
User’s Guide for SDDS Toolkit ‘Version 1.4

R E C El VEsD Michael Borland
Advanced Photon Source

July 6, 1995 0 e:$[T I
The Self Describing Data Sets (SDDS) file protocol is the basis for a powerful and expand-

ing toolkit of over 40 generic programs. These programs are used for simulation postprocessing,
graphics, data preparation, program interfacing, and experimental data analysis.

This document describes Version 1.4 of the SDDS commandline toolkit. Those wishing to write
programs using SDDS should consult the Application Programmer‘s Guide for SDDS Version 1.411.
The first section of the present document is shared with this reference.

This document does not describe SDDS-compliant EPICS applications, of which there are
presently 25. They will be covered in a separate manual.

1 Why Use Self-Describing Files?
Before answering the question posed by the title .of this section, it is necessary to define what a
self-describing file is. As used here, data in self-describing files has the following attributes:

0 The data is accessed by name and by class. For example, one might ask for “the column
of data called X”, or “the array of data called E”’. Self-describing data is not accessed by
position in a file; e.g., one would not ask for “the third column of data”.

0 Various attributes of the data that may be necessary to using it are available. For example,
one can ask “what are the units of column X?”, “what is the data-type of array Y?”, or ‘‘how
many dimensions does array Y have?” .

The primary advantage of accessing data and its attributes by name rather than the traditional
position method is that one can then construct generic tools to manipulate data. Self-describing
data contains the information that tools need to manipulate various types of data correctly. For
example, one can plot data with a generic tool that accepts the names of the quantities to plot;
such a tool will be able to plot data of different types (e.g., integer or floating-point), and display
relevant information (e.g., units) on the plot.

Another advantage of self-describing data is that it makes the interface between programs more
robust and flexible. Since programs only look for data by name, insertion of additional data into a
file is irrelevant. Multiple programs may interface to a single program even in the face of differences
in what data each places in its output files. E.g., program A may create data in single-precision,
with ,columns called X, Y , and 2. Program B may create data in double-precision, with columns
called X, Y , and W. If all programs employ self-describing files, then a properly-written program
C could access X and Y from the output of either program A or B. It could also determine that
the output of program B didn’t contain data called 2, and warn the user of this.

r

1

The SDDS file protocol incorporates these aspects of self-describing data. It has been found
extremely valuable for storing data from simulation, experiment: and accelerator operation at
the Advanced Photon Source (APS). SDDS is made more valuable by the existence of a growing
“toolkit” of over 40 generic commandline programs that perform many varied operations using
SDDS files. Indeed, while there are more general self-describing protocols than SDDS, to the
author’s knowledge only SDDS has a powerful, generic program toolkit built around it. In the
author’s opinion, this is possible because SDDS protocol is general but not too general. The SDDS
Toolkit is used to postprocess simulation output, to analyze experimental and archival data, to
prepare data for input to other programs, to provide a bridge between separate simulation codes,
to display data graphically, to collate and section accelerator save/restore files, and much more.

While it is very flexible, SDDS is also fairly simple. Because SDDS features interchangeable
binary and ASCII formats, it is an easy matter to create an SDDS data set “by hand”, when neces-
sary. It is also easy to modify existing programs to print in SDDS protocol, and to create headers
to convert existing text data-to SDDS. At the same time, data archivers, large-scale simulations,
and similar applications can store data in binary for quick access and disk economy. These and
other features contribute to the widespread use of SDDS at APS.

2 Definition of SDDS Protocol

2.1 Introduction
An SDDS file is referred to as a “data set”. Each data set consists of an -4SCII header describing
the data that is stored in the file, followed by zero or more “data pages“ or “data tables” (the
former term is preferred, though the latter is used in many places). The data may be in ASCII or
unformatted (i.e., “binary”). Each data page is an instance of the structure defined by the header.
That is, while the specific data may vary from page to page, the structure of the data may not.

Three types of entities may be present in each page: parameters, arrays, and columns. Each of
these may contain data of a single data type, with the choices being long and short integer, single
and double precision floating point, single character, and character string. The names, units, data
types, and so forth of these entities are defined in the header.

Parameters are scalar entities. That is, each parameter defined in the header has a single value
for each page. Each such value may be a single number or a single character string, for example.

Arrays are multidimensional entities with potentially varying numbers of elements. While there
is no restriction on the number of dimensions an array may contain, this quantity is fixed th?oughout
the file for each array. However, the size of the array may vary from page to page. Thus, a given
two-dimensional array might be 2x2 in one page, 3x5 in the next, etc.

Columns are vector entities. All columns in a data set are organized into a single table, called
the “tabular data section”. Thus, all columns must contain the same number of entries, that
number being the number of rows in the table. There is no restriction on how many rows the
tabular data may contain, nor on the mixing of data types in the tabular data.

It is possible to design more sophisticated data protocols than SDDS, and this has in fact
been done. However, the more flexible a protocol is, the more difficult it becomes to write generic
programs that operate on data. Experience with SDDS has shown that there is very little data that
cannot be convenientlystored in one or more SDDS files. In fact, most applications need only the
parameter and tabular data facilities. Frequently, complex data is separated into several parallel
files; the SDDS toolkit provides support for multifile operations that make this convenient.

The following is an example of a very simple SDDS file. Users who would prefer not to read
the detailed description of the protocol in the next section may profit from using this example as

I

2

a guide.
SDDSl
! This i s a comment l i n e .
! t h e f i l e as SDDS.
! Define parameters:
¶meter name=Description, type=s t r ing &end
¶meter name=xTune, type=double &end
¶meter name=yTune, type=double &end
! Define columns:
&column name=s, type=double, units-, description="longitudinal distance" &end
&column name=betax, type=double, units=m, description="horizontal be t a function" &end
&column name=betay, type=double, units-, descr ip t ion="ver t ica l beta function" &end
&column name=ElementName, type=str ing &end
! Declare ASCII data and end t h e header:
&data mode=ascii &end
! F i r s t come the parameter values f o r t h i s page, i n t h e order defined:
Twiss parameters f o r t h e APS
35.215
14.296
! Second comes the t a b u l a r data sec t ion f o r t h i s page, which has
! 50 rows i n t h i s example:
50

The previous l i n e is required and i d e n t i f i e s

0.000000 14.461726 9.476181 ,BEG-
3.030000 15.096567 10.445020 LO 1
3.360000 15.242380 10.667547 L02.
3.860000 17.308605 9.854735 91
3.975000 18.254680 9.419835 Lll
4.190000 20.094943 8.640450 L12
4.520000 23.100813 7.529584 L13
5.320000 21.435972 7.949178 Q2
5.410000 20.278542 8.350441 L2 1
5.620000 17.705808 9.332877 L22

. 5.920000 14.341175 10.848446 L30
6.420000 10.719036 12.405601 Q3
7.120000 7.920453 12.969811 L41

\

27.600000 14.461726 9.476181 . LO 1
! The f i l e may end a t t h i s poin t , o r a new page may fol low.

At this point, those who are new to SDDS may wish-to skip to the Manual Pages Overview
(section 3) in order to get a feel for the capabilities of the Toolkit. The details of SDDS protocol,
the subject of the next section, are less important than what can be done with data once it is in
SDDS protocol.

2.2

The first line of a data set must be of the form "SDDSn", where n is the integer SDDS version
number. This document describes version 1.

Structure of the SDDS Header

3

The SDDS header consists of a series of namelist-like constructs, called namelist commands.
These constructs differ from FORTRAN namelists in that the SDDS routines scan each construct,
determine which it is, and use the data appropriately. There are six namelist commands recognized
under Version 1. Each is listed below along with the data type and default values.

For each command, an example of usage is given. Several styles of entering the namelist
commands are exhibited. I suggest that the user choose a style that makes it easy to pick out
the beginning of each command. Note that while each namelist command may occupy one or more
lines, no two commands may occupy portions of the same line.

Any field value containing an ampersand must be enclosed in double quotes, as must string
values containing whit espace characters .

Another character with special meaning is the exclamation point, which introduces a comment.
An exclamation point anywhere in a line indicates that the remainder of the line is a comment and
should be ignored. A literal exclamation point is obtained with the sequence \!, or by enclosing
the exclamation point in double quotes.

The commands are briefly described in the following list, and described in detail in the following
subsections:

0 description - Specifies a data set description, consisting of informal and formal text de-
scriptions of the data set.

0 column - Defines an additional column for the tabular-data section of the data pages.

0 parameter - Defines an additional parameter data element for the data pages.

0 array - Defines an additional array data element for the data pages.

0 include - Directs that header lines be read from a named file. Rarely used.

0 data - Defines the data mode (ASCII or binary) dong with layout parameters, and is always
the last command in the header.

The column, parameter, and array commands have aname field that is used to identify the data
being defined. Each type of data has a separate “name-space”, so that one may, for example, use the
same name for a column and a parameter in the same file. This is discouraged, however, because
it may produce unexpected results with some programs. Names may contain any alphanumeric
character, as well as any of the following: 0 : - $ & / . The first letter of a name
may not be a digit.

+ - X .

2.2.1 Data Set Description

&descript ion
STRING t e x t = NULL
STRING contents = NULL

bend

This optional command describes the data set in terms of two strings. The first, t e x t , is an
informal description that is intended principly for human consumption. The second, contents, is
intended to formally specify the type of data stored in a data set. Most frequently: the contents
field is used to record the name of the program that created or most recently modified the file.

Example:

4

kdescript ion
t e x t = "Twiss parameters f o r APS la t t i ce" ,
contents = "Twiss parameters' '

&end

Note: In many cases it is best to use a string parameter for descriptive text instead of the
descr ipt ion command. The reason is that the Toolkit programs will allow manipulation of a
string parameter.

2.2.2 Tabular-Data Column Definition

&column
STRING name = NULL
STRING symbol = NULL
STRING u n i t s = NULL
STRING descr ipt ion = NULL
STRING format-string = NULL
STRING type = NULL
long f i e ld - l eng th = 0

&end

This optional command defines a column that will appear in the tabular data section of each
data page. The name field must be supplied, as must the type field. The type must be one of
short , long,, f l o a t , double, character, or. s t r i n g , indicating the corresponding C data types.
The s t r i n g type refers to a NULL-terminated character string.

The optional symbol field allows specification of a symbol t o represent the column; it may
contain escape sequences, for example, to produce Greek or mathematical characters. The optional
u n i t s field allows specification of the units of the column. The optional desc r ip t ion field provides
for an informal description of the column, that may be used as a plot label, for example. The
optional f o r m a t s t r i n g field allows specification of the p r i n t f format string to be used to print
the data (e.g., for ASCII in SDDS or other formats).

For ASCII data, the optional f i e l d l e n g t h field specifies the number of characters occupied by
the data for the column. If zero, the data is assumed to be bounded by whitespace characters. If
negative, the absolute value is taken as the field length, but leading and trailing whitespace charac-
ters will be deleted from s t r i n g data. This feature permits reading fixed-field-length FORTRAN
output without modification of the data to include separators.

The order in which successive column commands appear is the order in which the columns are
assumed to come in each row of the tabular data.

Example (using sddsplot conventions for Greek and subscript operations[?]):

&column name=element , type=str ing, description="element name" &end
&column

name=z, symbol=z, units-, type=double,
desc r ip t ion=I1Longitudinal P o s i t ion" &end

name=alphax, symbol="garbxn", units-,
type=double , description="Horizontal Alpha Function" &end

name=betax, symbol="gbrbxntt, u n i t s a ,

&column

&column

5

type=double description="Horizontal Beta Function" &end

name=etax symbol="gcrbxn" units-,
type=double , description="Horizontal Dispersion" &end

&column

2.2.3 Parameter Definition

¶meter
STRING name = NULL
STRING symbol = NULL
STRING units = NULL
STRING desc r ip t ion = NULL
STRING format-s t r ing = NULL
STRING type = NULL
STRING fixed-value = NULL

&end

This optional command defines a parameter that will appear along with the tabular data section
of each data page. The name field must be supplied, as must the type field. The type must be one
of sho r t , long, f l o a t , double, character , or s t r i n g , indicating the corresponding C data types.
The s t r i n g type refers to a NULLterminated character string.

The optional symbol field allows specification of a symbol to represent the parameter; it may
contain escape sequences, for example, to produce Greek or mathematical characters. The optional
u n i t s field allows specification of the units of the parameter. The optional descr ip t ion field
provides for an informal description of the parameter. The optional format field allows specification
of the p r i n t f format string to be used to print the data (e.g., for ASCII in SDDS or other formats).

The optional f ixed-value field allows specification of a constant value for a given parameter.
This value will not change from data page to data page, and is not specified along with non-fixed
parameters or tabular data. This feature is for convenience only; the parameter thus defined is
treated like any other.

*The order in which successive parameter commands appear is the order in which the parameters
are assumed to come in the data. For ASCII data, each parameter that does not have a f ixed-value
will occupy a separate line in the input file ahead of the tabular data.

Example:

¶meter name=NUx symbol='lgnrbxnl',

¶meter name=NUy , symbol="gnrbyn'I

¶meter name=L symbol=L description="Ring Circumference",

descr ipt ion="Horizontal Betatron Tune", type=double &end

descr ipt ion="Vert ical Betatron Tune", type=double &end

type=double, fixed-value=30.6667 &end

-7

6

,

2.2.4 Array Data Definition

&array
STRING name = NULL
STRING symbol = NULL
STRING u n i t s = NULL
STRING descr ipt ion = NULL
STRING format-string = NULL
STRING type = NULL
STRING group-name = NULL
long f ie ld- length = 0
long dimensions = 1

Bend

This optional command defines an array that will appear along with the tabular data section
of each data page. The name field must be supplied, as must the type field. The type must be one
of sho r t , long, f l o a t , double, character, or s t r i n g , indicating the corresponding C data types.
The s t r ing type refers to a NULL-terminated character string.

The optional symbol field allows specification of a symbol to represent the array; it may contain
escape sequences, for example, to produce Greek or mathematical characters. The optional u n i t s
field allows specification of the units of the array. The optional desc r ip t ion field provides for
an informal description of the array. The optional f o r m a t s t r i n g field allows specification of the
p r i n t f format string to be used to print the data (e.g., for ASCII in SDDS or other formats). The
optional groupname field allows specification of a string giving the name of the array group to
which the array belongs; such strings may be defined by the user to indicate that different arrays
are related (e.g., have the same dimensions, or parallel elements). The optional dimensions field
gives the number of dimensions in the array.

The order in which successive array commands appear is the order in which the arrays are
assumed to come in the data. For ASCII data, each array will occupy at least one line in the input
file ahead of the tabular data; data for different arrays may not occupy portions of the same.line.
This is discussed in more detail below.

Example:

&array

&array

&array

&array

2.2.5

name=Rx, units=R-standard-units, type=double, dimensions=2,
description="Horizontal t r anspor t matrix i n standard u n i t s " ,
group,name="2x2 t ransport matrices" tend

description="Standarrd u n i t s of 2x2 t r anspor t matrices",
group-name="2~2 t ransport matrices" &end

name=P, units=P-standard-units, type=double, dimensions=l,
descr ipt ion="Part ic le coordinate vector i n standard un i t s " &end

name=P-standard-units, type=string, dimensions=l,
descr ipt ion="Standad u n i t s of p a r t i c l e coordinate vectors" bend

name=R-standard-units, type=str ing, dimensions=2,

Header File Include Specification

&include

7

STRING filename = NULL
&end

This optional command directs that SDDS header lines be read from the file named by the

Example of a minimal header:
filename field. These commands may be nested.

SDDSl
&include f ilename=”SDDS. twiss-parameter-header” &end
! da ta follows:

2.2.6 Data Mode

&data
STRING mode =

and Arrangement Defintion

“binary
long lines-per-row = 1
long no-row-counts = 0
long addi t ional-header- l ines = 0

bend

This command is optional unless parameter commands without f i x e d v a l u e fields, a r ray
commands, or column commands have been given.

The mode field is required, and may have one of the values “ascii” or “binary”. If binary mode
is specified, the other entries of the command are irrelevant and are ignored. In ASCII mode, these
entries are optional.

In ASCII mode, each row of the tabular data occupies l ines-perrow rows in the file. If
l ines-per iow is zero, however; the data is assumed to be in “stream” format, which means that
line breaks are irrelevant. Each line is processed until it is consumed, at which point the next line
is read and processed.

Normally, each data page includes an integer specifying the number of rows in the tabular data
section,. This allows for preallocation of arrays for data storage, and obviates the need for an end-
of-page indicator. However, if norow-counts is set to a non-zero value, the number of lows will
be determined by looking for the occurence of an incomplete or empty line. A comment line does
not qualify as an empty line in this sense.

If a d d i t i o n a l h e a d e r l i n e s is set to a non-zero value, it gives the number of non-SDDS data
lines that follow the data command. Such lines are treated as comments.

2.3

Since the user may wish to create SDDS data sets without using the SDDS function library, a more
detailed description of the structure of ASCII data pages is provided. Comment lines (beginning
with an exclamation point) may be placed anywhere within a data page. Since they essentially do
not exkt as far as the SDDS routines are concern, I omit mention of them in what follows.

The first SDDS data page begins immediately following the data command and the optional ad-
ditional header lines, the number of which is specified by the addi t ional-header- l ines parameter
of the data command.

Structure of SDDS ASCII Data Pages

,

8

If parameters have been defined, then the next N, - Nf, lines each contains the value of a single
parameter, where N, is the total number of parameters and Nf, is the number of parameters for
which the f ixed-value field was specified. These will be assigned to the parameters in the order
that the parameter commands occur in the header. Multi-token string parameters need not be
enclosed in quotation marks.

If arrays have been defined, then the data for these arrays comes next. There inust be at
least one ASCII line for each array. This line must contain a list of whitespace-separated integer
values giving the size of the array in each dimension. The number of values must be that given
by the dimensions field of the array definition. If the number of elements in the array (given by
the product of these integers) is nonzero, then additional ASCII lines are read until the required
number of elements has been scanned. It is an error for a blank line or end-of-file to appear before
the required elements have been scanned.

If the
no-row-counts parameter of the data command is zero, the first line of this section is expected
to contain an integer giving the number of rows in the upcoming data page. If no-row-counts is
non-zero, no such line is expected. The remainder of the tabular data section has various forms
depending on the parameters of the data command, as discussed above. The default format is that
each line contains the whitespace-separated values for a single row of the tabular data.

For column and array data, stTing data containing whitespace characters must be enclosed in
double-quotes. For column, array, and parameter data, nonprintable character data should be
“escaped” using C-style octal sequences.

More than one data page may appear in the data set. Subsequent dat.a pages have the same
structure as just described. If no-row-counts=l is given in the data commandj then a blank or
incomplete line is taken to end each data set.

If tabular-data columns have been defined, the data for these elements follows.

References
[l] M. Borland, “Application Programmer’s Guide for SDDS Version 1.4”, APS LS Note.

[2] M. Borland, “User’s Manual for elegant”, APS Light Source Note.

[3] M. Borland, “A Self-Describing File Protocol for Simulation Integration and Shared Postproces-
sors”, to appear in Proceedings of the 1995 Particle Accelerator Conference, May 1995, Dallas.

[4] M. Borland, “A High-Brightness Thermionic Microwave Gun”, Stanford Ph:D. Thesis, 1991,
Appendix A.

[5] L. Emery, “Commissioning Software Tools at the Advanced Photon Source”, to appear in
Proceedings of the 1995 Particle Accelerator Conference, May 1995, Dallas.

[6] L. Emery, “Beam Simulation and Radiation Dose Calculation at the Advanced Photon Source
with shower, an EGS4 Interface”, to appear in Proceedings of the 1995 Particle Accelerator
Conference, May 1995, Dallas.

[7] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functiorzs, Dover Publica-
tions, New York, 1965.

3 Manual Pages Overview
The intention is of this section is to provide a means by which the reader can select programs that
might suit a given need. For each program, a brief (and usually incomplete) description is given,
along with example applications. The example applications provided for each tool are drawn froin
experience at APS; it is hoped that most will make sense to most readers.

This section is followed by manual pages that give detailed descriptions of each program. Many
of the programs have a large number of switches, most of which are optional. In order to help
the new user, actual commandline examples are provided for simple use of each program. After
understanding these, the user is in a good position to explore the additional capabilities provided
by the options.

Note that many of the Toolkit programs process tabular data only (Le., columns). To use these
programs with parameter data, one can use sddscol lapse to convert parameter data into tabular
data. Using pipes will.make this more convenient.

Support for SDDS array elements is presently rather sparse in the Toolkit. This reflects the
fact that almost all data can be conveniently stored using parameter and column elements. Hence,
work has concentrated on providing tdols that manipulate such data. Future versions of the Toolkit
will provide more array support.

Most of the Toolkit programs process data pages sequentially. That is, in many cases the
requested processing is performed on each successive page of the input file and delivered to successive
pages of the output file.

.

3.1

3.1.1 Data Analysis Took

SDDS Toolkit Programs by Category

0 sddschanges (4.5) - Analyzes changes in column’data from page to page in a file, relative
to a reference file or the first page. Example application: finding changes in a waveform that
is acquired repeatedly, where successive waveforms are on successive pages.

0 sddscorre late (4.12) - Computes correlation coefficients and correlation significance be-
tween column data. Example application: finding correlations among time series data col-
lected from process variables, and evaluating their signficance to find possible cause-and-effect
relationships.

0 sddsderiv (4.13) - Does numerical differentiation of multiple data columns versus a single
column, with optional error propogation.

0 sddsdigf ilter (4.14) - Performs time-domain digital filtering of column data. Example
applications: low pass, high pass, band pass, or notch filtering of data to eliminate unwanted
frequencies.

0 sddsenvelope (4.15) - Analyzes column data across pages to find minima, maxima, averages,
standard-deviations, etc., on a row-by-row basis. Example application: finding the envelope
and average of a set of waveforms.

0 s d d s f f t (4.17) - Does Fast Fourier Transforms of column data. Example application: find-
ing signficant frequency components in time-varying data, or finding the integer tune of an
accelerator from a difference orbit.

i

10

sddshis t (4.19) - Does histograms of column data. Example application: finding the distri-
bution of a readback that is sampled many times, or of particle coordinates from an accelerator
tracking simulation.

sddshist2d (??) - Does two-dimensional histograms of column data. Example applications:
finding the two-dimensional distribution of a pair of readbacks that are sampled many times.
or of two particle coordinates (e.g., x and y position) from an accelerator tracking simulation.

sddsinteg (4.20) - Does numerical integration of multiple data columns versus a single
column, with optional error propogation. Example application: finding the field integral an
accelerator magnet from a longitudinal field scan.

sdds in t e rp (4.21) - Does interpolation of multiple data columns as a function of a single
column. Example application: finding the required current to obtain a desired excitation in
a magnet, or interpolating a curve at positions given in a second file.

s d d s o u t l i e r (4.22) - Eliminates statistical outliers from data. Example application:
eliminating bad or nonrepresentative data points prior to searching for correlations with
sddscorrelate , or computing statistics with sddsprocess.

sddspeakfind (4.23) - Finds values of columns at locations of peaks in a single column.
Example application: finding the position and height of peaks in a power spectrum obtained
from a FFT.

sddsprocess (4.27) - Probably the most-used toolkit program, excepting sddsplot. Allows
creating new parameters and columns with user-specified equations; filtering and matching
operations; printing, editing, scanning, and subprocess operations; statistical and waveform
analysis of column data to produce new parameters; and much more.

sddssmooth (4.33) - Smooths columns of data using multipass nearest-neighbor averaging.
Example application: reducing noise in a frequency spectrum prior to finding peaks.

sddszerofind (4.39) - Finds values of columns at locations of interpolated zeroes in a
single column. Example application: finding zeros of a tabulated function that isn’t known
analytically.

3.1.2 Data Fitting Tools

e sddsexpf it (4.16) - Does an exponential fit to column data. Example application: finding
the exponential lifetime of a beam in a storage ring, or the half-life a radioactive sample.

e s d d s g f i t (4.18) - Does gaussian fits to column data. Example application: finding the
width of a resonance, or the rms size of a beam profile.

e sddspf it (4.24) - Does polynomial fits to column data, including error analysis. Will do
fits to specified orders, fits of specified symmetry, and adaptive fitting.

3.1.3 Data Manipulation Tools

e sddsbreak (4.4) - Breaks data pages into new, separate pages based on changes in column
data and other criterion. Example applications: reorganizing a file to have a limited number
of rows in each page, or to have a new page started when a gap is seen in the data.

11

0 sddscollapse (4.7) - Collapses a data set into a single data page by deleting the tabular
data and turning the parameters into columns. Example application: abstraction of sumiiiary
properties of data set following analysis with sddsprocess.

0 sddscombine (4.8) - Combines any number of data sets into a single data set by adding data
from each successive data set to a newly-created data set. Example application: bringing
together comparable but distinct data for analysis with sddsprocess. Using sddsprocess,
sddscombine, and sddscollapse in sequence repeatedly is a powerful way to analyze and
collate large amounts of data.

0 sddsconvert (4.11) - Mows conversion of a data set between binary and ASCII, with
optional deletion and renaming of columns, arrays, and parameters . Example application:
conversion to binary of an ASCII data set created by a simple program, or by a text editor.

0 sddsselect (4.31) - Copies rows from one file based on the presence or absence of matching
data in another file. Example application: finding all of the rows from one file that do not
appear in a second file.

0 sddssort (4.34) - Sorts the tabular data section of a data set by the values in named
columns. Optionally eliminates duplicate rows.

0 sddssp l i t (4.35) - Places each page of a file in a separate, new file. Example application:
getting selected pages of a file into separate, single-page files for use with a program that only
recognizes the first page.

0 sddsxref (4.38) - Creates a new data set by adding selected rows from one data set to
another data set. Example application: cross-referencing the turn-by-turn coordinates of
particles in a tracking simulation with the initial coordinates using a particle ID number.

3.1.4 Graphics Tools

0 sddscongen (4.9) - Creates an SDDS data set by evaluating an rpn expression over a defined
2 dimensional grid. Example application: generating values of a function of two variables on
a grid for plotting with sddscontour.

0 sddscontour (4.10) - Makes contour and color-map plots from an SDDS data set column, or
from a rpn expression of the values in the columns of a data set. Supports FFT inte;polation
and filtering. Example application: displaying data from a two-dimensional magnetic field
scan.

0 sddsplot (4.25) - A highly flexible, device-independent graphics program, equally capable
of “quick-and-dirty” or publication quality graphics. Example application: making an X-
windows movie of several columns of data that change from page to page in a file.

3.1.5 File Protocol Conversion Tools

0 awe2sdds (5.1) - Converts a file in awe self-describing format[4] to SDDS.

0 col2sdds (5.2) - Converts a file in column self-describing format to SDDS.

0 c i t i 2 sdds (??) - Converts Hewlett-Packard CITI files to SDDS.

0 hpif 2sdds (??) - Converts Hewlett-Packard HP54542 scope internal format to SDDS.

12

0 hpwf2sdds (??) - Converts Hewlett-Packard HP54542 scope text format to SDDS.

0 lba2sdds (??) - Converts Spiricon Laser Beam Analyzer files to SDDS.

0 mpl2sdds (5.4) - Adds mpl data files[4] to an SDDS data set.

0 sdds2math (4.1) ,- Converts SDDS data to a format accepted by Mathematica.

0 sdds2mpl (5.3) - Extracts data columns or parameters from an SDDS data set and creates
mpl data files[4].

0 sdds2spreadsheet (4.2) - Converts SDDS data to a format accepted by the Excel and
Wingz spreadsheets.

3.1.6 Text-based Data-review Tools

0 sdds2stream (4.3) - Takes column or parameter data from a list of SDDS data sets and
delivers it to the standard output as a stream of values. Example application: getting data
into a shell variable for use in a script.

0 sddsprintout (4.26) - Makes customized printouts from column, parameter, and array data
in an SDDS data set. Example application: making a nicely-formatted printout of data that
needs to be reviewed manually.

0 sddsquery (4.29) - Prints a summary of the SDDS header for a data set. Also prints bare
lists of names of defined entities, suitable to use with shell scripts that need to detect the
existence of entities in the data set.

3.2 Toolkit Program Usage Conventions

In order to make the multitude of Toolkit programs easier to use, the developers have attempted
to use consistent commandline’argument styles. The Toolkit programs all require at least one
commandline argument; Therefore, if a program is executed without commandline arguments, it is
assumed that the user is asking for help. In this case, a help message is printed that shows syntax
and (usually) describes the meaning of the switches. In general, program usage is of the following
form:

Probably the simplest example would be

which would invoke sddsquery to describe the contents of an SDDS file. -4 slightly more compli-
cated example would be

sddsquery fileNume -columnList,
which invokes sddsquery to list just names of columns in a file.

Programs assume that any commandline argument beginning with a minus sign (’-,) is an option;
all others are assumed to be filenames. Note that case is ignored in commandline switches. The
specific meaning of a filename is dictated by its order on the commandline. For example, if two
filenames are given, the first would commonly be an input file while the second would commonly
be an output file.

In some cases, a command with a single filename implies replacement of the existing file. For
example,

sddsconvert fileName -binary

programName fiZeNumes switches.

sddsquery fileName,

13

would replace the named file with a binary version of the same data. This command is completely
equivalent to

That is, unlike many UNIX commands, the position of filenames relative to options is irrelevant.

done by

Note that while the option may appear anywhere on the commandline, the order of the filenames
is crucial to telling the program what to do.

In following manual pages and in the program-generated help text, program usage is described
using the following conventions:

sddsconvert -binary fileName

One might also wish to make a new file, rather than replacing the existing file. This could be

sddsconvert -binary jleName jleName2

The first token on the commandline is the name of the program.

Items in square-brackets (0) are optional. Items not in square brackets are required.

Items in curly-brackets (0) represent a list of choices. The choices are separated by a I
character, as in
{ choice1 I choice2 I choice3 }

Items in italics are descriptions of arguments or data that must be supplied by the user.
These items are not typed literally as shown.

Items in normal print are typed as shown, with optional abbreviation. These are usually
switch keywords or qualifiers. Any unique abbreviation is acceptable.

In addition to using files, most toolkit programs also take input from pipes, which obviates the
need for temporary files in many cases. For those programs that support pipes, one can employ
the -pipe option. This option provides a good example of what options look like. For example,
one could do the following to test binary-ascii conversion:

sddsconvert -binary -pipe=out fiZeName I sddsconvert -ascii -pipe=in fileNanel
The -pipe=out option to sddsconvert tells it to deliver its output to a pipe; it still expects a
filename for input. Similarly, the -pipe=in option to sddsquery tells it to accept input from a
pipe.

The -pipe switch may be given in one of five forms: -pipe, -pipe=input,,output,
-pipe=output , input, -pipe=input, -pipe=output . The first three forms are equivalent. In
a usage message, these forms would be summarized as -pipe C=inputl C, output]. One could also
use abbreviations like -pipe=& -pipe=i,o, etc. For convenience in the manual, the data stream
from or to a pipe will often be referred to by the name of the file for which it substitutes. Note
that you may not deliver more than one file on the same pipe.

3.3 Data for Examples
In order to make examples simpler to present, it helps to have hypothetical data files to refer to.
I will assume the existence of several data files that I hope will be familiar to many readers. An
ASCII version of each file is provided in the SDDS distribution package. This gives new users some
data to “play with” in getting familiar with SDDS. These files are also used in several demonstration
scripts provided in the package.

For each file, I’ve listed the names of the columns and parameters, and described each. I’ve given
the data types in detail, even though only the distinction between numerical and nonnumerical data . .

14

is relevant, just to emphasize that data types can be freely mixed. I’ve tried to include as little
data as is necessary to make useful demonstrations, without simplifying so inuch as to be trivial.

3.3.1 Twiss Parameters

The example of Twiss parameters for an accelerator is a familiar one. Throughout these pages, it is
assumed that two files, iPSO.twi and APS . t w i , exist containing the following data (a simplification
of the Twiss output from the accelerator simulation code elegant):

0 Parameters:

- nux, nuy - Double-precision values of the x and y tunes.
- alphac - Double-precision values of the momentum compaction factor.

0 Columns:

- s - A double precision column of element positions. For simplicity, it is assumed to
.

- ElementName - A string column of element names.
- ElementType - A string column of element type identifiers.
- betax, betay - Double-precision columns of the beta functions for the horizontal and

- psix, ps iy - Double-precision columns of the betatron phase advance.
- etax, e tay - Double-precision columns of the dispersion functions.

increase monotonically through the file.

vertical planes, respectively.

To make it more interesting, APSO. t w i is a single-page file. containing the APS design lattice, while
APS . t w i is a multi-page file with each page corresponding to a different configuration.

In passing, it is appropriate to mention the style of the names used. It has been found helpful.
to use capitalization at word boundaries to make long names more readable. (In some cases, like
betax, a certain case is used because it is significant.) When doing so will not create confusion,
we also tend to capitalize the first letter of a name, which helps the name to stand out on the
command line. Abiding by these conventions tends to result in readable names being created by
Toolkit programs that have automatic name generation. Underscores in names are avoided because
they increase the length of a name while adding less readability than capitalization. \

3.3.2 Data Logging Over Time

One of the most common applications of SDDS for APS commissioning and operation is log-
ging of measured data values at intervals. A set of generic EPICS monitoring programs
sddsmonitor, sddsvmonitor (vector monitoring), and sddsmoni to r (waveform monitoring) are
used for this. One example is the vacuum pressure in the APS ring, which is logged continuously by
sddsvmonitor; this data consists of readings from ion gauges around the ring. Another example is
logging of beam-position-monitor readouts in the Positron Accumulator Ring (PAR) and its input
and output beam transport lines using the program sddsmonitor.

For use in examples, I’ll assume the existence of two files called SR.vac and par-bpm. These
are simplified from actual files collected with the programs just mentioned.

SR.vac is a file containing an arbitrary series of data pages, each consisting of a snapshot of
the vacuum gauge readings around the ring. There are 40 such readings, one for each sector of the
accelerator. Typically, one set of readings is taken every 15 minutes.

15

0 Parameters:

- Timestamp - A string parameter containing the time at which the snapshot was taken.
- TimeOfDay - A double-precision parameter containing the time of day in hours since

midnight.

0 Columns:

- Index - A long-integer column containing the row index.
- SectorName - A string column containing the name of the sector each row corresponds

- Pressure - A double-precision column containing the pressure readout from the gauges
to.

at the time given by Timestamp.

par.bpm is a file containing a single page of data with any arbitrary number of rows. The PAR
has 16 beam-position-monitors (BPMs), each providing a horizontal (x) and vertical (y) readout.
In addition, the beam transport line downstream of PAR (known as the PTB h e) , contains five
BPMs for x and five for y. The data included in the distribution contains only the x values, since
these are more interesting:

0 Parameters:

- Timestamp - A string parameter giving the starting time of the data collection.

0 Columns:

- Time - A double-precision column giving the. elapsed number of seconds since monitor-

- TimeOfDay - A double-precision column giving the time of day in hours since midnight.
- PquadrantPnumberx .- 16 single-precision readouts of the horizontal beam orbit just

- PTl3:PHnumberx - four single-precision readouts of the horizontal beam trajectory as .

ing begain. The values are approximately equispaced.

prior to beam extraction. quadrant ranges from 1 to 4, as does number.

the beam passes through the PTB transfer line. number ranges from 2 to 5.

16

4 Manual Pages
Manual pages are written by the program author unless otherwise noted.

17

4.1 sdds2math
0 description: sdds2math converts an SDDS file to a file that can be read into Matheinatica.

The file contains a single Mathematica variable of the form:

sdds=(description,coldef,pardef,arraydef,associates,tables3
description=(text , contents3
coldef =(coldef -1, coldef -2, . . .)

coldef-n=(name,units,symbol,format,type,fieldlen~h,description)
pardef =(pardef -1, pardef -2, . . .I
pardef-n=~name,fixed~value,units,symbol,type,description3

arraydef =(arraydef -1, arraydef -2, . . .)
arraydef-n=(name,units,symbol,format,t~e,fieldlen~h,group,description)

associ,ates=(associate-1, associate-2, . . .3
associate-n=(sdds ,f ilename,path, contents ,descr ipt ion)

tables=(table-1, table-2, . . -3
table-n=(parameters ,data)

parameters=(parameter-1, parameter-2, . . . I
data=(row-1, row-2, . . -3

row-n=(val-l, val-2, ...)

A number of Mathematica programs to extract information from this variable are available
in the file SDDS.m. To include these routines in your Mathematica program, put this file in
your working directory and use the following line in your Mathematica program:

Needs ["SDDS ' "1 ;

The programs are:

- SDDSReadCf ilename-String]-returns an SDDS structure from a file.
- SDDSWrite [sdds- ,f ilename-Stringl -writes an SDDS structure to a fie.
- SDDSGetColumnDef i n i t i o n s [sdds-I-returns the list of column definitions.
- SDDSGetParameterDef i n i t i o n s [sdds-1 -returns the list of parameter definitions.
- SDDSGetArrayDef i n i t i o n s [sdds-1 -returns the list of array definitions.
- SDDSGetAssociates [sdds-1 -returns the list of associates.
- SDDSGetTable Csdds, ,n- : 11-returns the nth table parameters,data.
- SDDSGetParameters Csdds-,n-: 11-returns the parameters from the nth table.
- SDDSGetParameter [sdds- ,p-String,n- : 11-returns the value of parameter p from the

- SDDSGetDataCsdds-,n,: 11-returns the data matrix from the nth table.
- SDDSGetColumn Csdds- , c-String ,n- : 11 -returns the column named c froin the nth

- SDDSGetColumnCsdds- ,m- ,n-: 11-returns the mth column from the nth table.
- SDDSGetRowCsdds, ,m- ,n- : 11-returns the mth row from the nth table.
- SDDSGetNColumns Csdds-1 -returns the number of columns.

nth table.

table.

18

- SDDSGetNParameters [sdds,] -returns the number of parameters.
- SDDSGetNArrays [sdds-] -returns the number of arrays.
- SDDSGetNAssociates [sdds-1-returns the number of associates.
- SDDSGetNTables [sdds,] -returns the number of tables.
- SDDSGetNRows [sdds- ,n-: ll-returns the number of rows in the nth table.
- SDDSGetColumnNames [sdds-1 -returns the list of column names.
- SDDSGetParameterNames Csdds-]-returns the list of parameter names.
- SDDSGetArrayNames [sdds-]-returns the list of array names.
- SDDSGetAssociateNames [sdds-]-returns the k t of associate names.

0 examples: Convert a snapshot to a Mathematica file.

sdds2math par . 050695. snap par . 050695 .m

0 synopsis:

sdds2math SDDSfilename outputname [-comment SI [-verbose] C-f ormat=print.Stringl

0 switches:

- comments - Put helpful Mathematica comments in the file.
- verbose - Write header information to the terminal like sddsquery.
- format - Format for doubles (Default: %g) .

0 author: K. Evans, Jr., ANL/APS.

19

4.2 sdds2spreadsheet

0 description: sdds2spreadsheet converts an SDDS file to a file that can be read into most
spreadsheet programs. You need to consult your particular spreadsheet program to see how
'it reads ASCII files. For Wingz, the conversion is automatic. Excel 5.0 will bring up its Text
Import Wizard.
Note: Excel lines must be shorter than 255 characters. The Wingz delimiter can only be \t.

0 examples: Convert a snapshot to a Wingz spreadsheet.

sdds2spreadsheet par.050695.snap par.050695.ukz

Convert a snapshot to an Excel text file.

sdds2spreadsheet par.050695.snap p050695.txt

0 synopsis:

sdds2spreadsheet SDDSfiZename outputname C-delimiter=stringl [-all] [-verbose]

0 switches:

- delimiter - Delimiter string (Default is '"7.
- all - Write parameter, column, array, associate information, too. (Default is data and

- verbose - Write header information to the terminal like sddsquery.
parameters only)

0 author: K. Evans, Jr., ANL/APS.

20

4.3 sdds2stream

0 description:
sdds2stream provides stream output to the standard output of data values froiii a group of
columns or parameters. Each line of the output contains a different row of the tabular data or
a different parameter. Values from different columns are separated by the delimiter string. If
-page is not employed, all data pages are output sequentially. If iiiultiple filenames are given,
the files are processed sequentially in the order given.

0 examples: To output values of tunes for each page, one line per page:

sddsastream APS.twi -parameters=nux,nuy -delimiter=" I'

To output values of columns ElementName and betax for the first data page:

sdds2stream APS.twi -column=ElementName,betax -page=l

0 synopsis:

sddsastream (inputFileList I -pipe [=input] } C-page=pugeNumberl
C-delimiter=deZimitingStringl { -columns=coZumnNume C * coZumnATume. . . I I
-paramet ers=pururneterNume C * purumeter.Nume. . .I } [-filenames] C-rows]
[-noquot es]

0 files: inputFileList is a space-separated list of SDDS filenames.

0 switches:

- -pipe [=input] - The standard SDDS Toolkit pipe option.
- -page=puge-number . - Specifies the number of the data page for which output is de-

sired. Recall that pages are numbered sequentially beginning with l. More complete
control of which pages are output may be obtained using sddsconvert or sddsprocess
as a filter.

- -delimiter=deZimitingString- Specifies the delimiting string to be printed to separate
row entries or parameters. The delimiter is printed with p r i n t f , so that any of the usual
escape sequences may be employed.

- columns=coZurnnNumeC, coZumnNume. . .I - Specifies the names of the columns for
which output is desired. For each row of each data page, the specified columns are
printed on a single line, separated by the delimiting string. The default delimiting string
is a single space.

- Specifies the names of the
parameters for which output is desired. For each row of each data page, the specified
parameters are printed on a single line, separated by the delimiting string. However,
since the default delimiting string is a newline, the parameters end up on separate lines.

- -parameters=purumeterNume C ,purumeterNume. . .I

- filenames - Specifies that the filename will be printed out as each file is processed.
- rows - Specifies that the number of rows per page for the tabular data section will be

printed out.

21

- noquotes - Specifies that whitespace-containing string data will be printed without
the default dou ble-quot es .

0 see also:

- Data for Examples (see 3.3)
- sddsprintout (4.26)
- sddsconvert (4.11)
- sddsprocess (4.27)

0 author: M. Borland, ANL/APS.

22

4.4 sddsbreak

0 description: sddsbreak reads pages froin an SDDS file and writes a new SDDS file con-
taining the same data, but with each of the input pages potentially separated into several
output pages. The separation involves breaking each input page at one or more locations as
determined by one of several user-defined criteria.

0 examples: Limit the length of pages to 500 rows so that data may be viewed more easily:

sddsbreak par. bpm par. bpmi -rowlimit=500

Break the page whenever a gap of more than 15 seconds is seen:

sddsbreak par-bpm par.bpm1 -gapin=Time,amount=l5

0 synopsis:

sddsbreak [-pipe= Cinputl C , output] 1 CinputFiZel CoutputFiZel
{ -gapIn=coZumnNameC, {amount=vaZue I f actor=vaZue}l I
- increaseof =columnName I -decreaseof =coZumnName
-changeOf =coZumnNumeC, amount=vaZ~eC,base=vuZ~e] I
-rowLimit=integer }

0 files: inputFiZe is an SDDS file containing one or more pages of data to be broken up.
outputFiZe is an SDDS file in which the result is placed. Each page of outputFiZe contains the
parameter and array values from the page of inputFiZe that is its source.

0 switches:

- -pipe= Cinputl C,outputl - The standard SDDS Toolkit pipe option.
- -gapIn=columnATameC, {amount=vaZue I factor=vaZue}l - Breaks the page when the

value in the named column has a gap. If the amount qualifier is given, then a gap is
defined as any occurence of successive values different by more than value. If this qualifier
is not given, then the value is computed as follows: the mean absolute difference (MAD)
between successive values for the first page which has more than 1 row is computed; if
the f a c t o r qualifier is given, then the gap amount is the MAD times the given value;
otherwise, it is the MAD times two.

- -increaseof =columnName, -decreaseof =coZumnName- These options cause a page
break whenever the value in the named column increases or decreases, respectively.

- -changeOf=coZumnNumeC, amount=vaZueC,base=vaZue]I - Breaks the page when the
value in the named column changes. If the amount qualifier is not given, then any
change is sufficient to break the page. Otherwise, the page is broken whenever the
quantity [(V - B)/A] changes, where V is the value in the column, A is the value given
for amount, and B is the value given for base. If base is not given, then the value in
first row for the column is used.

- -rowLimit=integer - Breaks the page after the specified number of rows.

0 see also:

- Data for Examples (see 3.3)

23

- sddscombine (4.8)
0 author: M. Borland, ANL/APS.

24

4.5 sddschanges

0 description: sddschanges analyzes changes in column data from page to page in a file,
relative to reference data in a baseline file or from the first page. It requires that every page
in the file have the same number of rows. It produces a multipage output file containing the
row-by-row difference between the reference data and the data each page in the input file.

0 examples: Compute the changes in the dispersion function for several APS lattices:

sddschanges APS.twi APS.changes -copy=s -changeIn=betax,betay,etax

The output file in this example would have one fewer pages than the input file. Each page
would contain the column s from the first page, along with the differences from the first
page for betax, betay, and etax. One could also compute the changes relative to the nominal
lattice:

sddschanges APS.twi -baseline=APSO.twi APS.changes -copy=s
-changeIn=betax, betay , e t a

The output file would have one page for every page in the input.

0 synopsis:

sddschanges [-pipe= Cinputl C , output l 1 CinputFiZel CoutputFiZel
C- copy= columnNames1 C- changes In= coZumnNames1 C-bas eline=referenceFiZeName]

files: inputFile is a multipage file containing the data for which changes are desired. out-
putFiZe is a multipage file containing the changes. . The column names in outputFiZe for the
changes are created from those in inputFiZe by prepending the string "ChangeIn".

0 switches:

- -pipe= Cinputl C, output l - The standard SDDS Toolkit pipe option.
- -copy=columnNumes- Specifies that the named columns should be transferred to the

output file without alteration. These data come from the baseline file or from the first
page of the input file. A comma-separated list of optionally wildcard-containiiig strings
may be given.

- -changesIn=coZumnNames - Specifies that the named columns should be transferred to
the output file after subtracting the corresponding values from the baseline file or from
the first page of the input file. A comma-separated list of optionally wildcard-containing
strings may be given.

- -baseline=referenceFileName - Specifies the name of an SDDS file from which the
reference data for changes should be taken.

0 see also:

- Data for Examples (see 3.3)
- sddsenvelope (4.15)

0 author: M. Borland, ANL/APS.

25

4.6 sddscheck

0 description: sddscheck is a simple tool to allow checking a file to see if it is a valid SDDS
file, or if it is corrupted. The primary use is in shell scripts that need to detect such conditions.
sddscheck issues one of four messages: ok, nonexistent, badHeader, or corrupted. (See
sddsconvert (4.1 1) about recovering corrupted files.)

0 examples: Under UNIX, one could do the following to check a file before plotting it:

if (' sddscheck APS . t n i ' == "ok") plotTnissParameters APS . t n i

where plotTnissParameters is a hypothetical plotting script.

70 synopsis:

sddscheck filename

0 files: filename is the name of a single file to be checked.

0 see also:

- progrefsddsconvert

0 author: M. Borland, ANL/APS.

26

4.7 sddscollapse

0 description: sddscol lapse reads data pages from an SDDS file and writes a new SDDS
file containing a single data page. This data page contains only the values of the parameters
from the original file, with each parameter forming a colurnn of the tabular data.

0 examples: To create a new file containing the tunes and other parameters as columns:

sddscollapse APS. t w i APS .parameters

To do a polynomial fit to nux as a function of nuy, and print the results out:

sddscollapse APS.twi -pipe=out I s d d s p f i t -pipe=in f i t . sdds -column=nux,nuy
-verbose

0 synopsis:

0 files: inputFiZe is the name of an SDDS data set to be collapsed. outputFiZe is the result.
Note that outputFile will not contain any information on the arrays or columns that are in
inputFile.

e comment: In spite of the simplicity of the commandline, this is an extremely useful program.
A typical use might involve processing a multipage file using sddsprocess to, for example,
obtain statistical analyses of columns for each page; the results of such analyses are placed in
parameters. Using sddscol lapse on this file would produce columns of statistical analyses,
with one row for each page. One might then further analyze the data using sddsprocess.
One could also use sddscombine to combine several collapsed, processed data sets into a
single file, which puts one.formally back in the same position as when one started. In this
fashion, multi-level data analysis and collation is possible. This is done with some magnetic
measurements at APS.

0 see also:
\

- Data for Examples (see 3.3)
- sddsprocess (4.27)
- sddscombine (4.8)

0 author: M. Borland, ANL/APS.

27

4.8 sddscombine

0 description: sddscombine combines data froin a series of SDDS files into a single SDDS file
with one page for each page in each file. Data is added from files in the order that they are
listed on the command line. All of the data files must contain the columns and parameters
contained by the first; the program ignores any columns or parameters in a subsequent data
file that are not in the first data file.

0 example: Combine several Twiss parameter files into one fle, keeping page boundaries
separate.

sddscombine APS1.twi APS2.twi APS3.twi A P S a l l . t w i

0 synopsis:

sddscombine [inputFiZeListl [outputFiZel [-pipe [=input] [output] 1
E-merge [=parumeterNumel1 [-overwrite]

0 files: inputFileList is a list of space-seperated filenames to be combined. outputFiZe is a
filename into which the combined data is placed. If no -pipe options are given, the outputFiZe
is taken as the last filename on the commandline. To specify an output file with input froin a
pipe, one uses sddscombine -pipe=input outputFiZe. Similarly to specify output to a pipe
with many input files, use sddscombine -pipe=output inputFiZeList. Since accidentally
leaving off the -pipe=output option for the last command might result in replacement of an
intended input file, the program refuses to overwrite an existing file unless the -overwrite
option is given. A string parameter (Filename) is included in outputFi le t o show the source
of each page.

0 switches:

- -pipe [=input] C y output] - The standard SDDS Toolkit pipe option.
- -merge [=purumeterNumel - Specifies that all pages of all files are to be merged into a

single page of the output file. If a purumeteriVume is given, successive pages are merged
only if the value of the named parameter is the same.

- overwri te - Forces sddscombine to overwrite outputfile if it exists.

0 see also:

- Data for Examples (see 3.3)

0 author: M. Borland, ANL/APS.

28

4.9 sddscongen

0 description: Creates an SDDS data set by evaluating an rpn expression over a defined 2
dimensional grid. This data set may be plotted using sddscontour.

0 example: This will generate a two-dimensional color-shaded map of the function
sin(4n(x2 + y2)) on the region x:[-1, 11 and y:[-1, 11:

sddscongen example.sdds -xRange=-l,l,lOl -yRange=-l,l,lOl
-zEquation="x x * y y * + 4 * pi * sin"
sddscontour example.sdds -shade example.sdds -equalAspect

a synopsis:

sddscongen outputfire -xRange=lower, upper, nPoints -yrange=lower, upper, nPoints
-zEquation=rpnExpression C-rpnCommand=rpnEzpression]
c-rpn~ ef init ibns=rpn-dejm~i~e~

0 switches:

- xRange=lower, upper, nPoints, yRange=lower, upper, nPoints - Specifies the 2 dimen-
sional grid over which data is generated. x is the horizontal variable and y the vertical.

- -zEquation=rpnEcpression - Specifies the rpn expression that is evaluated at each
point of the grid.

- -rpnCommand=rpnExpression - Specifies the name of a file containing rpn input. The
named file is read before any other operations are performed.

- -rpnDef initions=rpn-defnsFile- Specifies a string to submit to rpn prior to beginning
evaluation of the equation on the grid.

0 see also:

- sddscontour (4.10)
- rpn (4.41)

0 author: M. Borland, ANL/APS.

29

4.10 sddscontour

0 description: sddscontour makes contour and color-map plots froin an SDDS data set col-
umn, or from a rpn expression in terms of the values in the columns of a data set. It supports
FFT interpolation and filtering. If the data set contains more than one data page, data froin
successive pages is plotted on separate pages.
The file must contain tabular data with at least one numeric column, which will be organized
into a 2d array with R rows and C columns. By default, the values are assumed to come in
row-major order (Le., the file should contain a series of R sequences each containing the C
values of a single row). The parameters of the 2d grid over which the plot is to be made are
communicated to the program in one of two ways:

1. The string parameters VariablelName and VariableZName contain the names of the x
and y axis variables, which I'll represent as x and y respectively. The program expects
to find six more parameters, with names xMinimum, z In te rva l , and xDimension, and
similarly for y. These parameters must be numeric, and contain the minimum value, the
interval between grid points, and the number of points, respectively, for the dimension
in question.

2. The numeric parameters NumberOfRows and NumberOf Columns contain the values of R
and C, respectively.

0 example: This will generate a two-himensional color-shaded map of the function
sin(4n(x2 + y2)) on the region x:[-1, 13 and y:[-1, 11:

sddscongen example.sdds -xRange=-l,l,lOl -yRange=-l,l,lOl
-zEquation="x x * y y * + 4 * p i * s in"
sddscontour example.sdds -shade example.sdds -equalAspect

0 synopsis:

sddscontour SDDSfilename switches

switches:

- Choice of what to plot:

[-quant ity=columnName i -equat ion=rpnExpressionl
* quant i ty - Specifies the name of the column to make a contour or color map of.
* equation - Specifies a rpn expression to make a contour or color map of. The

expression may refer to the values in the columns by the appropriate column name,
and may also refer to the variable values by name.

- rpn control:

C-rpnDef i n i t ionsFiles=filename [,filename. . .I]
C-rpnExpressions=setupExpressionC, setupExpression. . -1 I

be executed before any other processing takes place.

cessing takes place, immediately after any definitions files.

* rpnDef i n i t i o n s F i l e s - Specifies the names of files containing rpn expressions to

* rpnExpressions - Specifies rpn expressions to be executed before any other pro-

30

- Shade and contour control:

{-shade=numberC, min, maxl I -contours=nuniberC min, muzl)
[-labelContours=interval[offset] 1

* shade - Specifies that a color (or grey-scale) map should be produced, with the
indicated number of shades mapped onto the range from min to niax. If niin and
mux are not given, they are taken to be equal to the minimum and maximum data
values.

* contours - Specifies that contour lines should be drawn, with the indicated number
of lines for the range from min to muz. If min and muz, are not given, they are taken
to be equal to the minimum and maximum data values.

* 1abelContours - Specifies that every interval'" contour line, starting with the
offset'" line, should be labeled with the contour value.

- Image processing:

C-interpolate=nx, nyC,floor I c e i l i n g I a n t i r i p p l e l l
C-f ilter=xcutoff, ycutofl

* i n t e r p o l a t e - Specifies that the 2d map should be interpolated to have nz times
more rows (or x grid points) and ny times more columns (or y grid points). Since
FFTs are used to do the interpolation, the original number of grid points must be
a power of.2, as must the factor.. Giving a factor of 1 disables interpolation for the
dimension in question. f l o o r , cei l ing, and a n t i r i p p l e specify image processing
of the interpolated map. f l o o r and c e i l i n g respectively force values below (above)
the minimum (maximum) value of the data to be set equal to that value. an t i r ipp le
causes the map to be altered so that nonTzero values in the new map between zero
values on the original map are set to zero; this suppresses ripples that sometimes
occur in regions where the data was originally all zero.

* f i l t e r - Applies low-pass filters to the data with the specified normalized cutoff
frequencies. The integer cutoff values give the number of frequencies starting at the
Nyquist frequency that are to be eliminated.

- Plot labeling:

C-xLabel=stringl C-yLabel=string] [-title=stringl [-topline=stringl .,
C-topTitle1 C-noLabelsl C-noScales1 C-dateStamp1

* xlabel, yLabel, t i t l e , t o p l i n e - These specify strings to be placed in the various

* t o p T i t l e - Requests that the title label be placed at the top of the plot, rather

* noLabels - Requests that no labels be placed on the plot.
* noscales - Requests omission of the numeric scales.
* noBorder - Requests omission of the border around the data. Implies -no-scales.
* datestamp - Requests that the date and time be placed on the pot.

label locations on the plot.

than at the bottom.

- Miscellaneous plot control:

C-scales=xl, xh, ylJ yhl C-device=nameC, deviceArgumentslI [-snapxy]
[-equalAspect [=-1,111 C-noBorder]

* s c a l e s - Specifies the extent of the plot region.
f

31

* device - Specifies the device name and optional device-specific arguments. See

* swapxy - Requests that the horizontal and vertical coordinates be interchanged.
* equalAspect - Requests plotting with an aspect ratio of 1. If the ’1’ qualifier is

given, then the aspect ratio is achieved by changing the size of the plot region within
the window; this is the default. If the ’-1’ qualifier is given, then the aspect ratio is
achieved by changing the size of the plot region in user’s coordinates.

* noBorder - Specifies that no border will be placed around the graph.

the mpl user’s manual for details[?].

- Miscellaneous:

[-output=filename] [-verbosity [=levell 1
* output - Requests SDDS output of a new file containing the data with any modi-

* verbosity - Sets the verbosity level of informational printouts. Higher integer
fications resulting in the processing requested.

values of the l e v e l parameter result in more output.

0 see also:

- sddscongen (4.9)
- sddshist2d (??)
- rpn (4.41)

0 author: M. Borland, ANL/APS.

I

32

4.11 sddsconvert

0 description: sddsconvert converts SDDS files between ASCII and binary, and allows
wildcard-based filtering-out of unwanted columns and/or rows, as well as renaming of columns.

0 example: Convert APS. t w i to binary:

sddsconvert -binary APS.twi

Convert APS. t w i to binary and delete the alphax and alphay columns:

sddsconvert -binary APS.twi -delete=column,’alpha?’

0 synopsis:

sddsconvert CinputFilel CoutputFilel C-pipe [=input] C , output] 1
C{ -binary I -ascii}l C-f romPage=numberl C-toPage=numberl
C-delete={columns I parameters I arrays} , matchingstringc, matchingstring. . .I 1
C-retain={columns I parameters I arrays} , matchingStringC, matchingstring. . .I
C-rename={columns I parameters I arrays} , oZdname=newname

C-editNames={ columns I parameters I arrays} , matchingstring, editstring
E-description=text , contents]
C-recover1 C-linesPerRow=numberl C-nowarningsl

C , oldname=newname. . . I1

0 files: inputFile is an SDDS file containing data to be processed. The outputFile argument is
optional. If it is not given, and if an output pipe is not selected, then the input file will be
replaced.

0 switches:

- {-binary I -ascii} - Requests that the output be binary or -4SCII.
- fromPage=number - Specifies the first data page of the file that will .appear in the

- toPage=number- Specifies the last page of the file that will appear in the output. By

- -delete=columns I parameters I a r rays , matchingStringC, matchingstring. . .I ,

output. By default, the output starts with data page 1.

default, the output ends with the last data page in the file.

-retain=columns I parameters I a r r a y s , matchingStrcingC , matchingString. . .I -
These options specify wildcard strings to be used to select entities (;.e., columns, param-
eters, or arrays) that will respectively be deleted or retained (Le-, that will not or will
appear in the output). The selection is performed by determining which input entities
have names matching any of the strings. If r e t a i n is given but d e l e t e is not, only those
entities matching one of the strings given with r e t a i n are retained. If both d e l e t e and
r e t a i n are given, then all entities are retained except those that match a d e l e t e string
without matching any of the r e t a i n strings.

arrays} , oldname=newnameC, oldname=newname. . .I - Specifies new names for en-
tities in the output data set. The entities must still be referred to by their old names in
the other commandline options.

- -rename={columns I parameters I

I

33

- -editNames=columns I parameters I a r rays rnatchingString, editstring - Specifies
creation of new names for entities of the specified type with names matching the specified
wildcard string. Editing is performed using commands reminiscent of emacs keystrokes.
For details on editing commands, see SDDS edi t ing (4.40).

- -descr ipt ion=ted, contents- Sets the description fields for the output.
- -recover - Asks for attempted recovery of corrupted binary data.
- -linesPerRow=number - Sets the number of lines of text output per row of the tabular

- -nowarnings - Suppresses warning messages, such as file replacement warnings.
data, for ASCII output only.

0 see also:

- Data for .Examples (see 3 -3)
- sddsprocess (4.27)
- SDDS ed i t ing (4.40)

0 author: M. Borland, ANL/APS.

34

4.12 sddscorrelate

0 description: sddscorrelate computes correlation coefficients and correlation significance
between column data. The correlation coefficient between columns i and j is defined as

If Cij = 1, then the variables are perfectly correlated, whereas if Cij = -1, they are perfectly
anticorrelated. The correlation significance is the probability that the observed correlation
coefficient could happen by chance if the variables were in fact uncorrelated. Hence, a very
small correlation significance means that the variables are probably correlated.

0 examples: Find the correlations among beam-position-monitor x values in pa r . bpm:

sddscorrelate par.bpm par.cor -column=’*x’

Find the correlations of these readouts with one specific readout only:

sddscorrelate par.bpm par.cor -column=’*x’ -withOnly=PlPlx

0 synopsis:

sddscorrelate [-pipe= [input] E , output] 1 Ch-~putFiZel [outputFdel
[-columns=coZumnNumesl [-excludeColumns=coZumnNamesl [-withOnly=coZumnNamel

0 files: inputFiZe is an SDDS file containing two or more columns of data. For each page of the
file, outputFiZe contains the correlation coefficients and significance for every possible pair-
ing of variables requested. outputFiZe also contains three string columns: CorrelatelName,
Correlate2Name, and Correlatepair . These are respectively the name first column in
the analysis, the name of the second column in the analysis, and a string of the form
Namel. Named.

0 switches:

- -pipe=[inputl C,outputl - The standard SDDS Toolkit pipe option.
- -columns=coZumnNames- Specifies the names of columns to be included in the analysis.

A comma-separated list of optionally wildcard-containing names may be given.
- -excludeColumns=coZumnNumes - Specifies the names of columns to be excluded from

the analysis. A comma-separated list of optionally wildcard-containing names may be
given.

- -withOnly=coZumnNarne - Specifies that one of the variables for each correlation will
be the named column.

0 author: M. Borland, ANL/APS.

35

4.13 sddsderiv

0 description: sddsderiv differentiates one or more columns of data as afunction of a common
column. The program will perform error propagation if error bars are provided in the data
set.

0 examples: Find the derivatives of columns 30 and J l as a function of z:

sddsderiv bessel.sdds bessel .der iv -different ia te=JO,Jl -versus=z

0 synopsis:

sddsderiv [-pipe= [input] [,output] 1 [input] [output]
-dif f erentiate=columnNume[, sigmaNamel . . . -versus=coZumnNume[, sigmaNume1
[-interval=integerl . [-mainTemplates=item=string[, - . .I 1
[-errorTemplates=item=stn'ng[, . . .I1

0 files: input is an SDDS file containing columns of data to be differentiated. If it contains
multiple data pages, each is treated separately. The independent quantity along with the
requested derivatives are placed in columns in output. By default, the derivative column
name is constructed by appending Deriv to the variable column name. If applicable, the
column name for the derivative error is constructed by appending DerivSigma. The data
with respect to which the derivative is taken should be monotonically ordered.

0 switches:

- -pipeC=inputl C,outputl - The standard SDDS Toolkit pipe option.
- -dif f erentiate=columnNume[, sigmaName- Specifies the name of a column to differ-

entiate, and optionally the name of the column containing the error in the differentiated
quantity. May be given any number of times.

- -versus=coZumnNume[, sigmaName - Specifies the name of the independent variable
column, and optionally the name of the column containing its error.

- -interval=integer- Specifies the spacing of the data points used to approximate the
derivative. The default value of 2 specifies that the derivative for each point will be
obtained from values 1 row above and 1 row below the point. In general (i&oring end
points, which require special treatment):

dy
dz

y[i + IntervaZ/2] - y[i - Inte~vul/2]
z[i + IntervaZ/2] - z[i - Intervul/2] -[i] M

- -mainTemplates=item=string[, . . .I - Specifies template strings for names and defi-
nition entries for the derivative columns in the output file. item may be one of name,
descr ipt ion, symbol. The symbols "%ox7' and "%y" are used to represent the indepen-
dent variable name and the name of the differentiated quantity, respectively.

- -errorTemplates=item=stn'ng[, . . .I - Specifies template strings for names and def-
inition entries for the derivative error columns in the output Me. item may be one of
name, descr ipt ion, the independent variable name and the name of the differentiated
quantity, respectively.

0 see also:

36

- sddsinteg (4.20)

0 author: M. Borland, ANL/APS.

37

4.14 sddsdigfilter

0 description:
sddsdigf ilter performs time-domain digital filtering of columns of data. Filters can be
combined in series and/or cascade to produce complex filter characteristics. In addition to
allowing simple 1-pole lowpass and highpass filters, filter charateristics can be defined using
either digital '2' or analog 'S' domain transfer functions.
A digital filter has a 2 transform given by

bo + b12-1 + . . . + i5,z-n
a0 + alz-'+ - - + anz-"'

while an analog filter has a Laplace transform given by

do + dls' + . . . + dns"
co + ClSl + . . . + G S " '

0 examples: These examples assume the existence of a file data.uf containing a waveform
stored as a column value that is a function of a column time that has units of seconds.
Pass data through lowpass filter with a -3dB cutoff of 0.01 Hz:

sddsdigfilter data.wf -col=time,value result.wf -low=l,O.Ol.

Bandstop filter between 10 Hz and 100 Hz:

sddsdigfilter data.wf -col=time,value result.wf -low=l,lO -high=l,lOO

Bandpass filter between 10 Hz and 100 Hz:

sddsdigfilter data.wf -col=time,value result-wf -low=l,lOO -cascade
-high=l,lO

Analog transfer function:

sddsdigfilter data.wf -col=time,value result-wf
-analog=D,l.O,O.Ol,C,O.1,0.3,1.6

Five-sample digital delay:

sddsdigfilter data.wf -col=time,value result-wf -digital=B,O,O,O,O,O,l

0 synopsis: I

sddsdigf ilt er CinputFilel CoutputFiZel [-pipe= [input] C, output] 1
-columns=xName, yName C-proportional=gainl C-lowpass=gain , cutoffFrequency1
[-highpass=gain, cutoffFrequency1 C-digitalf ilter=sddsfiZe, aCoeffName, bCoeffName
[-digitalf ilter=CA, aU, a l , . . , am] [,B, bU, b l , . . , bnl
[-analogfilter=sddsfile, cCoeffiVame, dCoe#Nume
[-analogf ilter= [C, cU, cl, . . , cml [,D, dU, dl, . . , dnl [-cascade] [-verbose]

I

38

0 files: Two file names are required: the name of the existing input file, and the name of the
output file to be produced. The input file must contain a t least two columns: one containing
to data to be filtered (yArame) and the other giving time information (dVame). A linear time
scale is assumed for xName. The output file is a copy of the input file with an additional
column called DigFilteredyNarne where yName would be the name of the original y-column.

0 switches:

- -pipeC=input] [,output] - The standard SDDS Toolkit pipe switch.
- -columns=xNurne,yArume - The names of the input file data columns.
- -proportional=gain- Defines a gain stage, where gain is the multiplier applied to the

data.
- -lowpass=gain, cutoflFrequency - Defines a lowpass filter stage, where gain is the mu-

tiplier applied to the data and cutoflFrequency is the -3dB point of the filter in units
appropriate to the supplied zName.

- -highpass=gain, cutoffFrequency - Defines a highpass filter stage, where gain is the
multiplier applied to the data and cutoflFrequency is the -3dB point of the filter in units
appropriate to the supplied xNume.

- -d ig i t a l f ilter=sddsjiZe, aCoeflNarne, bCoeflName - Defines a digital filter with co-
efficients in the supplied SDDS coefficient file. This file must cointain two columns
containing the'A and B coefficients of a digital '2' transfer function. Note that control
theory convention assumes that the A0 coefficient is always 1.0. To ensure consistency
with the SDDS file, the a0 coefficient is the first row in the A-column and must be
implicitly supplied. Although there is little benefit to setting a0 to anything other than
1.0, it is allowed.

- -d ig i t a l f i l t e r = [A, aO, a l , . . . , am1 [,B, bO, b l , . . . , bnl- Defines a digital filter with
the A and B coefficients of the digital '2' transfer function supplied on the command
line. Either A or B or both coefficients can be supplied. If no A coefficients are supplied,
a0 is set to 1.0. Equally, if no B coefficients are supplied, bO is set to 1.0. If different
numbers of A and B coefficients are suppied, the filter order is determined from the
largest order.

- -analogfilter=sddsfiZe, cCoeflName, dCoeflNume - Defines an analog filter with coef-
ficients in the supplied sdds cefficient file. This file must cointain two columns containing
the C and D coefficients of an analog 's' transfer function. Conversion to the digital do-
main is done using a bilinear transform. Note that the user must ensure adequate data
sampled, since the general format does not allow frequency warping based on the filter
cutoff frequency.

- -analogf i l t e r = [A, aO, a f , . . . , am1 C,B , bO, b l , . . . , bnl- Defines an analog filter with
the C and D coefficients of the analog 'S' transfer function supplied on the command
line. Either C or D or both coefficients can be supplied. If no C coefficients are supplied,
then c0 is set to 1.0. Equally, if no D coefficients are supplied, then dO is set to 1.0.
Conversion to the digital domain is done using a bilinear transform. Note that the user
must ensure adequate data sampled, since the general format does not allow frequency
warping based on the filter cutoff frequency.

- -cascade - Defines the start of a new filter stage. Any number of filter stages can be
supplied for a single data set. If more than one filter is defined, then the outputs are

39

summed unless the -cascade switch is supplied between the filter definitions in which
case the output of the first filter stage is fed into the input of the subsequent filter stage.

- -verbose - Prints the filter coefficients for each filter stage.

0 references - The digital filtering routines were adapted from Stearns and David, Signal
Processing Algorithms in Fortran and C, Prentice Hall, 1993

0 author: John Carwardine, Argonne National Laboratory

40

4.15 sddsenvelope

0 description: sddsenvelope analyzes coluinn data across pages to find minima, inaxiina,
averages, standard-deviations, etc., on a row-by-row basis. It produces a single-page output
file containing one column for each analysis requested. It will also copy through data froiii
the first page into the output file. It requires that each page of the input file have the same
number of rows.

0 examples: Find the minimum and maximum beta functions for a set of APS lattices:

sddsenvelope APS.twi APS.twi.env -copy=s -minimum=beta? -maximum=beta?

0 synopsis:

sddsenvelope [-pipe= [input] C, output] I [input] [output] C-copy=coZumnNamesl
C-maximum=columnNamesl C-minimum=columnNamesl C-mean=Col~mn~~anzesl
C-sum=power , columnNamesl C- st andardD ev i a t ion= colum nNames1
C-rms=columnNamesl C-slope=independent VariableName, wl~mnil~amesl
C-intercept=independent VariableName, columnNamesl

0 files: inputFile is a multipage file containing the data for which row-by-row statistics are
desired. outputFile is a single-page file containing the statistics. The column names in
outputFile are created from those in the input file by appending the appropriate suffix from
the following list: MA, Min, Mean, StDev, RMS, Sum, Slope, or Intercept .

0 switches:

- -pipe=Cinputl [,output] - The standard SDDS Toolkit pipe option.
- -copy=columnNames - Specifies that the named columns should be transferred to the

output file without alteration. These data come from the first page of the input file. A
comma-separated list of optionally wildcard-containing strings may be given.

-minimum=columnNames, -mean=columnNames, -rms=columnXames - Specifies that
the named columns should be analysed in the indicated fashion. A comma-separated
list of optionally wildcard-containing strings may be given.

- -sum=power, coZumnNames -Specifies that the named columns should be ahalysed in
the indicated fashion, Le., that each output row should be the sum of the values to the
indicated power. A comma-separated list of optionally wildcard-containing strings may
be given.

-intercept=independent VariableName, columnNamee Specifies that the named
columns should be analysed to get the slope or intercept with respect t o the parameter
independent VariableName. A comma-separated list of optionally wildcard-containing
strings may be given for the columnNames.

- -maximum=columnNames,

- -slope=independent VariableName, columnNames,

0 see also:

- Data for Examples (see 3.3)
- sddschanges (4.5)

0 author: M. Borland, ANL/APS.

41

4.16 sddsexpfit
0 description: sddsexpfi t does exponential fits to a single column of an SDDS file as a

function of another column (the independent variable). The fitting function is

~ (s) = c + F * eR*=,

where x is the independent variable, C is the constant term, F is the factor, and R is the rate.

0 examples: Fit an exponential decay to vacuum pressure versus time during a pumpdown:

sddsexpf it vacDecay . sdds -columns=Time ,Pressure vacDecay . f i t

Same, but give the program a hint and force it to get a better fit

sddsexpfi t vacDecay.sdds -columns=Time,Pressure vacDecay.fit -clue=decays
-tolerance=le-12

0 synopsis:

sddsexpf it [-pipe= [input] C, output] I CinputFiZel CoutputFiZel
[-columns=zNume, yNume] C-tolerance=vaZuel E-clue={grows I decays}]
[-guess=constant, factor, rate] C-verbos'ity=integer] [-f ullOutputl

o files: inputFiZe contains the columns of data to be fit. If inputFiZe contains multiple pages,
each page of data is fit separately. outputFiZe has columns containing the independent variable
data and the corresponding values of the fit. The name of the latter column is constructed by
appending the string F i t to the name of the dependent variable. In addition, if - ful loutput
is given, outputFiZe includes a column with the dependent values and the residual (dependent
values minus fit values). .The name of the residual column is constructed by appending the
string Residual to the name of the dependent variable. outputFiZe contains four parameters:
expf i t cons t an t , expf i tFac tor , expf itRate, and expf itRmsResidual. The f i s t three pa-
rameters are respectively C, F, and R from the above equation. The last is the rms residual
of the fit.

0 switches:

- -pipe=Cinputl C,outputl - The standard SDDS Toolkit pipe option.
- -columns=zName,yNarne - Specifies the names of the independent and dependent

columns of data.
- -tolerance=vaZue - Specifies how close sddsexpfi t will attempt to come to the opti-

mum fit, in terms of the mean squared residual. The default is lo-'.
- -clue={grows I decays} - Helps sddsexpf it decide whether the data is a decaying or

growing exponential, i.e., whether R is negative or positive, respectively. If sddsexpf it
is having trouble, this will often help.

- -guess=constunt, factor, rate - Gives sddsexpf it a stating point for each of the three
fit parameters.

- -f u l lou tpu t - Specifies that outputFiZe will contain the original dependent variable
data and the fit residuals, in addition to the independent variable data and the fit values.

42

-

- -verbosity=integer - Specifies that informational printouts are desired during fitting.
A larger integer produces more output.

0 see also:

- Data for Examples (see 3.3)
- s d d s p f i t (4.24)
- s d d s g f i t (4.18)
- s d d s o u t l i e r (4.22)

0 author: M. Borland, ANL/APS.

43

-

4.17 sddsfft

0 description: s d d s f f t takes Fast Fourier Transforms of real data in columns. It will trans-
form any number of columns simultaneously as a function of a single independent variable.
Strictly speaking, the independent variable values should be equispaced; if they are not,
sdds f f t uses the average spacing. The number of data points need not be a power of two.
Output of the magnitude only is the default, but phase and complex values are available.

0 examples: Take the FFT of time series samples of PAR x beam-position-monitor readouts:

s d d s f f t par.bpm p a r - f f t -column=Time,’P?P?x’

0 synopsis:

sddsf f t [-pipe= [input] C, outputll. CinputFiZel CoutputFiZel
-columns=indep Variable C, depenQuantityList1 C-padwithzeroes I -truncate1
[-sparse=integer] [-window [={harming I welch I parzen}] I [-normalize]

. [-suppressAverage] [-f ullOutput]

0 files: inputFile contains the data to be FFT’d. One column from this file must be chosen
as the independent variable. By default, all other columns are taken as dependent variables.
If irzputFile contains multiple pages, each is treated separately and is delivered to a separate
page of outputFile. .
outputFile contains a column f for the frequency, along with one or more columns for each
independent variable. By default, outputFiZe has one column named FFTindepNume contain-
ing the magnitude of the FFT for each independent variable. If - ful loutput is specified,
outputFile contains additional columns for, respectively, the phase (or argument), real part,
and imaginary part of the FFT: ArgindepNume, RealindepNume, and ImagindepNume.

0 switches:

- pipe [=input] [,output] - The standard SDDS Toolkit pipe option.
- -columns=indep Variable C, depenQuuntityList1 - Specifies the name of the independent

variable column. Optionally, specifies a list of comma-separated, optionally wildcard-
containing names of dependent quantities to be FFT’d as a function of the independent
variable. By default, all numerical columns except the independent column a?e FFT’d.

- -padwithzeros - Specifies that the independent data should be padded with zeros to
make the number of points equal to the nearest power of two. In some cases, this will
result in significantly greater speed.

- -truncate - Specifies that the data should be truncated so that the number of points
is the largest power of two not greater than the original number of points. In some cases,
this will result in significantly greater speed.

- sparse=integer - Specifies that the data should be uniformly sampled a t the given
integer interval. While this reduces frequency span of the FFT, it may result in greater
speed.

- window[={hanning I welch I parzen} - Specifies that data windowing should be
performed prior to taking FFT’s, and optionally specifies the type of window. The
default is hanning. Usually used to improve visibility of small features or accuracy of
amplitudes for data that is not periodic in the total sampling time or a submultiple
thereof.

44

- normalize - Specifies that FFT’s will be normalized to give a inaximuin magnitude of
1.

- suppressAverage - Specifies that the average value of the data will be subtracted from
every point prior to taking the FFT. This may improve accuracy and visibility of small
components.

- f u l l o u t p u t - Specifies that in addition to the magnitude, the phase, real part, and
imaginary part of each FFT will be included in the output.

0 see also:

- Data for Examples (see 3.3)
- sddsdigf i l t e r (4.14)

0 aukhor: M. Borland, ANL/APS.

45

4.18 sddsgfit
0 description: sddsg f i t does gaussian fits to a single column of an SDDS file as a function

of another column (the independent variable). The fitting function is

where x is the independent variable, B is the baseline, H is the height, p is the mean, and 0
is the width.

0 examples: Fit a gaussian to a beam profile to get the rms beam size:

sddsg f i t beamProfile.sdds beamProfile.gfit -column=x,Intensity

0 synopsis:

sddsgf it [-pipe= [input] [, output1 I CinputFilel CoutputFilel
-columns=z-name, y-name[,sy-name] [-f itRange=Zower, upper] [-fullOutputl '

[-guesses= [baseline=vaZuel C ,mean=vaZue1 C , height=valuel C y sigma=vaZuell
[-stepSize=fuctorl C-tolerance=vaZuel
[- l i m i t s = [evaluat ions=numberl [,passes=number1 C-verbosity=integerl

0 files: inputFile contains the columns of data to be fit. If inputFiZe contains multiple pages,
each page of data is fit separately. outputFiZe has columns containing the independent variable
data and the corresponding values- of the fit. The name of the latter column is constructed by
appending the string F i t to the name of the dependent variable. In addition, if -fulloutput
is given, it includes a column with the dependent values and the residual (dependent val-
ues minus fit values). The name of the residual column is constructed by appending the
string Residual to the name of the dependent variable. outputFile contains five parameters:
gf i tBaseline, gf i t s e i g h t , gfitMean, gf itsigma, and gf itRmsResidua1. The first four
parameters are respectively B, H, p, and 0 from the equation above. The last is the rms
residual of the fit.

0 switches:

- -pipe=[inputl [,output1 - The standard SDDS Toolkit pipe option.
- -columns=z-name, y-name - Specifies the names of the independent and dependent

columns of data.

the fit.

sddsgf it a starting point for each of fit parameters.

starting values. The default is 0.01.

- -f itRange=lozoer, upper - Specifies the range of independent variable values to

- -guesses=[baseline=vu~uel [,mean=valuel C,height=uaZuel C,sigma=vakel -

- -stepSize=factor - Specifies the starting stepsize for optimization as a fraction

use in

Gives

of the

- -tolerance=vaZue - Specifies how close sddsgf it will attempt to come to the optimum
fit, in terms of the mean squared residual. The default is

46

- - l i m i t s = [evaluations=number] [,passes=number- Specifies limits on how many fit
function evaluations and how many minimization passes will be done in the fitting. The
defaults are 5000 and 100, respectively. If the fit is not converging, try increasing one or
both of these. If the number of evaluations is too small, you may get warning messages
ab out optimization failures.

- - ful loutput - Specifies that outputFile will contain the original dependent variable
data and the fit residuals, in addition to the independent variable data and the fit values.

- -verbosity=integer - Specifies that informational printouts are desired during fitting.
A larger integer produces more output.

0 see also:

- sddsp f i t (4.24)
- sddsexpfi t (4.16)
- sddsou t l i e r (4.22)

0 author: M. Borland, ANL/APS.

7

47

4.19 sddshist

0 description: sddshist does weighted and unweighted one-dimensional histograms of column
data from an SDDS file. It also does limited statistical analysis of data, and basic filtering of
data.

0 examples: Make a 20-bin histogram of a series of PAR x beam-position-monitor readouts:

sddshis t par.bpm par.bpmhis -data=PlPlx -bins=20

0 synopsis:

sddshist [-pipe= [input] [, output1 1 CinputFiZel CoutputFiZel
-dataColumn=columnNume [-bins=number I -sizeOfBins=vahe] C-lonerLimit=valuel
~ - u p p e r ~ i m i t = v a ~ u e ~ C-f ilt er=coiumn~ume , lowerLimit , upperlimit]
[-weightColumn=columnNume] [-sides] [-normalize [={ sum I area I peak}] 1
C-st a t ist icsl [-verbose]

0 files: inputFiZe is the name of an SDDS file containing data to be histogrammed, along with
optional weight data. If inputFiZe contains multiple data pages, each is treated separately. The
histogram or histograms are placed in outputFile, which has two columns. One column has the
same name as the histogrammed variable; and consists of equispaced values giving the centers
of the bins. The other column, named frequency, contains the histogram frequencies. Its
precise meaning is dependent on normalization modes and weighting. By default, it contains
the number of data points in the corresponding bin.
If requested, outputFile will also contain parameters giving statistics for the data being his-
togrammed. See below for details.

0 switches:

- -pipe[=inputl [,output] - The standard SDDS Toolkit pipe option.
- -dataColumn=coZumnNume - Specifies the name of the data column to be his-

- -bins=nunzber- Specifies the number of bins to use. The default is 20.
- -sizeOfBins=vuZue- Specifies the size of bins to use. The number of bins is computed

- -lowerLimit=vaZue - Specifies the lower limit of the histogram. By default, the lower

- -upperLimit=value - Specifies the upper limit of the histogram. By default, the upper
limit is the maximum value in the data.

- -f ilter=coZumnNume, lowerlimit, upperLimit - Specifies the name of a column by
which to filter the input rows. Rows for which the named data is outside the specified
interval are discarded. Alternatively, one can use sddsprocess (see 4.27) to winnow data
and pipe it into sddshist .

- -weightColumn=coZumnNume- Specifies the name of a column by which to weight the
histogram. This means that data points with a higher corresponding weight value are
counted proportionally more times in the histogram.

t ogrammed.
..

from the range of the data.

limit is the minimum value in the data.

J-

48

- - s i d e s - Specifies that zero-height bins should be attached to the lower and upper
ends of the histogram. Many prefer the way this looks on a graph.

- -normalizeC={sum I area I peak}] - Specifies that the histogram should be nor-
malized, and how. The default is sum. sum normalization means that the sum of the
heights will be 1. area normalization means that the area under the histogram will be
1. peak normalization means that the maximum height will be 1.

- -statistics - Specifies that statistics should be computed for the data and placed in
outputFiZe. These presently include arithmetic mean, rms, and standard deviation. The
parameters are named by appending the strings Mean, RMS, and StDev to the name of
the data column. If -weigthColumn is given, the statistics are weighted.

0 see also:

- Data for Examples (see 3.3)
- sddshist2d (??)
- sddsprocess (4.27)

0 author: M. Borland, ANL/APS.

49

4.20 sddsinteg

0 description: sddsinteg integrates one or inore columns of data a s a function of a common
column. The program will perform error propagation if error bars are provided in the data
set.

0 examples: Find the integral Jqxds for APS lattices

sddsinteg APS.twi APS.integ - in tegra te=etax -versus=s

0 synopsis:

sddsinteg [-pipe= [input] c output] 1 Cinput] coutputl
- i n t eg ra t e=columnNume I: sigmuName1 . . . -~ersus=columnA~ame C sigmuName1
C-mainTemplates=item=stn’ng[, . . .I]
C-rnethod=metl~odNumel C-printFina1 [=bake1 C y s tdout l I

[-errorTernplates=item=stringC, . . .I1

0 files: inputis an SDDS file containing columns of data to be integrated. Ifit contains multiple
data pages, each is treated separately. The independent quantity along with the requested
integrals is placed in columns in output. By default, the integral column name is constructed
by appending “Integ” to the variable column name. If applicable, the column name for the
integral error is constructed by appending “IntegSigma”.

0 switches:

- -pipeC=inputl C,outputl - The standard SDDS Toolkit pipe option.
- -integrate=coZurnnNumeC, sigmuNumel - Specifies the name of a column to integrate,

and optionally the name of the column contgning the error in the integrand. May be
given any number of times.

- -versus=columnNume C, sigmaNume1 - Specifies the name of the independent variable
column, and optinally the name of the column containing its error.

- -rnainTemplates=item=stringC, . . .I - Specifies template strings for names and def-
inition entries for the integral columns in the output file. item may be one of name,
descr ip t ion , symbol. The symbols “%x7’ and “%y7’ are used to represent the indepen-
dent variable name and the name of the integrand, respectively.

- -errorTernplates=item=stn’ng[, . . .I - Specifies template strings for names and def-
inition entries for the integral error columns in the output file. item may be one of
name, descr ip t ion , the independent variable name and the name of the integrand,
respectively.

- -method=methodName - Specifies the integration method. At present, only trapizoidal
rule integration is support, so this option is ignored.

- -p r in tF ina l [=barel C y s tdout l - Specifies that the final value of each integral should
be printed out. By default, the printout goes to stderr and includes the name of the
integral. If bare is given, the names are omitted. If s tdou t is given, the printout goes
to stdout.

0 see also:

- sddsderiv (4.13)

0 author: M. Borland, ANL/APS.
f

50

4.21 sddsinterp

0 description: sddsinterp does polynomial interpolation of one or more columns of data as
a function of a common independent variable. Interpolation may be done at specified points,
a t a sequence of points, or a t points given in another SDDS file.

0 examples: Do second-order polynomial interpolation of Twiss parameters at 250 points to
get smoother-looking data:

sdds in t e rp APS.twi APS-interp -column=s,betax,betay -0rder=2 -sequence=250

0 synopsis:

sdds in t e rp [-pipe= [input] [,output] I CinputFiZel CoutputFiZel
[-columns=independentQuantity, name[, name. . . I3
{ -atValues=vaZuesList I
-sequence=points[, start, e n d I
-f ilevalues=uaZuesFiZe [, column=coZumnNamel [,parallelPagesl }
[-order=numberl [-printout [=bare] c, s tdoutll
[-belowRange={value=value I s k i p I saturate I extrapolate I wrap} [,{abort I

[-aboveRange={value=vaZue I s k i p I saturate 1 extrapolate I wrap} [,{abort I
warn}]

warn}]

0 files: inputFiZe is an SDDS file containing columns of data to be interpolated. One coluinn
is selected as the independent variable. Any number of others may be specified as dependent
variables. If inputFiZe contains multiple data pages, each is' treated separately. outputFiZe
contains the independent variable values at which interpolation was performed, in a column
with the same name as the independent variable in inputFiZe. Similarly, the interpolated
values are placed in outputFiZe under the same names as the independent columns froin
inputFiZe.

0 switches:

- -pipe [=input1 C, output1 - The standard SDDS Toolkit pipe option.
- -columns=independentQuantity,nameC, name. . .I - Specifies the names of the inde-

- -atValues=vaZuesList - Specifies a comma-separated list of values at which interpola-

- -sequence=points[, start, e n d - Specifies a sequence of equispaced points at which
interpolation is done. If start and end are given, they specify the range of these points.
If they are not given, the range is the range of the independent data.

- -f ileValues=vaZuesFiZe[, column=coZumnNamel C ,parallelpages1 - Specifies a set
of values at which interpolation is to be done. In this case, the values are extracted
from a column (coZumnName) of an SDDS file (vaZuesFiZe). If paral le lpages is given,
then successive pages of inputFiZe are interpolated at points given by successive pages of
vaZuesFiZe. Otherwise, each page of inputFiZe is interpolated at the values in all pages of
uaZuesFiZe; this can take quite some time if both files have many pages with many rows.

pendent and dependent variable columns.

tion is done.

51

- -order=number- The order of the polynomials to use for interpolation. The default is
1, indicating linear interpolation.

- -printout [=bare] [,stdout] - Specifies that interpolated values should be printed
to stderr. By default, the printout contains text identifying the quantities; this may
be suppressed by specifying bare. Output may be directed to the standard output by
specifying stdout.

abort I warn}, -aboveRange={value=vuhe I sk ip I saturate I extrapolate I
wrap} C, { abort I warn} - These options specify the behavior in the event that an
interpolation point is, respectively, below or above the range of the independent data.
If such an out-of-range point occurs, the default behavior is to assign the value at the
nearest endpoint of the data; this is identical to specifying saturate. One may specify
use of a specific value with value=vaZue. sk ip specifies that offending points should
be discarded. extrapolate specifies extrapolation beyond the limits of the data. wrap
specifies that the data should be treated as periodic. abort specifies that the program
should terminate. w a r n requests warnings for out-of-bounds points.

- -belowRange={value=vdue I skip I saturate I extrapolate I wrap}[,{

0 see also:

- sddspfit (see 4.24)
- Data for Examples (see 3.3)

0 author: M. Borland, ANL/APS.

52

4.22 sddsoutlier

0 description: s d d s o u t l i e r does outlier eliiiiination of rows from SDDS tabular data. An
“outlier” is a data point that is statistically unlikely or else invalid.

0 example: Eliminate “bad” beain-position-monitor readouts from P-4R x BPM data, where
a bad readout is one that is more than :

sddsou t l i e r par.bpm par-bpml -columns=P?P?x -stDevLimit=3

Fit a line to readout P l P l x vs PlP2x, then eliminate points too far from the line.

sddsp f i t par.bpm -pipe=out -columns=P1P2x,PlPlx
I sddsou t l i e r -pipe=in par.2bpms -column=PlPixResidual -stDevLimit=2

Same, but refit and redo outlier elimination based on the improved fit:

sddspf it par.bpm -pipe=out -columns=PlP2x,PlPlx
I sddsou t l i e r -pipe par.2bpms -column=PlPlxResidual -stDevLimit=2
I sddsp f i t -pipe -columns=PlP2x,PlPlx
I s ddsou t l i e r -pipe=in par.2bpms -column=PlPixResidual -stDevLimit=2

0 synopsis:

sddsou t l i e r [-pipe= Cinputl C, output1 1 CinputFilel CoutputFilel
C- columns= listOfNumes1 C- excludeColumns=Z~t OfNarnesl [- s t D evL i m i t = value]
C-absLimit=valuel C-absDeviationLimit=vaZuel’ [-verbose] C-noWarnings1

0 files: inputFile contains column data that is to be winnowed using outlier elimination. If
inputFiZe contains multiple pages, the are treated separately. outputFiZe contains all of the
array and parameter data, but only those rows of the tabular data that pass the outlier
elimination. Warning: if outputFiZe is not given and -pipe=output is not specified, then
inputFile will be overwritten.

0 switches:

- -pipeC=inputl [,output1 - The standard SDDS Toolkit pipe option.
- -columns=listOfNames - Specifies a comma-separated list of optionally wildcard con-

taining column names. Outlier analysis and elimination will be applied to the data in
each of the specified columns independently. No row that is eliminated by outlier anal-
ysis of any of these columns will appear in the output. If this option is not given, all
columns are included in the analysis.

- -excludeColumns=listOfNurnes - Specifies a comma-separated list of optionally wild-
card containing column names that are to be excluded from outlier analysis.

- -stDevLimit=vdue- Specifies the number of standard deviations by which a data point
from a column may deviate from the average for the column before being considered an
outlier .

- -absLimit=value - Specifies the maximuin absolute value that a data point from a
column may have before being co;sidered an outlier.

53

- -absDeviationLimit=vaZue - Specifies the maximuin absolute value by which a data
point from a column may deviate from the average for the column before being considered
an outlier.

- -verbose - Specifies that informational printouts should be provided.
- -nowarnings - Specifies that warnings should be suppressed.

0 see also:

- Data for Examples (see 3.3)
- s d d s p f i t (4.24)
- s d d s g f i t (4.18)
- sddsexpf it (4.16)
- sddscor re l a t e (4.12)

0 author: M. Borland, ANL/APS.

54

. r-

4.23 sddspeakfind
0 description:

sddspeakfind finds the locations and values of peaks in a single column of an SDDS file.
It incorporates various features to help reject spurious peaks. The column is considered a
function of the row index for the purpose of finding peaks. Hence, the data should be sorted
if necessary using sddssort prior to using this program. Le., if the data contains columns x
and y, and one wants x values of peaks in y: then one should ensure that the rows are sorted
into increasing or decreasing x order.
It may also be helpful to smooth the data using sddssmooth in order to eliminate spurious
peaks due to noisy data.

0 examples: Find peaks in a Fourier transform:

sddspeakfind da ta - f f t data.peaks -column=FFTamplitude

Sort and smooth the data first:

sddssort data.fft -column=f,increasing -pipe=out
I sddssmooth -pipe -columns=FFTamplitude
I sddspeakfind -pipe=in data-peaks -column=FFTamplitude

0 synopsis:

sddspeakf ind [-pipe= [input] [,output] 1 [irzputFiZel CoutputFilel
-column=coZumnNurne C-f ivePoints1 C-threshold=vuZucl
[-exclusionZone=fractionuZIntemull [-changeThreshold=fract~ona~~hunge~

0 files: inputFile contains the data to be searched for peaks. outputFiZe contains all of the
array and parameter data from inputFiZe, plus data from all rows that contain a peak in the
named column. No new data elements are created. If inputFile contains multiple pages, each
is treated separately and is delivered to a separate page of OutputFiZe.

. .
0 switches:

- -pipe[=inputl [,output1 - The standard SDDS Toolliit pipe option.
- -column=coZumnNume - Specifies the name of the column to search for peaks.
- -f ivePoints - Specifies peak analysis using five adjacent data points, rather than the

default three. For three-point mode, a peak is any point which is larger than both of
its two nearest neighbors. For five-point mode, the candidate point’s nearest neighbors
must in turn be higher than their nearest neighbors on the side away from the candidate
point.

- -threshold=vulue - Specifies a minimum value that a peak value must exceed in order
to be included in the output. By default, no threshold is applied.

- -exclusionZone=fractionuZInterval- Specifies elimination of smaller peaks within a
given interval around a larger peak. fmctionuZItrterval is the width of the interval in
units of the length of the data table.

55

- -changeThreshold=fract~o~uZC~ju~g€ - Specifies elimination of peaks for which the
fractional change between the peak value and the nearest neighbor points is less than
the given amount. If -fivepoints is given, the nearest neighbors in question are those
2 rows above and below the peak.

0 see also:

- sddsfft (4.17)
- sddssmooth (4.33)
- sddspeakf ind (4.23)

0 author: M. Borland, ANL/APS.

56

4.24 sddspfit

0 description: sddspf it does ordinary and Chebyshev polynomial fits to column data, in-
cluding error analysis. It will do fits to with specified number of terms, with specific t e r m
only, and with specific syinmetry only. It will also eliminate spurious terms.

0 synopsis:

sddspf it [-pipe= [input] E , output1 1 CinputFiZel CoutputFiZel
-columns=xlVume, yName[, xSigma=namel C, ySigma=namel -terms=raumber
[-symmetry={none I odd I even}] I -orders=number[, number. . .I
C-reviseorders [=threshold=valuel [,verbose]] [-chebyshev [=convert] 3
[-xOf f set=vulue] [-xFactor=value] [-sigmas={ absolute=vaZue I f ractional=zialue}l
[-modif ySigmas] [-generatesigmas [=keepLargest 1 keepSmallestl1
[-sparse=inteMtun [-range=Zozuer, upper] C-normalize [=temNumberl I ‘[-verbose]
[-f itLabelFormat=sprintfString]

0 files: inputFiZe is an SDDS file containing columns of data to be fit. If it contains multiple
pages, they are processed separately. outputFiZe is an SDDS file containing one page for each
page of inputFiZe. It contains columns of the independent and dependent variable data, plus
columns for error bars (“sigmas”) as appropriate. The values of the fit and of the residuals are
in a columns named .yNameFit and yNumeResidual. outputFiZe also contains the following
one-dimensional arrays:

- Order: a long integer array of the polynomial orders used in the fit.
- Coefficient: a double-precision array of fit coefficients.
- Coeff icientsigma: a double-precision array of fit coefficient errors. Present only if

- Coeff i c i en tun i t s : a string array of fit coefficient units.
errors are present for data.

outputFile also contains the following parameters:

Basis: a string identifying the type of polynomials use.
ReducedChiSquared: the reduced chi-squared of the fit:

where u = N - T is the number of degrees of freedom for a fit of N points with T terms.
rmsResidua1
xNumeOff set , xNumeFactor
Fi t IsVal id: a character having values y and n if the page contains a valid fit or not.
Terms: the number of terms in the fit.
sddspf i t label : a string containing an equation showing the fit, suitable for use with
sddsplot.
In t e rcep t , Slope, Curvature: the three lowest order coefficients for ordinary poly-
nomial fits. These are present only if orders 0, 1, and 2 respectively are requested in
fitting. If error analysis is valid, then the errors for these quantities appear as quantity-
Namesigma.

57

a switches:

- -pipeC=inputl C,outputl - The standard SDDS Toolkit pipe option.
- -columns=zName, yNumeC ,xSigma=rzame] C, ySigma=namel - Specifies the names of

the columns to use for the independent and dependent data, respectively. xSigma and
ySigma can be used to specify the errors for the independent and dependent data, re-
spectively.

- By default, an ordinary polynomial fit is done using a constant and linear term. Control
of what fit terms are used is provided by the following switches:

* -terms=number- Specifies the number of terms to be used in fitting. 2 t e r m is
linear fit, 3 is quadratic, etc.

* -symmetry={none I odd I even} - When used with -terms, allows specifying
the symmetry of the N terms used. none is the default. odd implies using linear,
cubic, etc., while even implies using constant, quadratic, etc.

* -orders=numberC,number.. .I - Specifies the polynomial orders to be used in
fitting. The default is equivalent to -orders=O, 1.

* -reviseorders C=threshold=valuel C, verbose] - Specifies adaptive fitting to
eliminate spurious terms. When invoked, this switch causes sddspf it to repeatedly
fit the first page of data with each term individually eliminated. If the resultant fit
is not significantly worse than the fit containing the term: then the term is judged
spurious and is eliminated. This stops only when elimination of any single term
makes asignificant worsening of the fit. By default, the criterion for a worse fit
is one that has a larger reduced chi-squared. The threshold qualifier is used to
specify how much larger the reduced chi-squared may be and still eliminate a term.
The default value is 0.1.

* C-chebyshevC=convertll - Asks that Chebyshev T polynomials be used in fit-
ting. If convert is given, the output contains the coeffients for the equivalent
ordinary polynohzials.

- -xOff set=vuZue, -xFactor=value - Specify offseting and scaling of the independent
data prior to fitting. The transformation is x 4 (x - Offset)/Factor. This feature can
be used to make a fit about a point other than x=O, or to scale the data to make
high-order fits more accurate.

- sddsp f i t will compute error bars (“sigmas”) for fit coefficients if it has knowledge of
the sigmas for the data points. These can be supplied using the -columns switch, or
generated internally in several ways:

* -sigmas=absolute=value I fractional=vulue - Specifies that independent-
variable errors be generated using a specified value for all points, or a specified
fraction for all points.

* -modif ySigmas - Specifies that independent-variable sigmas be modified to include
the effect of uncertainty in the dependent variable values. If this option is not given,
any x sigmas specified with -columns are ignored.

keepSmal1est)l - Specifies that independent-variable errors be generated from
the variance of an initial equal-weights fit. If errors are already given (via -column),
one may request that for every point sddspfi t retain the larger or sn ide r of the
sigma in the data and the one given by the variance.

* -generatesigmas [={keepLargest I

I

5s

- -sparse=intemul- Specifies sparsing of the input data prior to fitting. This can greatly
speed computations when the number of data points is large.

- -range=lower,upper - Specifies the range of independent variable over which to do
fitting.

- -normalize[=termNumberl - Specifies that coefficients be normalized so that the co-
efficient for the indicated order is unity. By default, the O-order term (Le., the constant
term) is normalized to unity.

- -verbose - Specifies that the results of the fit be printed to the standard error output.
- -f itLabelFormat=sprint~SfStn’ng - Specifies the format to use for printing numbers in

the fit label. The default is “%g”.

0 see also:

- Data for Examples (see 3.3)
- sddsexpfi t (4.16)
- sddsgf i t (4.18)

- sddsout l ie r (4.22)
- sddsplot (4.25)

0 author: M. Borland, ANL/APS.

59

4.25 sddsplot

0 description: sddsplot is a general purpose device-independent graphics program for dis-
playing parameter and column data from SDDS files. The program is equally capable of quick-
and-dirty plots and publication quality graphics. It allows organization of large amounts of
data from multiple files into useful plots with minimal effort. It provides line, point, symbol,
impulse, error-bar, and arrow plotting, with automatic variation of color, linetype, etc. It can
do data winnowing using the data to be graphed or other data in the file. Parameters from a
file can be designated for use as plot labels, legends, or for placement on the plot in specified
locations. Data pages may be tagged and sorted by multiple criteria.
sddsplot supports various flavors of Postscript, various windows options, and numerous
graphics terminals. For X-windows, a GUI interface is generated that supports zoom/pan,
cursor readout, movie mode, and much more.

0 examples: Plot the horizontal beta function for the APS design:

sddsplo t -columnNames=s, betax APSO. t w i

Plot the Twiss functions for the APS design:

sddsplot -columnNames=s,’(beta?,et~)’ APSO.tni

Plot the Twiss functions for APS lattices, one plotting page per lattice (Le.: per data page),
with different linetypes and a legend:

sddsplot -columnNames=s,’(beta?,etax)’ APS.tni -graphic=line,vary -legend
-spl i t=page -separate=page

Plot the Twiss functions for APS lattices, one plotting page per function, with each data page
shown with a different line type:

sddsplot -columnNames=s , ’ (beta?, e t a) ’ APS. t n i -graphic=line ,va ry
-spli t=page -groupby=nameIndex -separate=nameIndex

0 sddsplot concepts:

sddsplot has a very large number of options and is very flexible. In most cases, only a very
few of these options are employed. In order to make best use of sddsplot, it helps to be
familiar with certain concepts.
sddsplot supports multiple “plot pages” and multiple “panels” per page. In this context, a
“plot page” is a separate sheet of paper for hardcopy devices, and the equivalent for interactive
devices. For example, when using the X-windows interface just described, separate plot pages
are held in memory so that the user may go back and forth between them, or run them as
a movie. A plot page may contain several nonoverlapping panels, each displaying essentially
independent graphics. Presently, sddsplot divides the plot page into an array of plot panels,
each of equal size. The default is one plot panel per plot page.
Within each plot panel, sddsplot may display data from any number of “plot requests”. A
plot request is a specification to sddsplot of what data to plot from what files, and how to

60

do it. A plot request must contain or indicate a list of names of columns and parameters to
display, as well as the names of one or more files from which to extract the data. The data
from plot requests are organized into plot panels and plot pages according to certain defaults
or explicit instructions. One frequent choice is to move to a new panel for each plot request.
However, one may also regroup data to display data from different plot requests together.
For each request, the names of columns and parameters are grouped to form sets of sets of data
element names. For example, -columnNames=s, (betax, betay , etax) results in forination of
three sets of pairs: (s, betax), (s , betay), and (s , e t a) . In a more complicated exain-
ple, the sets of dataname sets might include names of error-bar data (e.g., (x, y , ysigma))
or vector components (e.g., (x, y, Ex, Ey)). To avoid confusion, a set of datanames like
those just listed will be referred to as a “name group”. Each name group for a request is
given a sequential “name index”, which can be used as shown in the last example above.
Each panel is divided into two regions, a “plot space” (or “pspace”) and a “label space”. The
pspace is the region where data is displayed. Outside the pspace is the label space, where
labels and legends normdy appears.
Any point on any plot panel can be referenced by unit coordinates (p, q) that start a t zero
in the lower left corner of the panel and end at unity in the upper right corner. The extent
of the pspace is given in these coordinates. The data or user’s coordinates, referred to as (x,
y), are mapped onto this space. By default, the region of the pspace that is covered by the
user’s coordinates is [0.15, 0.90]x[O.15, 0.901. This leaves room around the plot for numeric
and text labels. The pspace may be changed explicitly, or it may be altered implicitly by
certain switches (e.g., to make room for legends).
While the user seldom needs to worry about the pspace, it is useful to understand that any
point on the plot space may be addressed using the user’s or data coordinates (Le., (x, y)) or
the pspace coordinates (i.e., (p, q)).
When sddsplot reads.data in from files, it collects it into internal data sets. By default,
each of these internal data sets contains the all of the data for one name group from one
file. That is, an internal data set normally contains all of the data for a name group from an
SDDS data set. The phrase “internal data set” is used t o maintain the distinction between
the SDDS data set and the representation of data from an SDDS data set within sddsplot.
Associated with each internal data set is the request number, the filename, the file number
within the request, the y dataname, the name group index within the request, th\e starting
page number from the file, and an optional user-specified tag value (from the commandline
or a parameter in the file). These values may be used to sort and group the data in order to
place on individual panels sets of similar data from multiple sources. An instance of this is
shown in the last example above.

0 synopsis:

sddsplot [X l lSwitclies] CcommonSwitches] plotRequestSwitch fileNames 1ocalSwitches
CplotRequestSwitch fileNames 1ocalSwitches . . .I

The sddsploc command line is organized into three categories. First, one may issue any of
the standard X11 switches (e.g., -geometry). Second, one may give a set of switches, indicated
by commonSwitches, that will apply to all subsequest plot requests.
Third, one gives a series of “plot requests”. A plot request starts with one of several switches
that give the names of data elements to be plotted. It continues with the names of one or more

d

61

files from which this data is to be extracted. In addition, one may include various switches
that apply only to current plot request. These may, for example. override any common
switches that were set prior to the first plot request. In general, any switch may be given as a
common switch (so that it applies t o all plot requests unless overridden) or as a local switch.
In the examples above, only a single plot request is exhibited. There are no X11 switches
and no common switches set. The plot request is initiated by the -columnNames switch. The
-graphic and -legend switches are local switches.

0 switches:

- Initiating a plot request:

* -columnNames=xNume, yNumeListC, { ylNameList I xlNunie, ylArameList)l -
Specifies the names of columns to be plotted. xNume may be the nane of a nu-
meric or string column, which is normally plotted against the horizontal or x axis.
yNameList gives the comma-separated, optionally wildcarded names of one or more
columns of numeric data. Data for each item in yNumeList will be paired with the
x data for plotting.
Some types of plotting require additional data, such as error bars or vector com-
ponents. These are specified with the zlNume and ylNanteList. Each item in
ylNumeList is paired with the corresponding item in yNameList; the lists iiiust
have the same length. The interpretation of the additional data is specified with
the -graphic=error or -arrow switches. For eTror bar plotting, one may give error
bars for both x and y by giving xlNume and ylNumeList, or for y only by giving
ylNumeList. For arrow plotting, giving ylNumeList only is allowable for vectors
perpendicular to the page. Giving both .xlNume and ylAiameList is required for
vectors in the plane of the page.
One may give several -columnNames switches in a row in order to specify additional
“datanames” for’ the request. This may be convenient if, for example, one wants
several different x variables.

* -parameterNames=xNume, yNumeListC, {ylNumeList I xlATame, y1NameList)I -
Identical to -columnNames, except it specifies parameter data to be plotted. As
with -columnNames, several such options may be given in a row in order to add
datanames.

* -keepC={names I files}] - Specifies starting a new plot request, but retain-
ing certain information from the previous request. If given without qualifiers, the
datanames (as specified by -columnNames or -parameterNames) and filenames from
the previous request are kept; this allows plotting the same data again in a different
way. If the names qualifier is given, the datanames from the previous request are
retained. If the f i l e s qualifier is given, the filenames from the previous request are
retained.

* -mpl[=noTitle] [,noTopline] - Allows plotting of mpl data files with sddsplot.
The x and y columns of the mpl file are used. The qualifiers may be employed to
inhibit use of the mpl plot title and topline.

- Controlling output type:
* -1istDevices-Lists the names of available graphics devices to the standard error

output.
1

62

*

*

-device=deviceNameC, deviceArgunaenfs] -Specifies the name of the graphics de-
vice, plus optional device-specific arguments. The default device is “motif”, unless
the SDDSDEVICE environment variable if defined, in which case the default device is
the one named.
-output=filename-Specifies the name of a file to which graphics output will be
sent. Used primarily for hardcopy devices (e.g., Postscript) where the data will be.
sent to a printer. By default, the data for such devices is printed to the standard
output.

- Controlling type of plotting:
*

*

-graphic=element[, type=integer] [,subtype={ integer I
type}] [,connect [={linetype I type I subtype}] [,vary[={type I
subtype}]] [, scale=factor] [,{eachFile
I eachPage I eachRequest}]-Specifies the type of graphic element to use for
data in the present plot request.
element may be one of l i n e , symbol, errorBar, impulse, bar, dot, or ontinue.
These are largely self-explanatory. continue specifies continuing whatever was done
in the previous request. impulse is a line extending from y=O to the data value,
while bar is a line extending from the bottom of the plot region to the data value.
The type field for the graphic element has different meanings for different elements.
For lines, impulses, bars, and dots, the type is the color or line style used, depending
on the device. For most devices, values between 0 and 15 inclusive given unique lines.
For symbols and error bars, the type specifies the style of symbol or error bar to use;
the value is between 0 and 8 inclusive for symbols and beta-een 0 and 1 inclusive for
error bars.
The subtype field is meaningful only for symbols and error bars. It specifies the
line style or color to be used in making the symbol or error bar. -4s for the type
field for line plotting, the value may be between 0 and 15 inclusive. The connect
qualifier is also valid for symbols and error bars only. It specifies that the symbols
and error bars should be connected by lines. By default, the line type used is 0.
-arrowSettings=[,autoScalel [scale=factorl C, {cartesianData I polarData
I
scalarData}] C, linetype=integerl C, centered] [, singleBarb] C, barbLength=vakc
Specifies parameters for plotting vectors using arrows.
autoscale specifies that the scale factor for the length of arrows should be chosen
automatically; if several data pages are being plotted separately, the same scale is
used for all of them. scale may be used instead of autoscale to set the factor man-
ually; if both are given, then the factor given with scale multiplies that computed
by autoscale.
l i ne type specifies the line type to use for the arrows, using the same mechanism
as for lines in the -graphic switch. The default is 0.
cartesianData, polarData, and scalarData specify the type of data being pro-
vided. For the first two, one must have specified both xlA-ame and ylA‘arneList in
the plot request; for cartesianData, x l and y l are the x and y vector components,
while for polarData x l is the length and yl is the angle in radians from the positive
x direction.
centered specifies that arrows should be centered on the corresponding (x, y) point;
by default, the arrow starts at the (x, y) point. singleBarb specifies that arrows

63

should have only a single barb, rather than the default two barbs; t is can be
significantly faster for large amounts of data. barbLength and barbAngle specify
the length and angle of arrow barbs; the barb length is a specified as a fraction of
the arrow length, which the barb angle is specified in degrees.

* -1inetypeDef ault=integer- Specifies the default line type for borders, legend text,
labels, axes, and so on. If not given, 0 is used.

- Controlling the plotting region:
* -scales=zmin, zrnazytnirz, yrnax-Specifies the region of the plot in user’s coordi-

nates. If zmin and zrnuz are equal, then autoscaling is used in x, and siiiiilarly for y.
Note that data outside the specified region is still plotted, so that proper clipping
of lines occurs.

* -unsuppressZero[=xl C,yl-Specifies that x=O and/or y=O should be within the
region of the’plot. If given without qualifiers, both x and y are “unsuppressed”.

* -sameScaleC=xl C,yl-Specifies that separate panels of data shall be displayed on
the same scales. In other words, any autoscaling is done based on all of the data,
rather than simply the data on a particular plot panel. If given without qualifiers,
both x and y are affected.

* -zoom= CxFactor=vaZuel C , yFactor=valuel C , { xCenter=value I qCenter=value}f
C, { yCenter=vaZue I pCenter=value}l -Specifies zoom and pan starting from the
scales set by autoscaling or by -scales. A factor less than (greater than) unity
zooms out (in). For each dimension, one may specify the center of the plot using
either the

* -aspectRatio=vaZue-Specifies the y/x aspect ratio of the plot. The value must be
nonzero. If it is positive, then the desired aspect ratio is obtained by altering the
pspace. If it is negative, the desired aspect ratio (the absolute value of the value
given) is obtained by altering the data coordinate range.

* -pSpace=hMin, hMaz, vMin, vMa-This option is seldom used, but allows control
of the region of the panel that is mapped to data coordinates, said region being the
“plot space” or “pspace”. The first two coordinates give the horizontal extent, while
the second two give the vertical extent. The coordinate.values are.between 0 and 1.
The defaults are [0.15, 0.9]x[0.15,0.9].

- Controlling axes, numeric labels, ticks, and grids: \

* -axes C=xl C,yl Calinetype=integerl-Spec3ies that axes will be placed on the plot,
if they are visible. By default, both x and y axes are created, with the same linetype
as the labels, scales, and plot border. One may select a.given axis by supply the x
or y qualifier. One may specify the line type to use for the axes using the l i ne type
qualifier.

*
-t ickSettings= C,{zy}grid] [,grid] C{zy}spacing=valuel C, {xy}f actor=valuel c , {zy}modul
Specifies how to make ticks and numeric labels for the x and J- dimensions. All of the
qualifiers have an x and y variant, e.g., xg r id and ygrid. Some have a variant that
includes both x and y (e.g., grid). In the case of the grid option. xg r id specifies
grid lines rather than ticks for the x dimension, yg r id is similar for the y dimension,
and grid specifies grid lines in both dimensions.
The f a c t o r qualifiers specify factors to apply to the data values in producing the
labels. For example, one might want to muliply small values by a power of ten in

64

order to get labels that are of order units. The spacing values give the spacing
of the ticks and labels with any factor included. Le., to keep the sanie number of
ticks, f a c t o r and spacing values must be increased together. Usually, giving the
spacing qualifiers is unnecessary, since sddsplot chooses appropriate values.
The modulus qualifiers allow printing the modulus of the label value rather than
the value itself; for example, one might use xmodulus=24 if x was the time in hours
over many days. The s i z e qualifiers permit specification of the size of the ticks as
a fraction of the range in the opposing dimension; the default is 0.02. The linetype
qualifiers specify the linetype to be used for ticks and grid lines, using integer values
as for the -graph=line switch. The logari thmic qualifiers specify log-style ticks
and labels; the implication is that the data being plotted is the base-ten logarithm
of something .

-subTickSettings= [{xy)divisions=~nteger] [, [{xy}] grid1 [, [{xy}] linetype=integerl C, [(
Specifies whether and how to make subticks or subgrid lines for the x and y dimen-
sions. All of the qualifiers have two or more variants, one that applies to x, one
that applies to y, and (in some cases) one that applies to both. For example, xgrid
requests grid lines for x, ygrid requests grid lines for y, and g r i d requests grid lines
for both x and y. The d iv i s ions qualifiers specify the number of subdivisions of
the major tick intervals; the default is none. The l i ne type qualifiers specify the
line type to use for subticks or subgrid lines. The f r a c t i o n qualifiers specify the
size of the subticks as a fraction of the plotting region; the default is 0.01.

* -grid[=x] [,y]-This option is superseeded by the - t i ckse t t i ngs option. It per-
mits specification that grids (rather than ticks) will be used for major divisions.

* -noScales-Specifies that no scales (i.e.,.no ticks, subticks, or numeric labels) will
be plotted.

* -noBorder-Specifies that no border will be made around the plot region. Implies
-noScales.

- Controlling text labels:

*

* -xLabel= [{ @parameterName
I string}] [,off set=valuel [, scale=value] [, edit=stn'ng]-Controls size, place-
ment, and content of the x dimension label, which appears directly under.,the scale
labels. The default text is of the form symbol (units), where the symbol and units
are taken from the column or parameter definition fields in the SDDS header for the
x data. If the symbol is blank, then the element name is used. Alternatively, the
text may be taken from a named string parameter, or from a string that is given ex-
plicitly. In addition, the text may be edited using Toolkit editing commands (SDDS.
e d i t i n g (4.40)). The o f f s e t and s c a l e qualifiers allow changing the position and
size of the label. The of f se t is specified as a fraction of the vertical dimension of
the plot region. The s c a l e is simply a multiplicative factor.
Note that if the value of the parameter parameterArame changes from page to page
in a file, and if separate pages are plotted in different panels, then the label for each
panel will be different. If the pages are plotted together, the value of the paraxneter
from the first page will be used.

* -yLabel-This switch has identical usage to -xLabel. -yLabel controls the y di-
mension label. The default text contains the y data names of all the columns and
parameters being displayed. If the data all have the same units, the units are dis-

65

played as well. This information is taken from the appropriate entries in the SDDS
header. The o f f se t qualifier gives the label offset as a fraction of the horizontal
dimension of the plot region.

* -verticalPrint={up I down}-Specifies the direction of print for the y diinension
label. The default is up.

* -title-This switch has identical usage to -xLabel. The default text is from the
contents field of the description command in the first file from which data is
displayed.

* -topTitle-Normally, the title goes below the x diinension label. This switch
directs that it be placed at the top of the plot, above the ':topline label".

* -topline-This switch has identical usage to -xLabel. It is blank by default.
* -f ilenamesOnTopline-Directs that the topline text contain the names of the files

from which data is displayed.
* -labelSize=fraction-Specifies a common size for all labels, including numeric la-

bels. The fraction is the horizontal size of the characters as a fraction of the hori-
zontal size of the plot region.

* -noLabels-Specifies that no labels (i.e., x and y dimension labels, title, and topline
label) will be made.

* -string={ @parameterName I string}, {xCoordinate=uahe I
pCoordinate=vahe} , {yCoord+ate=value I
qCoordinate=vake} [, scale=factor] c, angle=degreesl C, justify=rnode]
C , linetype=integerl C , edit=stringl -Specifies display of string data on the plot.
The string may either be extracted from a named string parameter or given explic-
itly. If the value of the parameter parameterNarne changes from page to page in
a file, and if separate pages are plotted in different panels, then the label for each
panel will be different. If the pages are plotted together, the value of the parameter
from the first page will be used.
The coordinates of the string may be specified either in users coordinates (i-e., x
and y), or unit coordinates (i.e., p and q); the unit coordinates are (0,O) at the lower
left of the plot region and (1,l) at the upper right. scale permits changing the size
of the letters by a specified factor. angle permits changing the angle of the string;
a value of 90 gives upward vertical print.
Normally, text is "left bottom" justified, which means that the coordinates given
are those of the left bottom comer of the first letter of the string. Justification may
be changed with the j u s t i f y qualifier, which accepts a mode string of the form { 1
I r I c}{t I b I c}. The letters stand for Left, Right, Center, Top, and Bottom,
respectively. The default justification would thus be specified as j u s t i f y=lb.
The text is normally creating using line type 0. This may be changed with the
l i ne type option. As with the other labels, the text may be edited using Toolkit
editing commands (SDDS ed i t ing (4.40)).

* -datestamp-Directs that a time and date stamp be placed on the plot. It appears
in the upper left corner of the plot.

- Altering or rearranging data prior to plotting:
* - factor= CxMultiplier=vaZuel C, yMultiplier=ualuel-Specifies that the x and/or

y data for the present request will be multiplied by the given values. Note that it is
the users responsibility to ensure that the units that are displayed are corrected, if
required.

66

t

* -swap-Specifies that the x data will be plotted as y and vice-versa.
* -transpose-Specifies that the data matrix be transposed prior to plotting. This

means, for example, that if the plot request specified N coluiiins of y data and if the
table contained M rows, one would get a plot of M quantities as a function of the
index of the column. The implicit assumption is that the S coluinns contain coin-
parable quantities. This would allow one to display, for example, how the quantities
changed from row to row in the data. Each row of data thus organized is marked as
a separate “subpage” (see the -groupBy and -separate switches), so that one can
for example split rows onto separate panels.

logarithmic I normalize I off se t I spec ia l sca l e s} C , . . -1 -Invokes one or
more standard transformations of data, independently for x and y values. The
l i n e a r mode is normally the default. logar i thmic mode implies that the base-ten
logarithmic of the appropriate values is taken prior to plotting. N o r k d y , this does
not produce log-type scales; use of the s p e c i a l s c a l e s keyword together with the
logarithmic keyword will obtain this. normalize mode directs that data be dis-
played after independent normalization to the interval [-l: 11; to do this, the data
is divided by the maximum absolute value in the data. o f f se t mode directs that
data be shifted so that the smallest value is identically zero.

Directs that data displayed on the. same panel will be incrementally offset for display.
This is useful in order to make mountain range plots, or to offset similar data for
clarity. xIncrement and yIncrement are used to specify the increments for each
dimension; zero is the default. Normally, only data from the same column or pa-
rameter is staggered, with the stagger amount increasing with each page in the file.
The f i l e s qualifier directs incrementing the offset when plotting proceeds to a new
file on the same panel. The datanames qualifier directs incrementing the offset when
plotting proceeds to a new dataname (i.e., column or parameter name) within the
same file on the same panel.

* -mode={x I y}={linear I

* -stagger= CxIncrement=vabel C,yIncrement=valuel [,f i les] [,datanames]-

*
-enumeratedScales= Cinterval=integerl C, scale=factorl [, rotate] C, editCommand=stm’ngl-
Allows control of the display of enumerated value strings when the x data is of string
type. interval=Nspecifies displaying and making a tick for every N f h enumerated
value; the default is 1. scale specifies a factor by which to increase the size of the
text. r o t a t e specifies rotation of the printed text from the normal orientation to
the optional orientation; if enumerated data is displayed along the x dimension, the
normal (optional) orientation is vertical (horizontal) printing. These are reversed if
the enumerated data is displayed along the y dimension.

- Creating legends:
* -legend= C{xy}symbol I {xy}description I f i lename I specif ied=stn’ng I

parameter=name] c , editCommand=string] C,f i rs tFi leOnly1 C,scale=factor]-
Specifies creation of a legend for the datanames in the current request. By de-
fault, the legend text is the symbol field for the y data; if the symbol is blank, the
dataname is used. xsymbol and ysymbol specify use of the x or y data symbols, or
the datanames if the requested symbol is blank. xdesc r ip t ion and ydescr ipt ion
specify use of the indicated description fields. f i lename specifies use of the name
of the fde from which the data comes. specif ied=stn’ng specifies use of the given

J

67

string. parameter=name specifies use of the contents of the named string parame-
ter. Any legend text may be editing using SDDS editing commandsSDDS Editing
(??) via the editcommand qualifier. If f i r s tF i l eOnly is given, only the first file
in the request will have legends generated. If scale=factor is given, the legend text
size is scaled by the given factor.

* -1Space=qmin, qmax,pmin,pmax-Specifies the region in which legends will be
placed. The coordinates are pspace coordinates. Since the legends are typically
outside the pspace, the coordinates may be greater than unity. For example, the
default values are [1.02, 1.18]x[O.O, 1-01. This option is usually used to place the
legend inside the pspace, or to extend the size of the lspace to accomodate long
legend text.

- Creating overlays:
*

-overlay=[{xy}mode=mode] [, {xy}factor=value] [,{xy}offset=vaZue] [, {xy}center]-
Normally, sddsplot displays all data on a single panel on the same scale. In some
cases, one wants to overlay data that is on a different scale from other data on the
panel. One way to do this is with the -overlay switch, which gives convenient
control of how overlayed data is displayed. Any data in a plot request for which this
switch is given will be overlayed as specified.
The xmode and ymode options all0.w two types of scaling for x and y independently.
A mode of normal means that the indicated data is treated normally. The default
mode is unit, which means that the data is scaled so that its full range is equal to
the full coordinate range of the plot in the appropriate (x or y) dimension.
The datais further adjusted according to any additional qualifiers given. The center
qualifiers offset the data so that the data is’centered in the plot space; normally, zero
in t.he data is mapped to zero in the user’s coordinates. The factor qualifiers scale
the data by the given factor about the center value. The offset qualifiers offset
the data by specified amounts; if mode=normal, the offset is in user’s coordinates,
otherwise it is in pspace coordinates.
Users needing only the f a c t o r facility should consider the -factor switch, since it

.

* is easier to use.
- Controlling plot panels:

* -newpanel-Specifies that the current plot request will start a new plot panel.
* -endF’anel-Specifies that the current plot request will end the current plot panel.
* -layout=liNumber, vNumberC , limitPerPage=integerl -Specifies the layout of pan-

els on each plot page. The maximum number of panels on any page is the product
of hNumber and vNumber, which are the number of panels horizontally and verti-
cally, respectively. The default is hATumber=l and vArumber=2. If l imitperpage is
given, then only the specified number of panels will appear on any page; for exam-
ple, -layout=:! , 2, l imit=3 would imply three panel spaces per page, with one left
blank.

- Grouping, sorting, and separating data:
* -sever [=xgap=vaZuel [, ygap=vaZuel-For line plotting, sddsplot will normally

connect points sequentially without regard for gaps in the data. The -sever switch
specifies various means of locating gaps in data and directs lifting the “pen” when-
ever a gap occurs. If -sever is given without qualifiers, the pen is lifted whenever

68

the x value decreases; this is useful for plotting data ivhere the x value is exl>ected
to increase monotonically for each group of points.
The xgap and ygap data are more sophisticated: a n d more generally applicable.
For each dimension for which severing is requested, the pen is lifted whenever the
absolute difference of two successive values exceeds a defined limit. This limit is
specified either in absolute or fractional terms using the value entry. If value is
positive, the gap threshold is equal to value. If value is negative, the gap threshold
is -value times the mean spacing between successive points; a value of -1.5 has
been found to work well for data that is roughly equispaced with occasional missing
points.

* -tagRequest={ number I (Pparameter~ame)-Specifies that data from the current
requested will be tagged with either the given (generally floating-point) number, or
with the values from the numeric parameter parameterNarne. Using the -groupBy
and -separate options permits grouping and sorting of data by tag values. If a
data set has multiple pages in the file, and if pages are split (see - s p l i t below),
then parameter-tagged data will have the parameter value from the first page in
each group of pages. .

-groupBy[=request] [, tad [,f ileIndex] [,nameIndexl [,page] [subpage] [,f i l e S
-Specifies how internal data sets will be ordered. -sortBy might have been a more
appropriate name for this switch. The qualifiers that appear in the list are shown
in the order that corresponds to the default sorting. The file index is the sequential
number within the request of the file from which the internal data set is taken; the
file string is the name of the file. The name index is the sequential index within the
request of the dataname group for the internal data set, while the name string is
the name of the y data. The page is the sequential number in the file of the first
SDDS data page from which data appears in the internal data set. The subpage is
a sequential number within each internal data set: which allows subdivision of the
internal data set. The request is the sequential number of the plot request that re-
sulted in generation of the internal data set. The tag is a single user-supplied value
or a value read from a parameter that is associated with each internal data set; by
default, all data sets are tagged with the value 0. If a file is split into several internal
data sets, each may have a different tag value if the tag is read from a parameter; in
this case, the data sets are eached tagged with the value for the first included data
Page.
The order in which the qualifiers to -groupBy are given determines the priority
of sorting by the various criteria. In the default ordering, data sets are sorted by
request number, subsorted by tag (usually a null operation unless data is tagged
by the user), subsubsorted by file index, subsubsubsorted by dataname index, etc.
Each successive qualifier results in moving the indicated sort criterion to the next
highest priority. Any qualifiers not given are retained in the default order.
If one wanted to bring together, for example, internal data sets with the same data
name, one would give -groupby=nameString. In this case, the new sorting priority
would be namestring, request, tag, etc.

* -separate C={numberToGroup I groupsOf =number I f i leIndex 1 f i l e S t r i n g
I nameIndex I namestring I page I subpage I request
I tag}]-Specifies how to separate internal data sets onto panels. If given with

*

69

t r ing] [

no qualifiers, each internal data set is placed on a separate panel. If given with a.
single integer argument, or with the groupsof qualifier, then the specified number
of data sets appear on each panel; the data sets are assign to panels in the order
determined by -groupBy or the default thereof.
If one of the other qualifiers is given, then panel separation occurs when the indicated
criterion changes as the data sets are accessed in sorted order. Most commonly, one
uses -groupby=criterion -separate=cn'terion. For example, one might want to
group by filename and separate by filename.

parameterChange=name[,width=~uZue] C,offset=vuluel I
columnBin=name,width=nanie[, start=oaluel C, completely] }-As discussed in
the introductory sections, when sddsplot reads data for one dataname group from
a file, it normally concatenates data from successive pages to form a single internal
data set. This wodd mean, for example, that all of the data from the file would
be displayed with the same linetype or symbol. The - s p l i t switch overrides this
behavior, splitting the data into multiple internal data sets.
The simplest and most commonly-used way of doing this is to split the data page
boundaries; this is done using the -spl i t=pages mode. The optional i n t e r v a l
specifies spliting after a specified number of page boundaries. Splitting data does
not imply that the data will appear on separate plot panels, but allows this and other
possibilities. (To separate page-split data onto panels, one uses -separate=pages,
as discussed above.)
One can also page-split based on the value of a parameter, using
-split=parameterChange. This directs that a new internal. data set will be started
wheneven the named parameter changes. .For numeric parameters: the width and
start qualifiers may be used. If width is specified, the change must exceed the given
value before a split occurs. If start is specified, the reference value for changes
is set to the given value; otherwise, the first parameter value is used. (For ex-
ample, one might wish to split when.a parameter changed by 5 units referenced
from 2.5 units, giving boundaries of 7.5, 12.5, etc.; this would be obtained with
width=5,start=2.5.)
The columnBin mode is different from the other two modes. Rather than split-
ting data into internal data sets at page boundaries, it groups or bins data into
subpages according to the value in a specified numeric column. (It is appropriate
only for plotting column data.) columnBin mode may be used with pages mode
to split and subsplit data into pages and subpages. For example, one might have a
data file with many pages of time-series data. One might want to plot each page
separately, but within each page one might want to color-code the points accord-
ing to some value in the table (e.g., a valid-data indicator). This would be ac-
complished using -spl i t=pages , columnBin=nume, nidth=vahe -separate=pages
-graph=dot,vary,eachPage.

* -omnipresent-Specifies that the data sets from the current request will appear on
all plot panels.

* -split={pages C , interv&=integerl I

- Winnowing data:
*

- l i m i t = CxMinimum=valuel C, xMaximum=vaZuel C , yMinimum=vabel C, yMaximum=vuluel-
Specifies limits to be placed on x and y values prior to plotting. Points beyond the

70

indicated limits are eliminated from the data prior to plotting. This complements
the facility available from - f i l t e r and -match in that one need not specify the
name of the data one is winnowing with. This perinits easier filtering of data from
many columns or parameters.

* -sparse=interval[, offset]-Specifies that only every interval"' point will be used. If
offset is not given, the first point in the internal data set is the first taken; otherwise,
the offsetth point is the first taken.

* -sample=fraction-Specifies random sampling of data to retain only the indicated
fraction of the points. jraction gives the probability that any point will be used.
Hence, the data actually used may vary from run t o run since the random number
generator is seeded with the system clock.

* -clip=head, tail[, inver t] -Specifies removal of head points from the beginning
and tail points from the end of each internal data set. If i n v e r t is given, the points
that would have been removed are instead the only ones used.

parameter) , rangeSpec C , rangespec [, ZogicOperation. . . I1 - Specifies winnow-
ing each internal data set based on numerical data in parameters or columns. A
range-spec is of the form namelower-value, upper-value C, ! 1 , where ! signifies
logical negation. A point passes a column-based filter if the value in the named
column is inside (or outside, if negation is given) the specified range, where the.
endpoints are considered inside. parameter-based filters are similar, except that
the point passes only if the value of the named parameter for the page from which
it comes is acceptable. One or more range specifications may be combined to give a
accept/reject status by employing the logic-operations, & (logical and) and I (logical
or).

* match - Specifies winnowing based on data in string parameters or columns. A
match-test is of the form name=matchingStringC , ! 1 where the matching string may
include the wildcards * (matches zero of more characters) and ? (matches any one
character). In other respects, match is just like f i l t e r .
If the first character of matchingString is '@I7, then the remainder of the string is
taken to be the name of a parameter or column. In this case, the match is performed
to the data in the named entity.

* -filter={column I

,.

0 special characters: sddsplot supports Greek and mathematical characters in labels and
strings through special sequences embedded in text strings. -4 similar mechanism is used to
allow character-by-character control over size and positioning. The special sequences are of
the form $character, where character may be one of the following:

- a, b, n: provide subscript and superscript control. a puts the character Above the normal
position (superscript), b puts the character Below the normal position (subscript), and
n returns to Normal.

- g, r: provide for switching between Greek and Roman character sets. $g switches into
Greek mode, while $1. switches back to Roman mode. The correspondance between
Greek characters and the alphabet is shown in Figure ??. For example, to make a
lower-case alpha, one would use gar.

- s, e: provide for switching between Special and normal characters. $ s switches to special
character mode, which provides mathematical and other symbols. Figure ?? shows the

I

71

correspondance between special characters and keyboard characters. For exaniple, to
make a f symbol, one would employ sae, while a right-pointing arrow would be
obtained with $&$e.

. - i , d: provide for Increasing and Decreasing the character size. The two sequences $i
and $d are inverses of each other. $i increases the size of subsequent characters by 50%,
while $d decreases the size of subsequent characters by 335%. These are seldom used,
since sddsplot provides other means of controlling the size of characters in labels and
strings.

- u, v: provide for motion of the baseline Up and down by one half character height.
- t , f : provide for making Taller and Fatter characters. $t makes characters twice as tall

while maintaining width, while $f makes characters half as tall while maintaining width.
- h: specifies moving back one half space.

0 environment variables:

0 see also:

- Data for Examples (see 3.3)
- S D D S e d i t i n g (4.40)

0 author: M. Borland, ANL/APS.

0 acknowledgements: sddsplot uses device driver code from the program GNUPLOT, with
modifications and enhancements made at Argonne. 'The GNUPLOT code is covered by a
separate copyright, and is used by permission of the authors. See the G N U P L O T M A D M E file
included with the distribution for restrictions associated with this code.
The GUI-interface X-windows program (mplrmotif) was written by K. Evans of ANL/APS.

72

4.26 sddsprintout

0 description:
sddsprintout provides formatted text output of data from columns and parameters. It is
similar to sdds2stream, but provides better control of the appearance of the text.

0 examples: Make a printout of APS design beta functions along with the tunes:

sddsprintout APSO.twi -column=ElementName -column=’beta?’ -parameters=’nu?’

0 synopsis:

sddsprintout [-pipe= Cinputl 1 CSDDSinputl CoutputFilel C-width=integerl
C-columns C=nameL2tC,f ormat=stringl E, ends l ine l l
[-parameters C=nameListC ,f ormat=string] E, endsline] 1 C-f romPage=numberl
C-toPage=numberl C-f ormatDef aults=SDDStype=formatSt~ngC, . . .I1

0 files: SDDSinput is the SDDS file from which data is printed. outputFile is a file to which
the printout will go; by default, the printout goes to the standard output.

0 switches:

- -pipeC=inputl - The standard SDDS Toolkit pipe option.
- -width=integer- Specifies the width of the output line in number of characters. The

default is 130.
- -columns=nameListC,f ormat=stringl C, endslinel - Specifies the names of columns to

appear in the printout. nameList may contain one or more comma-separated strings,
each of which may contain wildcards. If more than one string is given, the list nus t be
enclosed in parentheses, e.g., -columns=’ (betax,betay) ’. The format qualifier may
be used to specify a.printf-style format string for the named columns; in this case, all
of the columns must have the same data type. The format string should contain a width
field, to ensure proper alignment of text; e.g., %30s rather than %s. If the endsLine
qualifier is given, a line break is issued after the last column of the list is printed.

- -parameters=nameListC,f ormat=string] C, endsline] - Specifies the names of param-
eters to appear in the printout. Identical to -columns in other respects.

- fromPage=number - Specifies the first data page of the fde that will appear in the
printout. By default, the printout starts with data page 1.

\

- toPage=number- Specifies the last page of the file that will appear in the printout. By
default, the printout ends with the last data page in the file.

- formatDef aults=SDDStype=formatStringC, . . .I - Specifies default p r in t f format
strings for named SDDS data types. The SDDStype qualifier may be one of f l o a t ,
double, long, shor t , s t r i n g , or character.

0 see also:

- Data for Examples (see 3.3)
- sddsstream (??)

0 author: M. Borland, ANL/APS.

73

4.27 sddsprocess

0 description:
sddsprocess operates on the data columns and parameters of an existing SDDS data set
and creates a new data set. The program supports filtering and matching operations on
both tabular data and parameter data, definition of new parameters and columns in terms of
existing ones, units conversions, scanning of string data to produce numeric data, composition
of string data from other data types, statistical and waveform analyses, and other operations.

0 examples: Compute the square-roots of the beta-functions, which are the beam-size en-
velopes:

sddsprocess APS.twi -define=column,sqrtBetax,"betax s q r t "
-def ine=column, sqrtBetay , "betay sqr t l '

Compute the horizontal beam-size, given by the equation

sddsprocess APS.twi -define=parameter,epsx,8.2e-9,units=nm
-define=parameter,sigmaDelta,le-3 -define=column,sigmax,"epsx betax *
sigmaDelta e t a * s q r + sqrt'l,Units=m

0 synopsis:

sddsprocess C-pipe [=input1 C, output1 1 CinputFilel CoutputFilel options

0 files: inputFile is an SDDS file containing. data to be processed. If no options are given, it
is copied to outputFile without change. Warning: if no output filename is given, and if an
output pipe is not selected, then the input file will be replaced.

0 switches:

- Data winnowing: Any number of the following may be used. They are apphd in the
order given. Note that :match and - tes t are the most time intensive; thus, if several
types of winnowing are to be applied, these should be used last if possible.

* -filter={column I
parameter} , rangespec C , rangespec[, 1ogicOperation. . -11 - Specifies winnow-
ing inputFile based on numerical data in parameters or columns. A range-spec is of
the form name=lower-value, upper-value[, !I , where ! signifies logical negation.
A page passes a given filter by having the named parameter inside (or outside, if
negation is given) the specified range, where the endpoints are considered inside. A
tabular data row passes a given filter in the analogous fashion, except that the value
from the named column is used. One or more range specifications may be combined
to give a accept/reject status by employing the logic-operations, & (logical and) and
I (logical or).

74

* match - Specifies winnowing inputFiZe based on data in string paraineters or
columns. A match-test is of the form name=matchingStrir~gC, !I where the match-
ing string may include the wildcards * (matches zero of inore characters) and ?
(matches any one character). In other respects, match is just like f i l t e r .
If the first character of matchingStn'ng is '@', then the remainder of the string is
taken to be the name of a parameter or column. In this case, the match is perforiiied
to the data in the named entity. For column-based matching, this is done row-by-
row. For parameter-based matching, it is done page-by-page.

* -test={column I parameter}, testC,autostopl - Specifies winnowing of input-
File based on a test embodied in an rpn expression. The expression, test, may use
the names of any parameters or columns. If autostop is specified, the processing of
the data set (or data page) terminates when the parameter-based (or colunin-based)
expression is false.

* -clip=head, tail[, invert] - Specifies the number of data points to clip from the
head and tail of each page. If invert is given, the clipping retains rather than
deletes the indicated points.

* -sparse=intervaZC,offsetl - Specifies sparing of each page with the indicated in-
terval. That is, only every intentaph row starting with row offset is copied to the
output. The default value of offset is 0.

* -sample=fruction- Specifies random sampling of rows such that approximately the
indicated fraction is kept. Since a random number generator is used that is seeded
with the system clock, this will usually never be the same twice.

- rpn calculator initialization:

* -rpnDef initionsFiles=fiZenane. . . - Specifies a list of comma-separated file-
names to be read in as rpn definitions files. By default, the file named in the
RPNDEFNS environment variable is read.

* -rpnExpression=ezpressionC,repeat] - Specifies an rpn expression to be exe-
cuted. If repeat is not specified, then the expression is executed before processing
begins. If repeat is specified, the expression is executed just after each page is read;
it may use values of any of the numerical parameters for that page. This option
may be given any number of times.

- Scanning from, editing, printing to, and executing string columns and parameters:

* -scan={column I
parameter} , newhrame, sourceiVume, sscanfstring C , definitionEntries1 - Specifies
creation of a new numeric column (parameter) by scanning an existing string column
(parameter) using a sscanf format string. The default type of the new data is dou-
ble; this may be changed by including a definitionEntryof the form type=typeNume.
With the exception of the name field, any valid namelist command field and value
may be given as part of the definitionEntries.

* -edit={column I parameter}, newName, sourceNanie, edit-command - Specifies
creation of a new string column (parameter) called newName by editing an exist-
ing string column (parameter) sourceName using an emacs-like editing string. For
details on editing commands, see SDDS editing (see 4.40).

75

* -print={column I
parameter}, newName, sprintfstring, sourceName C, sourceName. . .I C, definitionEntries]
- Specifies creation of a new string column (parameter) by editing an existing string
column (parameter) using a emacs-like editing command. For details on editing
commands, see SDDS editing (see 4.40).

* -system={ column I parameter}, newName, commandNanze, definitionEntries -
Specifies creation of a new string column (parameter) by executing an existing string
column (parameter) using a subprocess. The first line of output from the subprocess
is acquired and placed in the new column (parameter).

- Creation and modification of numeric columns and parameters:

* -convertUnits={ column I parameter}, name , oldUnits, newUnits, factor- Spec-
ifies units conversion for the column or parameter name. The factor entry the factor
by which the values must be multiplied to convert them to the desired units. It
is an error if oldunits does not match the original units of the column or parame-
ter. Eventually, the factor entry will be made optional by inclusion of conversion
information in the program. This option may be given any number of times.

* -def h e = { column I parameter}, name, equation[, definitionEntries1 - Specifies
creation of a new column or parameter using an rpn expression to obtain the values.
For parameters, any parameter value may be obtained by giving the parameter name
in the expression. For columns, one may additionally get the value of any column
by giving its name in the expression; the expression given for -define=column is
essentially specifying a vector operation on columns with parameters as scalars.
By default, the type of the new data is double. This and other properties of the
new column or parameter may be altered by giving definitionEntries, which have
the form fieldName=value; fieZdName is the name of any namelist command field
(except the name field) for a column or parameter, as appropriate. This option may
be given any number of times.
sddsprocess permits read access to individual elements of a column of data using
the rpn array feature. For each column, an array of name &Columnhrame is created;
the ampersand is to remind the user that the variable &ColumnName is the address
of the start of the array. To get the first element of a column named Data, one would
use 0 &Data 'C. This will function only within or following a -define=column or
-redefine=column operation. It is an error to attempt to access data beyond the
bounds of an array.

* - rede f ine - This option is identicd to -de f ine except that the column or param-
eter already exists in the input. The equation may use the previous values of the
entity being redefined by including the column name in the expression.

[, symbol=strhzg] C, weightBy=columnName] C , f unctionof =columnNameC , lowerLimit=ualue
C ,upperLimit=value] 1 [,head=numberl.[,tail=number] Cfhead=fraction]
Cftail=fractionl Cpositionl [, o f f set=valuel C , f actor=valuel - This option
may be given any number of times. It specifies creation of a new parameter result-
Name by processing column mainCoZumnName. The column must contain numeric
data. mainColumnNume may contain wildcards, in which case the processing is
applied to all matching columns containing numeric data. resultA'ame may have a
single occurence of the string "embedded in it; if so, mainColuninName is substi-

* -process=mainColumnName, analysisName, resultName C, descript ion=stringl

i

76

tuted. If wildcards are given in main~olur7iriNa?~i€~ then “if the descr ipt ion field
is supplied, it may contain an embedded “substituted.
Recognized values for arialysisName are:

- average, rms, sum, StandardDeviation, mad - The arithmetic average, the
rms average, the arithmetic sum, the standard deviation, and the mean absolute
deviation. All may be possibly weighted.

- median - The median value.
- minimum, maximum, spread, smallest , l a r g e s t - The minimum value, max-

imum value, spread in values, smallest value (minimum absolute value), and
largest value (maximum absolute value). For all except spread, the pos i t i on
and functionof qualifiers may be given to obtain the value in another column
when mainColumnName has the extremal value.

- first, las t - The values in the first and last rows of the page.
- count - The number of values in the page.
- baselevel, toplevel , amplitude - Waveform analysis parameters from his-

togramming the signal amplitude. baselevel is the baseline, toplevel is the
height, and amplitude is height above baseline.

- r iset ime, falltime, center - The rise and fall times from the 10%-90%
and 90%-10% transitions. center is the midpoint between the f i s t 50% rising
edge and the first following 50% falling edge after rising above 90% amplitude.
Requires specifying a independent variable column with f unctionof.

- fwhm, f w t m , fwha, fwta - Full-widths of the named column as a function of the
independent variable column specified with functionof. The letters ’h’ and ’t’
specify Half and Tenth amplitude widths, while ’m’ and ’a’ specify Maximum
value or Amplitude over baseline.

- zerocrossing - Zero-crossing point of the column named with functionof of
the column mainCoZumnName.

Qualifiers for this switch are:

for the new column.
- description=stcing, symbol=st&ng- Specify the description and symbol fields

- weightBy=coZumnName - Specifies the name of a column to weight values from

- function0f=coZumnNume - Specifies the name of a column that muinCoZumn-
Name is to be considered a function of for computing widths, zero-crossings,
etc.

- lowerLimit=value, upperLimit=value - If f unctionof is given, specifies win-
nowing of rows so that only rows for which the independent column data is above
the 1owerLimit and/or below the upperLimit are included in computations. No
data is deleted from mainColumnName as it appears in the output.

- head=number, fhead=fruction - Specifies clipping of the head of the data prior
to processing. head gives the number of points to clip, while fhead gives the
fraction of the points to clip.

- tail=number, ftail=fmction - Specifies clipping of the tail of the data prior
to processing. t a i l gives the number of points to clip, while f t a i l gives the
fraction of the points to clip. If head and tail clipping are used, head clipping
is performed first.

column mainCoZumnNume by before computing statistics. \

r

77

- pos i t i on - For minimum, m a x i m u m , smallest, and l a r g e s t analysis modes,
specifies that the results should be the position at which the indicated value
occurs. This position is the corresponding value of in column named with
f unct ionOf.

- off set=vuZue, f actor=vaZue - Specify an offset and factor for inodifying data
prior to processing. By default, the offset is zero and the factor is 1. The
equation is 2 + f * (z + 0).

- Miscellaneous:
- -ifis={column I parameter I array},rmmeC,name.. .I, -ifnot={ column

I parameter I array}, name[, name.. .I - These options allow conditional execu-
tion. If any column that is named under a if is option is not present, execution aborts.
If any column that is named under a i f n o t option is present, execution aborts.

- summarize - Specifies that a summary of the processing be printed to the screen.
- verbose - Specifies that informational printouts be provided during processing.

, - nowarnings - Specifies suppression of warning messages.

0 author: M. Borland, ANL/APS.

78

4.28 sddspseudoinverse

0 description: sddspseudoinverse views the numerical tabular data of the input file as
though it formed a matrix, and produces an output file with data corresponding to the
pseudo-inverse of the input file matrix. At present the pseudo-inversion is done using a
singular value decomposition. Other methods may be made available in the future.
Command line options specifies the number of singular values to be used in the inversion
process.
The column names of the input file forms a string column in the output file. The coininand
line option -root allows one to generate column names for the data in the output file. If this
option is not present, then the data of the first string column of the input file are made into
the column names of the output file. If no string column is present, then names are generated
from an internal default.
This command only operates on the first data set of a file.

0 examples: The data in file LTP.Rl2 (matrix of R12’s in a beamline called LTP, say) is
inverted to give file LTP.InvR12 (useful for trajectory correction):

sddspseudoinverse LTP.Rl2 LTP.InvR12

0 synopsis:

us age :
[-minimumSingularValueRatio=~~lVuZue I -largestSingularValues=nunzber]
-root=string -symbol=string -verbose

s ddsp s eudo inve r s e inputfile outputfile

0 files: The input file contains the data for the matrix to be inverted. The output file contains
the data for the inverted matrix. If only one file is specified, then the input file is overwritten
by the output.

0 switches:

- -pipeC=inputl C,outputl - The standard SDDS Toolkit pipe option.
- -minimumSingularValueRatio=vulue - Used to remove small singular values‘from the

calculation. The smallest singular value kept is determined by multiplying this value of
ratio with the largest singular value of the input matrix.

- -largestSingularValues=number - Used to remove small singular values from the
calculation. The largest number singular values are kept.

- -root=string - The string specified is used to generate columns names in the output
file. The first data column is called string0, the second stringl, etc.

- -symbol=string - The string specified is assigned to the symbol field of data column
definitions.

- - a s c i i - Produces an output in ascii mode. Default is binary.
- -verbose - Prints out incidental information to stderr.

0 author: L. Emery ANL

79

4.29 sddsquery

0 description: sddsquery prints a summary of the SDDS header for a data set. Also prints
bare lists of names of defined entities, syitable to use with shell scripts that need to detect
the existence of entities in the data set.

0 examples: Get information on the contents of a file:

sddsquery APS.twi

Get a list of the column names only:

sddsquery APS.twi -columnList

Get a list of the column names into a shell variable

s e t names = 'sddsquery APS.tui -columnList -delimiter=" I"

0 synopsis:

sddsquery SDDS'Zename CSDDS'Zename. . .I [{-arrayList I -columnList I
-p aramet erL ist I -version}] [-delimiter= delirnitingString] [- app endunit s]

0 switches: Normal operation of sddsquery results in a printout summarizing the header of
each file. If one of the options is given, however, this printout will not appear. Instead, the
selected list of names appears for each file.

- ar rayLis t - Requests that a list of array names .be printed to the standard output,

- columnList - Requests that a list of column names be printed to the standard output,

- parameterList - Requests that a list of parameter names be printed to the standard

- -version - Requests that the SDDS version number of the file be printed to the

- -delimiter=delimitingString - Requests that listed items be separated by the given

- -appendunits - Requests that the units of each item be printed directly following the

one name per line.

one name per line.

output, one name per line.

standard output.

string. By default, the delimiter is a newline.

item name.

0 see also:

- Data for Examples (see 3.3)

0 author: M. Borland, ANL/APS.

80

4.30 sddsregroup
0 description: sddsregroup swaps the row indexing and page indexing of data in an SDDS

file. That is, the it" row of all data pages in the input file are collected and made into the it''
data page of the output file.

0 examples: The file bpm.sdds contain the beam position monitor (bpm) readback as a func-
tion of time for a series of consecutive bpins in a beamline. The defined columns are Time
and x. The parameters are bpmhdex. The file bpmsdds is regrouped to produce data sets of
x vs bpmhdex for each time value. The output is suitable to plot as a movie with sddsplot.

sddsregroup bpm.sdds bpm.movie -newparameters=Time -newcolumns=bpmIndex

0 synopsis:

sddsregroup [-pipe= [input] C, output] 1 inputfile outputfile
.C-newparameters=oZdcoZumnnume, . . .I
C-waning1 [-verb o s el

C-newcolusms=oZdpurumetemume, . . .I

0 files: The input file contains the data sets to be regrouped. The output file contains the
regrouped data. If only one file is specified, then the input file is overwritten by the output.

0 switches:

- -pipeC=inputl C,outputl - The standard SDDS Toolkit pipe option.
- newparameters - specifies which columns of the input file will become parameters in

the output file. By default no new parameters are created, and all columns of the input
file are transfered to the output file.

- newcolumns - specifies which parameters of the input file will become columns in the
output file. The columns will necessarily be duplicated in all pages. By default all
parameters values are lost.

0 author: L. Emery ANL

81

4.31 sddsselect

0 description: sddsselect excludes or includes rows from one file based on the presence of
matching data in another file. It is siinilar to sddsxref, but unlike that program does not
import data from the second file.

0 examples: Use a list of quadrupole names to get just. the Twiss parameters are the
quadrupoles:

sddsselect APS.twi quadNames.sdds APSquad.twi -match=ElementName -reuse

where ElementName is a column in both APS. t w i and quadNames . sdds giving the name of a
magnet. Use the same file to get the Twiss parameters everywhere but at the quadrupoles:

sddsselect APS.twi quadNames.sdds APSquad.twi -match=ElementName -reuse
- invert

0 synopsis:

sddsselect [-pipe [=input1 C, output] 1 Cinputll input2 [output]
{ -match=columnNamel C=columnName21 I -equat e=columnNamel C=columnName2] }
C-invert1 C-reuse [=page] C,rowsl1

0 files: inputl is an SDDS file from which rows of data will be selected for inclusion in output.
If inputl contains multiple pages, they are processed separately. input2 is an SDDS file
containing rows of data to use in selecting data from inputl. Warning: if output is not given
and -pipe=output is not specified, then inputl will be replaced.

0 switches:

- -pipeC=inputl C,outputl - The standard SDDS Toolkit pipe option.
- -match=columnNamel C=columnName21 - Specifies the names of string columns from

inputl and input2 to compare. If columnName2 is not given, it taken to be the same
as columnName1. Data in columnName is taken from inputl and columnName2 from
input2. For each row in a page of inputl, a match for the string in columnName1 is
sought in any row of columnName2. If a match is found, the row is accepted.'

- -equate=columnNamel C=columnName21 - Identical to -match, except the columns
contain numerical data.

- - invert - Specifies that only rows that have no match or equal should be selected for
output.

- -reuse[=rowsI [,pagel - By default, if inputl contains multiple pages: each is selected
against the corresponding page of input2. In addition, each row of input2 is matched or
equated to only one row of inputl. If -reuse=page is given, then each page of inputl
is selected against the first page of input2. If -reuse=rows is given, each row of input2
can select any number of rows of inputl.

'

0 sddsmselect - sddsmselect is a variant of sddsselect that permits multiple -match and
-equate options for more sophisticated cross-referencing. In other respects, the program is
used just like sddsmselect. sddsselect is much faster, however, for single-criterion matching
or equating.

I

82

0 see also:

- Data for Examples (see 3.3)
- sddsxref (4.38)

0 author: M. Borland, ANL/APS.

83

4.32 sddsslopes

0 description: sddsslopes makes straight line fits of column data of the input file with resped
to a selected column used as independent variable. The output file contains a one-row data
set with columns of slopes and intercept defined for each input data column specified for
fitting. Errors on the slope and intercept may be calculated as an option.

0 examples: The file corrector.sdds contains beam position monitors (bpms) readbacks as a
function of corrector setting. The defined columns are CorrectorSetpoint and the series bpml,
bpm2, etc. The bpm response to the corrector setpoints are calculated with

sddsslopes corrector.sdds corrector.slopes
-independentVariable=CorrectorSetpoint -columns=’bpm*’

where all columns that match with the. wildcard expression bpm* is selected for fitting.

0 synopsis:

usage : slopes [-pipe= Cinputl C y output1 1 inputfile outputfile
-independentVariable=parametername [-columns=l~t-of-names]
~-excludeColumns=l~st-of-names] -sigmaC=generate] -verbose

0 files: The input file. contains the tabular data for fitting. Only the first data set is read. For
optional error processing, additional columns of sigma values associated with the data to be
fitted must be present. These sigma column must be named namesigma or Sigmaname, the .
former one being searched first.
The output file contains one data set with one row. The columns defined have names such
as nameslope, and nameIntercept where name is the name of the fitted data. If only one
file is specified, then the input file is overwritten by the output. A string column called
Indenpendentvariable is defined containing the name of the indepedent variable.

0 switches:

.- -pipeC=inputl C,outputl - The standard SDDS Toolliit pipe option.
- -independentVariable=parametername - name of independent variable (default is

- -columns=Zist-of-names - columns to be individually paired with independentvariable

- -excludeColumns=list-of-names - columns to exclude from fitting
- -sigmaC=generatel - calculates errors by interpreting column names namesigma or

Sigmaname as sigma of column name. If these columns don’t exist then the program
generates a common sigma from the residual of a first fit, and refits with these sigmas.
If option -sigma=generate is given, then sigmas are generated from the residual of a first
fit for all columns, irrespective of the presence of columns namesigma or Sigmaname.

the first valid column)

for straight line fitting

\

- -ascii - make output file in ascii mode (binary is the default)
- -verbose - prints some output to stderr

0 author: L. Emery ANL

84

4.33 sddssmooth

0 description:

sddssmooth smooths columns of data using multipass nearest-neighbor averaging. Any num-
ber of columns may be sorted using an arbitrary number of passes and nearest-neighbors.
The smoothed data may be put in place of the original data, or included as a new column.

0 examples: Smooth data in a Fourier transform:

sddssmooth data.fft data.peaks -column=FFTamplitude

0 synopsis:

sddssmooth [-pipe= [input] [,output] 1 [inputfile] [outputfiZel
-columns=name[name. . .I [-points=odd~nteger] [-passes=integerl C-new~olknsl

0 files:

inputFile contains the data to be smoothed. outputFiZe contains all of the array and parameter
data from inputFiZe, plus at least one column for every column in inputFiZe. Columns that
are not smoothed will appear unchanged in OutputFile. If inputFile contains multiple pages,
each is treated separately and is delivered to a separate page of outputFiZe.

0 switches:

- -pipe [=input] C output1 - The standard SDDS Toolkit pipe option.
- -columns=coZumnNume[coZumnName ... - Specifies the names of the column to

smooth. The names may include wildcards.
- -points=oddInteger - Specifies the number of points to average t.0 create a smoothed

value for each point, The default is three, which implies replacing each point by the
average of itself and its two nearest neighbors.

- -passes=integer- Specifies the number of smoothing passes to make over each column
of data. The default is 1. In the limit of an infinite number of passes, every point will
tend toward the average value of the original data.

- -newcolumns - Specifies that the smoothed data will be placed in new columns, rather
than replacing the data in each column with the smoothed result. The new columns
are given names of the form coZumnNameSmoothed, where columnNume is the original
name of a column.

\

0 see also:

- sddsdigf i l t e r (4.14)

0 author: M. Borland, ANL/APS.

85

4.34 sddssort

0 description:
sddssor t sorts the tabular data section of a data set by the values in named columns.
Any number of coluinns may be involved in the sort, and sorting order may be individually
specified.

0 examples:
Sort the -4PS Twiss file into alphabetical order by element name:

sddssor t APS.twi APS.twi.sorted -column=ElementName

Same, but keep only one instance of each row with the same element name:

sddssor t APS.twi APS.twi.sorted -column=ElementName -unique

0 synopsis:

sddssor t [-pipe= [input] [, output1 1 [SDDSinputl [SDDSoutputl
-column=name [, {increasing I decreasing}] . [-column. . -1
[-now arn ings l

[-unique]

0 f i l e s :
SDDSinput is an SDDS fde to be sorted. H i t contains multiple data pages, they are treated
separately. Warning: if SDDSoutput is not given and -pipe=output is not specified, then
SDDSinput will be replaced.

0 switches:

- -pipe=Cinputl C,outputl - The standard SDDS pipe option.
- -column=name[,{increasing I decreasing}] - Requests that the column name be

used to order the rows of each tabular data section. Each subsequent column request
specifies a subsort of the ordering .produced by the previous requests. The increas ing
and decreasing keywords may be given to specify the desired ordering of the lsub)sort,
with increasing order being the default.

- -unique - Specifies that for any rows that %re identical in the sort column values, only
the first should be included in the output file.

- -nowarnings - Suppresses warning messages.

0 author: M. Borland, ANL/APS.

86

4.35 sddssplit
0 description:

s d d s s p l i t breaks up an SDDS file into one or more separate files, each containing only a
single page of data. This may be useful in those instances where a tool or program only
processes the first page of a file.

0 examples:
Split a Twiss parameter file into separate files:

s d d s s p l i t APS . t w i

0 synopsis:

s d d s s p l i t {-pipe [=input] I inputFiZe} [{-binary I -ascii}l C-digits=numberl

C-int erval=numberl
. [-rootname=strkg] [-extension=stn’ng] [-f irsttable=number] [-lasttable=rzumberl

0 files: inputFiZe is an SDDS file to be split. By default, the output files are created by
appending the page number to a “rootname” and adding an extension. That is, the output
files have names rootnamePage.extension. The default rootname is the name of inputFile,
while the default extension is “sdds”. By default, Page is printed using “less the extension.

0 switches:

- -pipe [=input] [,output] - The standard SDDS Toolliit pipe option.
- -binary, -ascii - Specifies binary or ASCII output, with binary being the default.
- -digits=number - Specifies the number of digits to be used in creating filenames.

- -rootname=string - Specifies the rootname to be used in creating filenames.
- -extension=string - Specifies the extension to be used in creating filenames.
- -f irsttable=number- Specifies the first table or page of data to use.
- -lasttable=number- Specifies the last table or page of data to use.
- -interval=number- Specifies the interval between pages that are used.

Leading zeros are included.

\

0 see also:

- sddsbreak (4.4)
- sddscombine (4.8)

0 author: M. Borland, ANL/APS.

87

4.36 sddstranspose

0 description: sddstranspose views the numerical tabular data of the input file as though
it formed a matrix; and produces an output file with data corresponding to the transpose of
the input file matrix. In other words, the columns of tabular data of the input file become
rows in the output file. String column data are not transposed but are stored as string
parameters in the output file. Operating on the output file with a second sddstranpose
command essentially recovers the original input file.
The column names of the input file are collected and made into a string column called Old-
ColumnNames in the output file. The coininand line option -root allows one to generate
column names for the data in the output file. If this option is not present, then the data of
the first string column, if any string columns are present, of the input file are made into the
column names of the output file. If no string column is present, then names are generated
from an internal default.
This command operates on the first data set of a file, and the following data sets until one is
found with a row count differing from that of the first data set.

0 examples: The data in file LTP.Rl2 (matrix of R12’s in a beamline called LTP; say) is
transposed to give file LTP.Rl2.trans:

sddstranspose LTP.Rl2 LTP.Rl2.trans

0 synopsis:

sddstranspose [-pipe= Cinputl C, output] 1 inputfile outputfile -root=string
-symbol=string C-asciil -verbose

0 files: The input file contains the data for the matrix to be transposed. The output file
contains the data for the transposed matrix. If only one file is specified, then the input file is
overwritten by the output.

0 switches:

- -pipeC=inputl C,outputl - The standard SDDS Toolkit pipe option.
- -root=string - The string specified is used to generate columns names in the output

file. The first data column is called.string0, the second stringl, etc.
- -symbol=string- The string specified is assigned to the symbol field of data column

definitions.
- - a s c i i - Produces an output in ascii mode. Default is binary.
- -verbose - Prints out incidental information to stderr.

0 author: L. Emery ANL

88

4.37 sddsvslopes

0 description: sddsvslopes makes straight line fits of vectorized data in the input file with
respect to a selected parameter used as independent variable. The simplest example of vector-
ized data is a data set with one parameter and two columns, one string column of rootnanies
and one numerical column of data. The fitting is looped over rows across all the data sets
in the input file (using a selected parameter as the independent vairable). The output file
contains vectorized slopes and intercepts data for each column specified in the input file.

0 examples: The file correctorsdds contains vectorized beam position monitor (bpm) read-
backs as a function of corrector setting. The defined parameter is CorrectorSetpoint. The
defined column's are Rootname and x. Each row of the data set correspond to a different
bpm. The bpm response to the corrector setpoints are calculated with

sddsvslopes cor rec tor . sdds corrector .vslopes
-independentVariable=CorrectorSetpoint -columns=x

0 synopsis:

s ddsvslop es SDDSinputfiZe SDDSoutputfile - indep endentvari ab1 e=paranieternatne
[-columns=~~st-of-names] ~-excludeColumns=Z~st-of-names] -slopeErrors -verbose

0 files: The input file 'contains the tabular data for fitting. The column Rootname must be
present.
The output file contains one data set of vectorized slopes and intercept data. The Root-
name column from the input file is transfered to the output file. The column names are
nameslope, and nameIntercept where name is the name of the fitted data. If only one
file is specified, then the input file is overwritten by the output. A string parameter called
Indenpendentvariable is defined containing the name of the indepedent variable.

0 switches:

- -pipe [=input] C, output] - The standard SDDS Toolkit pipe option.
- -independentVariable=parametername - name of independent variable (default is

the first valid column) \

- -columns=Zist-of-names - columns to be individually paired with independentvariable

- -excludeColumns=Zist-of-names - columns to exclude from fitting
- -sigmaC=generate] - calculates errors by interpreting column names namesigma or

Sigmaname as sigma of column name. If these columns don't exist then the program
generates a common sigma from the residual of a first fit, and refits with these sigmas.
If option -sigma=generate is given, then sigmas are generated from the residual of a first
fit for all columns, irrespective of.the presence of columns namesigma or Sigmaname.

for straight line fitting

- - a s c i i - make output file in ascii mode (binary is the default)
- -verbose - prints some output to stderr

0 author: L. Emery ANL

89

4.38 sddsxref

0 description: sddsxref creates a new data set by adding selected rows from one data set
to another data set. The rows are selected by matching the string or numeric values in a
specified column that is present in both of two pre-existing data sets. The user may specify
which columns of the second data set to take and which to leave. The user may also transfer
parameter and array data.

.

0 synopsis:

sddsxref C-pipe [=input1 C, output] I Cinputl CxRefFiZel Coutputl
C-equate=coZumnName I -match=coZumnAramel C-reuse C=rowsI C ,page] I
C-take=coZumnNanze, . - .I
array}, name C, name. . .I
C-ifnot={columi I parameter I array},nameC,narne.. .I

C-leave=coZumnName, . . .I C-transf er={parameter I
C - i f is={ column I parameter I array}, name C , name. . .I

0 files: input is the data set to which data is being added. xRefFiZe is the data set from which
data is being taken. Warning: if output is not given and if -pipe=out is not specified, input
is overwritten. For pipe input, the first file listed is taken to be xRefFiZe. For pipe input and
output, the only file listed is xRefFile.

0 switches:

- -equate=coZumnName, -match=coZumnName- These options specify the name of a col-
umn that exists in both input and xRefFiZe. For match, the column must contain string
data, while for the equate the column must contain numeric data. For each row in
input, sddsxref searches xRefFiZe to find the first row for which the match column is
identical or the equate column is equal, as appropriate. This row is the one from which
any data is taken for addition to the row in input. If neither of these options is given,
then rows are taken sequentially from xRefFiZe for each row of input.

- -reuse C=rousI [,page1 - By default, each row from zRefFiZe is matched to one row in
input. If -reuse=rows is given, each row from xRefFiZe may be matched to any number
of rows in input. Also by default, each page of input is matched with the corresponding
page of xRefFiZe. If -reuse=page is given, then each page of input is matched anew to
the first page of xRefFiZe. The two qualifiers may be given together.

.

- -take=coZumnName, . . , -leave=columnName, . . .- These options specify which
columns of xRefFiZe to extract from a matching or equal row of xRefFile for addition to
a row of input. Wildcards may be given in the column names. By default, all columns
not in input are taken. If t ake is employed, only the named columns will be taken. In
either case, no column specified under leave will be taken. -leave=* causes no columns
to be taken.

- -transfer={parameter I array},nameC,name.. .I - This option, which may be
given multiple times, specifies the names of parameters and arrays to be transfered.
Wildcards are not presently supported in this option.

- -ifis={ column I parameter I array}, name[, name. . .I, -ifnot={ c0h.m.n
I parameter I array},nameC,name.. .I - These options allow conditional execu-
tion. If any column that is named under a if is option is not present, execution aborts.
If any column that is named under a i f n o t option is present, execution aborts.

90

0 sddsmxref- sddsmxref is a variant of sddsxref that permits inultiple -match and -equate
options for more sophisticated cross-referencing. In other respects, the program is used just
like sddsmxref. sddsxref is much faster, however, for single-criterion matching or equating.

0 see also:

- Data for Examples (see 3.3)
- sddsxref (4.38)

0 author: M. Borland, ANL/APS.

91

4.39 sddszerofind

0 description:
sddszerof ind finds the locations of zeroes in a single column of an SDDS file. This is done
by finding successive rows for which a sign change occurs in the “dependent column”, or any
row for which an exact zero is present in this column. For each of the ”independent columns”.
the location of the zero is determined by linear interpolation. Hence, the program is really
interpolating multiple columns at locations of zeros in a single column. This single column is
in a sense being looked a t as a function of each of the interpolated columns.

0 examples: Find zeroes of a Bessel function, Jo(z):

sddszerof ind J0.sdds JO.zero -zero=JO -colurnn=z

Find zeroes of a Bessel function, Jo(z), and simultaneously interpolate Jl(z) at the zero
locations:

sddszerof ind JO.sdds J0.zero -zero=JO -column=z,Jl

(This isn’t the most accurate way to interpolate Jl(z), of course.)

0 synopsis:

sddszerof i nd [-pipe=‘[input] [, output] 1 [inputfile] [outputfile]
-zeroes O f = coZumnNume [-columns= coZumnNumesl C- s lop eoutputl

0 files: inputFiZe contains the data to be searched for zeroes. outputFile contains columns for
each of the independent quantities and a column for the dependent quantity. Normally, each
dependent quantity is represented by a single column of the same name. If output of slopes is
requested, additional columns will be present, having names of the form coZumnNumeSlope.
If inputFiZe contains multiple pages, each is treated separately and is delivered to a separate
page of outputFiZe.

0 switches:
\ - -pipe [=input1 C, output] - The standard SDDS Toolkit pipe option.

- -zeroesOf=coZumnNume - Specifies the name of the dependent quantity, for which
zeroes will be found.

- -columns=coZumnNumes- Specifies the names of the independent quantities, for which
zero locations will be interpolated. Generally, there is only one of these. coZumnNumes
is a comma-separated list of optionally wildcarded names.

- -slopeOutput - Specifies that additional columns will be created containing the slopes
of the dependent quantity as a function of each independent quantity. This can be useful,
for example, if one wants to pick out only positive-going zero-crossings.

0 see also:

- sdds in te rpola te (??)

0 author: M. Borland, ANL/APS.

92

4.40 SDDS Editing

This manual page does not describe a program, but rather a facility that is coininon to several
programs. In particular, several SDDS programs use a common syntax for specifying editing of
string data. The editing commands for these programs are composed of a series of subcommands
of the form [count]commandLetter[commandSpec~ficData] As indicated, the count and cornmand-
SpecificData are optional.

The commands are as follows:

[n]f - move forward 1 or n characters.

[n]b - move backward 1 or n characters.

[n]d - delete the next character or n characters.

[n]F - move forward 1 or n words.

[n]B - move backward 1 or n words.

[n]D - delete the next word or n words.

a - Go to the beginning of the string.

e - Go to the end of the string.

[n]i-delim-text-delim- - Insert tezt , delimited by the character -deZim- 1 or n times. For
example, “i/thisString/” would insert “thisstring” once.

[n]s-delim-text-delim- - Search for text, delimited by the character -delim- 1 or n times. The
position is left at the end of the search string. -delim- may be any character except a question
mark.

S-delim-text-delim- - Search for text, delimited by the character -delim-, leaving the position
at the start of the search string. -delim- may be any nonspace character except a question
mark.

[n]s?-delim-text-delim- - Search for text, delimited by the character -deZim- 1 or n times.
Abort all subsequent editing if the search fails. If the search suceeds, leave the position at
the end of the search string. -delim- may be any nonspace character except a question mark.

S?-delim-text-delim- - Search €or text, delimited by the character -delim-. Abort all subse-
quent editing if the search fails. If the search suceeds, leave the position at the start of the
search string. -delim- may be any nonspace character except a question mark.

[n]k - Delete forward from the present position 1 or n characters, placing them in the kill
buffer.

[n]K - Delete forward from the present position 1 or n words, placing them in the kill buffer.

zchar - Delete forward from the present position up to the first occurence of the character
char, placing the deleted text in the kill buffer.

[n]Zchar- Delete 1 or n times up to and including the character char, placing the deleted
text in the kill buffer.

93

[n]y - Yank the kill buffer into the string 1 or n times.

[n]%-delim-textl-deZim-text2-delim- - Replace text1 with text2 1 or n times starting a t the
present position. -delim- may be any nonspace character. For example, “lO%/c/C/” would
capitalize the next 10 occurences of the character ’c’.

0 see also:

- sddsprocess (4.27)
- sddsplot (4.25)
- sddsconvert (4.11)

94

4.41 rpn Calculator Module
0 description:

Zany of the SDDS toolkit programs employ a common Reverse Polish Notation (RPN) cal-
culator module for equation evaluation. This module is based on the rpn programmable
calculator program. It is also available in a commandline version called rpn l for use in shell
scripts. This manual page discusses the programs rpn and rpnl, and indicates how the rpn
expression evaluator is used in SDDS tools.

0 examples:
Do some floating-point math using shell variables: (Note that the asterisk (for multiplication)
is escaped in order to protect it from interpretation by the shell.)

s e t p i = 3.141592
s e t r ad ius = 0.15
s e t area = ‘ rpnl $ p i $radius 2 pow *‘

Use rpn to do the same calculation:

rpn> 3.141592 s t o p i
rpn> 0.15 s t o r ad ius
rpn> rad ius 2 pow p i *
0.070685820000000
rpn> q u i t

0 synopsis:

rpn ~lenamesl
r p n l rpnExpression

0 Overview of rpn and rpnl:
rpn is a program that places the user in a Reverse Polish Notation calculator shell. Com-
mands to rpn consist of generally of expressions in terms of built-in functions, user-defined
variables, and user-defined functions. Built-in functions include mathematical operations,
logic operations, string operations, and file operations. User-defined functions and variables
may be defined “on the fly” or via files containing rpn commands.
The command rpn filename invokes the rpn shell with filename as a initial command Ne.
Typically, this file would contain instructions for a computation. Prior to execution of any
files named the commandline, rpn first executes the instructions in the file named by the
environment variable FPNDEFNS, if it is defined. This file can be used to store commonly-
used variable and function definitions in order to customize the rpn shell. This same file is
read by r p n l and all of the SDDS toolkit programs that use the rpn calculator module. An
example of such a file is included with the code.
As with any RPN system, rpn uses stacks. Separate stacks are maintained for numerical,
logical, string data, and command files.
r p n l is essentially equivalent to executing rpn, typing a single command, then exiting. How-
ever, r p n l has the advantage that it evaluates the command and prints the result to the screen
, i

95

without any need for user input. Thus, it can be used to provide floating point arithmetic in
shell scripts. Because of the wide variety of operations supported by the rpn module and the
availability of user-defined functions, this is a very powerful feature even for coininand shells
tliat include floating point arithmetic.
Built-in commands may be divided into four broad categories: mathematical operations,
logical operations, string operations, and file operations. (There are also a few specialized
commands such as creating and listing user-defined functions and variables; these will be
addressed in the next section). Any of these commands may be characterized by the number
of items it uses from and places on the various stacks.

- Mathematical operations:
* Using rpn variables:

The s t o (store) function allows both the creation of rpn variables and modification
of their contents. rpn variables hold double-precision values. The variable name inay
be any string starting with an alphabetic character and containing no whitespace.
The name may not be one used for a built-in or user-defined function. There is no
limit to the number of variables that may be defined.
For example, 1 s t o one would create a variable called one and store the value 1
in it. To recall the value, one simply uses the variable name. E.g., one could enter
3.1415925 s t o p i and later enter p i to retrieve the value of T.

These operations all take two values from the numeric stack and push one result
onto the numeric stack. For example, 5 2 - would push 5 onto the stack, push 2
onto the stack, then push the result (3) onto the stack.

sin cos acos a s in a tan atan2 s q r t sqr pow exp
I n

.

.

* Basic arithmetic: + - * /

* Basic scientific functions:

With the exception of atan2 and pow, these operations all take one item from the
numeric stack and push one result onto that stack.
s i n and cos are the sine and cosine functions, while asin, acos, and atan are in-
verse trigonometic functins. atan2 is the two-argument inverse tangent: x y atan2
pushes the value atan(y/x) with the result being in the interval [-T, TI.
s q r t returns the positive square-root of nonnegative values. sq r returns the square
of a value. pow returns a general power of a number: x J pow pushes xt onto the
stack. Note that if y is nonintegral, then x must be nonnegative.
exp and I n are the base-e exponential and logarithm functions.

Jn and Yn are the Bessel functions of integer order of the first and second kind[7].
Both take two items from the stack and place one result on the stack. For example,
x i Jn would push Ji(x) onto the stack. Note that Y,(x) is singular a t x=O.
c e i l and cei2 are the 1st and 2nd complete elliptic integrals. The argument is the
modulus k, as seen in the following equations (the functions K and E are those used
by Abramowitz[7]).

* Special functions: Jn Yn c e i l cei2 erf e r f c lngam

*I2 de ceil(k) = K(k2) = /
0 d1 - k*sin%'
TI2

cei2(k) = E(k2) = / d1 - k2sin2f?dB
0

96

erf and e r f c are the error function and complementary error function. By defini-
tion, erf(x) + erfc(x) is unity. However, for large x, x erf 1 - will return 0 while x
er fc will return a small, nonzero value. The error function is defined as[7]:

2 ” erf(x) = - / e-tzdt
J . 0

Note that erf(x/&) is the area under the normal Gaussian curve between -x and

lngam is the natural log of the gamma function. For integer arguments, x lngam is
ln((x - l)!). The gamma function is defined as[7]:

X.

r (x) = 1- t”-’e-tdt

* Numeric stack operations: c l e n= pop rdn rup s t l v swap view ==
c le clears the entire stack, while pop simply removes the top element. == dupli-
cates the top item on the stack, while x n= duplicates the top x items of the stack
(excluding the top itself). swap swaps the top two items on the stack. rdn (rotate
down) and rup (rotate down) are stack rotation commands, and are the inverse of
one another. s t l v pushes the stack level (i.e., the number of items on the stack)
onto the stack. Finally, view prints the entire stack from top to bottom.

rnd returns a random number from a uniform distribution on [0,1]. grnd returns a
random number from a normal Gaussian distribution.

mal is the Memory ALlocation command; it pops a single value from the numeric
stack, and returns a “pointer” to memory sufficient to store the number of double-
precision values specified by that value. This pointer is really just an integer, which
can be stored in. a variable like any other number. It is used to place values in and
retrieve values from the allocated memory.
1 is the memory store operator. A sequence of the form value index addr 1 results
in value being stored in the index position of address addr. value, index, and addr
are consumed in this operation. Indices start from 0.
Similarly, index addr C value pushes the value in the index position of address addr
onto the stack. index and addr are consumed in this operation.

t s c i allows one to toggle display between scientific and variable-format notation. In
the former, all numbers are displayed in scientific notation, whereas in the later, only
sufficiently large or small numbers are so displayed. (See also the format command
below.)
i n t returns the integer part of the top value on the stack by truncating the nonin-
teger part.

* Random number generators: rnd grnd

* Array operations: m a l C 3

\

* Miscellaneous: t s c i i n t

- Logical operations: ! && < == > ? $ vlog I I

* Conditional execution: ? The question-mark operator functions to allow program
branching. It is meant to remind the user of the C operator for conditional evalua-
tion of expressions. A conditional statement has the form

97

? executeIjTrue : executeIjFalse $
The colon and dollar sign function as delimiters for the conditionally-executed in-
structions. The ? operator pops the first value from the logic stack. It branches to
the first set of instructions if this value is "true", and to the second if it is "false".

' These operations compare two values from the numeric stack and push a value onto
the logic stack indicating the result. Note that the values from the numeric stack
are left intact. That is, these operations push the numeric values back onto the
stack after the comparison.

* Logic operators: && I I !
These operators consume values from the logic stack and push new results onto that
stack. && returns the logical and of the top two values, while I I returns the logical
or. ! is the logical negation operator.

This operator allows viewing the logic stack. It lists the values on the stack starting
at the top.

* Comparisons: < == >

* Miscellaneous: vlog

- String operations: '"I =str cshs format getformat pops scan spr f v s t r

* Stack operations: "(I =str pops v s t r
To place a.string on the string stack, one simply encloses it in double quotation
marks. =str duplicates the top of the string stack. pops pops the top item off of
the string stack. v s t r prints (views) the string stack, starting at the top.

format consumes the top item of the string stack, and causes it to be used as the
default printf-style format string for printing numbers. ge t f ormat pushes onto the
string stack the default printf-style format string for printing numbers.

scan consumes the top item of the string stack and scans it for a number; it pushes
the number scanned onto the string stack, pushes the remainder of the string onto
the string stack, and pushes true/false onto the logic stack to indicate success/failure.
sprf consumes the top of the string stack to get a sprintf format string, which it
uses to print the top of the numeric stack; the resulting string is pushedknto the
string stack. The numeric stack is left unchanged.

* Format operations: format getf ormat

* Print/scan operations: scan sprf

- File operations: @ c los f p r f ge t s open puts

* Command file input: @
The @ operator consumes the top item of the string stack, pushing it onto the
command fde stack. The command file is executed following completion of processing
of the current input line. Command file execution may be nested, since the files are
on a stack. The name of the command file may have options appended to it in
the format fiZename,option. Presently, the only option recognized is 's', for silent
execution. If not present, the command file is echoed to the screen as it is executed.
Example: "commands .rpn,s" (P would silently execute the rpn commands in the
file commands. rpn.

open consumes the top of the string stack, and opens a file with the name given in
* Opening and closing fdes: c los open

98

that element. The string is of the format fiZename,option, where option is either
'w' or 'r' for write or read. open pushes a file number onto the numeric stack. This
should be stored in a variable for use with other file IO commands. The file numbers
0 and 1 are predefined, respectively, as the standard input and standard output.
clos consumes the top of the numeric stack, and uses it as the number of a file to
close.

These commands are like the C routines with similar names. f p r f is like fprintf;
it consumes the top of the string stack to get a fprintf format string for printing a
number. It consumes the top o'f the numeric stack to get the file number, and uses
the next item on the numeric stack as the number to print. This number is left on
the stack.
gets consumes the top of the numeric stack to get a file number from which to read.
It reads a line of input from the given file, and pushes it onto the string stack. The
trailing newline is removed. If successful, gets pushes true onto the logic stack,
otherwise it pushes false.
puts consumes the top of the string stack to get a string to output, and the top of
the numeric stack to get a file number. Unlike the C routine of the same name, a
newline is not generated. Both puts and f p r f accept C-style escape sequences for
including newlines and other such characters.

* Input/output commands: fprf gets puts

,

- author: M. Borland, ANL/APS. .

99

4.42 SDDS Wildcard Conventions

This manual page does not describe a program, but rather a facility that is common to several
programs. In particular, several SDDS programs use a common convention for wildcards in
elem en t names.
The characters *, ?, [, 1 , and

* matches any zero or more characters. A sequence like *a matches zero or more characters
up to the first occurence of a.

are used for wildcard operations.

? matches any one character.

CrangeSpec] matches any one character in rangespec. rangeSpecis composed on any number of
explicit characters, plus character ranges specified as firstChar lastchar, which matches any
character between firstchar and ZastChar inclusive in the ASCII character set. For example,
[a-z] would match a lower case alphabetic character, while [a-zl [A-21 CO-93 would match
any alphanumeric character.

C^rangeSpecl matches any one character not in rangespec.

0 see also:

- sddschanges (4.5)
- sddsconvert (4.11)
- sddscorrelate (4.12)
- sddsenvelope (4.15)
- sdds f f t (4.17)
- sddsou t l i e r (4.22)
- sddsplot (4.25) .

- sddsprintout (4.26)
- sddsprocess (4.27)
- sddssmooth (4.33)
- sddsxref (4.38)
- sddszerof i n d (4.39)

100

5 Manual Pages for APS-Specific Programs

101

5.1 awe2sdds

0 description: Converts a file in awe self-describing format to SDDS. This is of interest to
only a few users at APS, as awe format has been superseeded by SDDS and is rarely used.

0 example: To convert awe format Twiss parameter data froni an old version of elegant:

awe2sdds APS.awe APS.sdds -labelColumnName=ElementName

0 synopsis:

awelsdds inputFile outputFile E-labelColumnName=string] C-asciiOutput]

0 files: inputFile is an awe-format file, the SDDS equivalent of which is written to outputFiZe.
The “auxiliary values” of the awe file are converted into SDDS parameters. The awe tables
are converted into SDDS tabular data, all columns being double precision except the “row

, label”, which becomes a string column.

0 switches:

- -labelColumnName=stri’ng- Requests that the awe row label be given the name string.

- -asciiOutput - Requests that output be in ASCII. By default, the output is binary.
By default, the row label is placed in a column named “row-label”.

0 author: M. Borland, ANL/APS.

102

--

5.2 col2sdds

0 description: Converts a file in column self-describing format[?] to SDDS. This is of interest
to APS users only, some of whom still have programs that generate column-format files.

0 synopsis:

col2sdds inputFile outputFile C-f ixMplNames 1

0 files: inputFiZe is a column-format file, the SDDS equivalent of which is written to outputFiZe.
The (‘auxiliary values” of the columns file are converted into SDDS parameters. The column
table is converted into SDDS tabular data, all columns begin double precision except the.
“row label”, which becomes a string column.

0 switches:

- -fixMplNames - Requests that any column or parameter names in the input file that
. contain mpl character set escape sequences be “fixed”. This results in simpler names.

The escape sequences are always retained in definition of the symbol for each column or
parameter, and hence will appear on graphs as expected.

0 author: M. Borland, ANL/APS.

103

5.3 sdds2mpl
0 description: sdds2mpl extracts data columns or parameters from an SDDS data set and

creates mpl data files. The program allows creation of rnpl labels from SDDS paraineters.
This tool is primarily of interest to APS users, some of whom still use the older mpl Toolkit.
It may be of interest to others who are interested in a simple format for use with prograins
that don’t need the full power of SDDS protocol. Such applications can use sdds2mpl and
mpl2sdds to mediate between themselves and SDDS-compliant programs.

0 example:

sdds2mpl APS . t n i -rootname=APS -output=column ,z,betax -output=column,z,betay

0 synopsis:

sdds2mpl CSDDSfilel [-pipe [=input] 1 C-rootName=stringl [-separateTables1
-.output=(column I parameter} ,%Nume, yNumeC, {syName I s.cNane, syATume}l
C-announceOpenings1 C-labelParameters=numeC=formut]1 C. . .I

0 files: SDDSfiZe is the name of an SDDS file from which mpl-format files will be made. Each
mpl file contains two to four columns of data.

0 switches:

- -pipeC=inputl - The standard SDDS Toolkit pipe option.
- -announceOpenings - Requests that an informational message be printed whenever a

- -rootName=string - Gives the rootname for constructing output filenames.
new output file is opened.

- -separateTable - Requests that tabular-data column output from separate pages in
the SDDS data set go to separate files.

- -labelParameters=nume[=~omut]] C . . .I - Gives the names and optional p r i n t f
format specifications for parameters that will be printed on the title line of the rnpl files.

- -output { column I parameter} , %Name , yNume C, {syNume I szNume, syNume}]
- Requests that the named columns or parameters.be put into a mpl file or set of
files. If -separate is not given or if the data is for parameters, the name of the file is
rootnumexName-yName . out. For column output, if -separate is given, the names of
the files are rootnume-NxName-yName .out, where N is the page number. This option
may be given any number of times.

0 see also:

- Data for Examples (see 3.3)
- mpl2sdds (5.4)

0 author: M. Borland, ANL/APS.

104

I

5.4 mpl2sdds

0 description: Adds mpl[?] data files to an SDDS data set. mpl is a simple data format used
by the mpl Toolkit, which is now largely superseeded by SDDS and will not be supported in
the future.

0 example:

mpl2sdds APS-s-betax. out APSs-betay . out -output=APSbetas . sdds

synopsis:

mpl2sdds mplFile CmplFile. . .I -output=SDDSFile [-erase]

e files: Any number of mplFile arguments may be given. These name files in mpl format, which
has between two and four columns of data. sdds2mpl attempts to add all of the columns
from each rnpl data file to the data set. However, a column that has the same name as an
existing column will not be used. By default, the data in the mpl files is added to SDDSFile,
if it exists already.

0 switches:

- -output=SDDSfile - Specifies that data be added to file SDDSfle. If the file does not

- -erase - Specifies that if SDDSFile exists already, it should be erased prior to adding
exist, it is created.

any data to the data set. By default, the data in SDDSFilename is retained.

0 see also:

- sdds2mpl (5.3)

0 author: M. Borland, ANL/APS.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof. nor any of their
employees. makes any warranty, express or implied. or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refcr-
ence herein to any specific commercial product. process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

105

