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Direct disposal of spent nuclear fuel (SNF) into the proposed unsaturated geologic repository at 
Yucca Mountain, NV is being studied at several laboratories, including Argonne National Laboratory 
[ 13. Corrosion tests with SNF are being conducted to understand the long-term behavior of SNF under 
conditions designed to simulate the unsaturated conditions at the site. The SNF used in this study was 
the Approved Testing Material (ATM)-106 with a burn-up of 43 MW*d/kg U [2]. A sample of ATM- 
106 fuel was exposed to dripping simulated groundwater for 271 days; after this time the experiment 
was terminated and the material removed for further study. Details of the testing methodology have 
been given by Finn et al. [ 11. 

Previous attempts to study SNF with TEM have used ion milled samples [3], in this study we 
prepared the samples by ultramicrotomy which reduced the radiological hazard substantially. Particles 
of the reacted SNF were carefully removed from the surface with the aid of an optical microscope and 
diamond scribe and then embedded in a Medcast epoxy block. The selection of suitably sized particles 
(4 pm in diameter) and correct orientation was critical to producing usable ultramicrotomed thin 
sections of SNF for TEM (see Fig. la). We have successfully produced TEM thin sections which can 
be used for detailed EELS. Analyses were performed on a JEOL 2000FxIy Gatan 666 PEELS with a 
L a ,  filament. The energy resolution was 1.6-1.8 eV. 

Figure lb  shows the reacted fuel and an attached alteration phase. The objective of the TEM 
investigations has been to determine the nature of SNF corrosion through the identification of alteration 
phases and determination of the distribution of neutron capture and fission products. The alteration 
phase was identified by electron diffraction, x-ray energy dispersive spectroscopy, and EELS as a 
layered cesium molybdenum uranyl oxide hydrate, structurally related to phases of the becquerelite 
group uranium minerals. These uranyl oxide hydrate alteration phases will control the solubility of 
uranium and, hence, determine the long-term durability of the solid SNF waste form. 

The large number of elements in SNF can make TEM/EDS analysis a challenge. As well as 
removing channel-to-channel gain variation in parallel detectors, the second-difference EELS technique 
serves as a frequency filter that selectively enhances the high frequency features, such as the M, 
absorption edges (“white lines”) of rare earth elements W E )  and transuranics (TRU). In Figuie 2, 
second-difference EELS of REE within the corroded particle of SNF is shown. The technique allows 
detection of REE that are present at < 20 ppm. In Figure 2a, the TRU M, and M, edges, which 
correspond to 3d,, + 5f5, and 3d5, + 5f7, transitions, respectively, have been used to detect low 
levels of TRU in the SNF. Overlap of TRU N4,5 edges with the more intense REE M4,5 edges 
effectively excludes this lower energy region from being used. An extremely high intensity, coupled 
with relatively long integration times (5-20 s) and repetitive runs, can allow detection of individual TRU 
elements, Np, Pu, and Am (see Fig. 2b). The calculated concentrations of TRU elements in ATM- 106 
SNF are 2590 ppm Pu and 115 ppm Am [2]. 

With ultramicrotomed TEM samples, we have been able to study a very hazardous material. 
The sections prepared were of such quality that highly detailed EELS analysis was possible allowing 
for the detection of low levels of transuranics in the reacted fuel. This work will assist in gaining an 
improved understanding of the corrosion mechanism of spent fuel in an aqueous environment [4]. 
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Fig. 1 (a) Low Magnification Image of Thin Sectioned SNF and (b) Image of Reacted SNF and 
attached Cs Mo Uranyl Oxide Alteration Phase. 
Fig. 2 Second-Difference EELS of SNF Showing REE M4,5 edges of La, Ce, Pr, Nd, and Sm. The 
major component of SNF, uranium, is visible in the two energy loss ranges analyzed. In (a) N4,5 edges 
of U at 738 eV and 780 eV along with a number of REE and in (b) M,, edges of U at M, = 3552 eV, 
M, = 3728 eV, along with the TRU elements, Np (Ms = 3666 eV and hQ = 3850 eV, Pu (M, = 3778 
eV, M, = 3973 eV), and Am (M, = 3887 eV, M, = 4092 eV). 


