 for what make in

cdb>Db: The actions described in section “Update Databases From .rpt Files That

<archU>: The Unix components are rebuilt (Imakefile method).
<archV>: The IOC components are rebuilt (Imakefile method.
csrcx The Unix and IOC components are rebuilt (Makefile method).
<src>/O.<arch>: The <arch> components are rebuilt (Makefile method).

an application directory does.

Are Under SCCS Control’’ on page 11 are performed.

EPICS Release: R3.12 EPICS Application Source/Release Control 17

7. APPENDIX Application System Area

7. APPENDIX Application System Area

An application system node contains the following files and directories.

<top>
.current-rei-hist

epics IQ
include/@
tar etmvl67/@

vxWorksmvl67@
vxWorksmvl67.symQ

default.dctsdr@
default.sdrSum @

Links to EPICS

1 appSW@) Links to appSR components makefile@

components

iocList
iocl

(common-ioc-files)
<iocName>/

st.cmd<archV>
resource.def L- vxWorkscarchV> Q

A directoty for each IOC name in the iocList file t

appList I cappName>App/ A directoty for each application in the appList file

18 EPICS Application Source/Release Control Document Revision: Draft

7. APPENDIX Application System Area

Each capp>App directory contains the following files and directories.

- adV

- alhl

- ad

L (ad1 files)

L (alh config files)

archan/

arReq1

arSet/

L (a r chan files)

I- (ar req files)

L (a r set files)
I

- b u d
L(burt request files)

- k t d

<, iName>Appl
- makefile@

- srcl
(source files) b'makefileVx ImakefileUnix > Used for lmakefile method

Makefile

Makefile.Vx
Used for Makefile method

1 O.<archV>I A directory for each Vx arch (Makefile method)
L (object files)

(object files) t (executables)

O.<archU>l A directory for each Unix arch (Makefile method) L

t
- archlist
- <archV>/ A directory for each Vx arch in archList (Imakefile method)

lrnakefilea
Makefile

A directory for each Unix arch in archList (Imakefile method) - <archU>/
ImakefileQ t Makefile

- <db>Db/ A directory for each dbName
makefile@
default.dctsdr@
default.sdrSum@
(<dbName>.rpt files)
(<dbName>.databsase files)
(<dbname>.db files)
(<dbName> files)

(gdct or dct type makefile)

(present in dct type directory only)
(present in dct type directory only)
(present in gdct type directory only)
(present in gdct type directory only)

EPICS Release: R3.12 EPICS Application SourcelRelease Control 19

8. APPENDIX Application Production Area Evolution

8. APPENDIX Application Production Area Evolution

One problem that still has to be addressed is generation of a production area for use by
operations. This appendix presents a possible set of procedures that could be used. Please refer
to the next page for a flow diagram architecture.

1. The application manager creates and maintains the application system area (A) . This
would include changing to a new EPICS release.

2. Application developers create and maintain shadow areas accessing the application
system area (A). Deltas are applied to the application system area to make changes
permanent.

3. The production manager requests a new version of the application system area.
4. The application system manager fulfills this request by replicating the application

system area (A:) into the application integration area (B:) and running a baseline set of
regression tests.

5. The Unix system manager changes ownership of the application integration area (B:) to
the application production manager.

6. The application production manager retires the @:) previous production area.
7. The application production manager moves the current application production area (C:)

8. The application production manager moves the application integration area (€3:)

9. The application production manager deletes and recreates a production shadow area (E:)

to the previous production area @:).

to the application production area (C:)

to be used for quick fixes.

A: B: (I:

Production
Area

Application

6
D:

Previous
Production

Area

\ E:
I
Production

Shadow
Area

20
~~

EPICS Application Source/Release Control Document Revision: Draft

