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The possibility of seeing ordering phenomena in particle beams that are cooled to 
very low temperatures has been discussed for some timel-5. The types of ordering depend 
on the linear particle density: as the density increases, the expected structures change from 
one dimensional strings to two dimensional zig-zag patterns, then to three-dimensional 
arrangements on the surface of a cylinder, growing into a multiple shell structure of 
concentric cylinders435. All of these shapes are seen in simulations where the 
“temperature” of the system is allowed to reach a low value; they are illustrated in figure 1. 
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Figure 1. Configurations of ions in a cold beam for various values of the linear particle density h. On 
the left are schematic pictures for the one-dimensional “string”, two-dimensional “zig-zag”, and 
three-dimensional simple helix and multi-shell configurations. On the right the output of Molecular 
Dynamics simulations for these various configurations is shown. 

Fundamentals 

What quantities matter in considering a cold beam? For cylindrically symmetric 
focusing, the shell structure is determined by a single parameter, the dimensionless linear 
particle density4 h: h = (NK) asw, where N is the number of ions, C the circumference of 
the ring, and asw the Seitz-Wigner radius asw = [3mq2/co 213’2, with m the ion’s mass, q 
its charge, and OB the betatron frequency. Note that asw also enters in the plasma coupling 
parameter: I? = (qz/aSw)/kT. A system with h < 0.9 will be a “string” for 0.9 < h < 1.3 it 
is a two-dimensional “zig-zag”, for 1.3 < h < 2.4 it forms a single shell, and for h = 27, 
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for instance there would be four shells -- the number of shells increases as the 6. 
Asymmetric focusing introduces an additional parameter that influences the shell structure. 
Finite length beam bunches become elongated spheroids, and an example is shown in 
figure 2. 

Figure 2. Simulations of a bunched beam, of 20,000 ions with length on the order of 20 cm and the 
maximum radius on the order of 100 microns. 

Intrabeam Scattering -- Good or Bad? 

In the normal thinking about cooling beams in a storage ring, intrabeam scattering 
is seen as a limit to low temperatures. Such scattering arises from the Coulomb field 
between particles, and the Rutherford scattering between particles on different betatron 
trajectories is the perturbing problem. However, the ordering between particles in a very 
cold beam, just discussed, exists only because of the same Coulomb interaction between 
the particles in the beam, an interaction that requires that in the cold limit the ions in the 
beam be as nearly equally spaced as possible. The factors limiting beam cooling (as, for 
instance, mentioned in the announced purpose of this Workshop) are usually considered to 
be in intrabeam scattering. This thinking must be reconsidered in this cold limit. This 
subject is the main purpose of this talk. The extent to which the periodic transverse 
oscillations from the focusing elements and the shear from the bending elements in the 
accelerator lattice*-697 couple into “heating” a beam (in the sense of moving it away from 
an ordered configuration) is perhaps the best measure of intrabeam scattering (in the 
damaging sense) in a cold beam -- it is not quite the same as the usual intrabeam scattering 
and will depend sensitively on many details. 

The concept of beam “temperature” poses no problems for a beam that is moving 
in a straight line and is focused continuously. The problem is that this is not what one is 
dealing with in real beams, and the definition of temperature that is needed to approach 
ordering is not the same as the state that is imposed on a beam circulating in a storage ring. 
The subject is further complicated by the fact that neither the bending nor the focusing of 
the beam is achieved continuously, but by discrete focusing elements. 

I would therefore like to discuss in a little more detail what is needed for a cold 
beam, and what should be meant by temperature. Much of this has been stated before293, 
but I feel that clarification of these issues is at the heart of what is keeping us from attaining 
an ordered state in a circulating beam. 

Bending with Cooling to Fixed Linear Veloce 

First consider the case of a beam, uniformly bent and with uniform focusing. 
When the beam is hot, the particles undergo independent betatron oscillation in the 
focusing field and their interactions (intrabeam scattering) are small. But in the other limit, 
when a beam is at very low temperatures at the space-charge limit, the betatron oscillations 



have been frozen out. In this cold equilibrium state the particles are pushed together by the 
focusing force to the point that the focusing force is exactly canceled by the space-charge 
repulsion. If the linear density of particles is sufficiently low for the beam to be a one- 
dimensional string, or a zigzag pattern in the vertical plane, there is no problem. But when 
the number of particles is sufficiently high to condense into one or more cylinders, then the 
particles that are on the inside of the curving beam must travel more slowly than their 
neighbors, and the particles on the outside faster. This is illustrated schematically in figure 
3. Since current cooling techniques force particles to travel with the same linear velocity 
the “cooling” forces in a storage ring enforce a velocity distribution that is different fiom 
the one required for an ordered state. 

Figure 3. Schematic illustrating the shear that is experienced by a beam where particles are moving 
with a constant linear velocity. The curved arrow indicates the direction of motion, the short arrows 
and the darkened points indicate the relative positions of ions that start out, at the lowest arrow, at the 
sime z-coordinate. 

One may easily estimate the relative kinetic energies between particles in the perfect 
ordered beam: non-relativistically they are AE = E (Ar/R)2, where E is the kinetic energy 
of the circulating beam, R is the bend radius of the storage ring and Ar is the radial 
separation between particles, typically few x 10-3 cm in the ordered state. Clearly, what 
would be desirable, is some mechanism for introducing graded coozing which enforces the 
requisite velocity gradient for a constant anguZar velocity on the beam. At present there is 
no obvious technique for achieving this. 

How should we think of a relevant “temperature” in the non-inertial frame that is 
co-rotating with the beam? It is the deviation from the velocity profile that corresponds to 
constant angular velocity. So if we had a beam with this profile, perfectly ordered, what 
would its ”temperature” look like with the available measurement techniques, for instance 



with a laser scan of the beam velocity spread? We can estimate the apparent “temperature” 
that would appear in such a scan as 

where is the radius of the beam, EEn is its kinetic energy in the laboratory frame, q 
the charge of the ions, and vp the betatron tune of the storage ring without space-charge 
effects. (With rbeam = 0.6 fll~, Ring = 5 m, EEn = 10 MeV, Tappent = 1OOO” K. Note 
that q*/asw is the energy numerator in the definition of the plasma parameter r.) 

Conversely, one must remember that a beam that is at the space-charge limit is a 
strongly-coupled plasma and therefore the longitudinal and transverse degrees of freedom 
are strongly coupled -- with equilibration times on the order of l/Ct+lama where the plasma 
frequency is equal to the betatron frequency for a cold cylindrical beam and only slightly 
different when the beam is not cylindrically symmetric. When a constant linear velocity is 
forced onto the beam the “apparent temperature” defined above will be mixed into 
transverse (and random) velocities when the beam passes through bending magnets, 
thereby the above estimate for the apparent temperature, mixes into “heat” through a 
process, which is the form “intrabeam scattering” takes for cold beams in the space-charge 
limit. This heating can be avoided for very thin beams that become one- or two- 
dimensional, as long as they have no finite extent in the bend plane. 

The parameter relevant to this heating is the rate at which the beam is sheared 
compared to the radius of the beam. The former is the cyclotron frequency, the latter is 
determined by the strength of the focusing whose measure is the betatron frequency. The 
ratio of the two frequencies is the betatron tune vp. Equation (1) may then be rewritten in 
terms of the value of the plasma coupling parameter that one gets assuming the 
temperature is determined only by this source of heating as 

where the estimate of the apparent longitudinal temperature of (1) was divided by 3. This 
expression is an estimate of a limiting value of temperature for a multi-shell beam, say for 
h >> 4 or so, with constant linear-velocity “cooling” forced on the beam. 

There are two other, not very realistic, options to conceivably deal with the shear 
problem. One of these, for a very stiff, strongly focused beam, will be discussed below. 
The other has been seen in simulations3 but may be very difficult to realize in practice. If 
the beam cannot resist the imposed bending shear and the longitudinal cooling is applied 
continuously (easy in simulations not so easy in practice) then the particles segregate into a 
set of strings that slip by each other. The cooling needs to be strong because any transverse 
disorder would cause the particles to scatter from each other and as soon as that happens 
the system will heat up as discussed above. The strings themselves form an ordered 



pattern within the beam envelope, a lattice of equilateral triangles -- a pattern that has also 
been seen in sheared colloidsg. An example is shown in figure 4. But the stability of this 
type of order is very delicate against any type of change (e.g. the capture of an ion from the 
beam causing a lower particle density in one string and a migration of an ion from one 
string to the next would be a source of very strong heating until the system can settle down 
again. Simulations have not been done to test such instability. 
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Figure 4. Separation of particles into sliding strings shown in a simulations for a constant focusing 
field in which the particles are subjected to continuing shear. The simulation contains 2000 particles 
and is for a linear particle density h = 27. 

Periodic Focusing 
' The above considerations apply to beams for which both the focusing and bending 

is uniformly distributed. In a real storage ring both are periodic and the effects of this need 
to be taken into account. First, however, we need to consider, in general terms, what it 
implies about the properties of the beam when the focusing lattice consists of discrete 
elements. Forgetting for the moment about the alternating gradient (the fact that the beam 
is alternately focused and defocused) consider first what happens if the focusing of the 
beam is achieved only through periodic focusing lenses. This will mean that the beam 
particles are pushed together suddenly in focusing element and then are pushed apart 
gradually, because of their mutual space charge repulsion. In the steady focusing case the 
system was in equilibrium -- now it will undergo oscillations. Since deviations from 
equilibrium can be approximated with harmonic motion, the amplitude of the envelope 
oscillations of the beam between focusing elements will increase quadratically with the 
interval between focusing elements, and the amplitude of these oscillations determines the 
kinetic energy contained in them. This is illustrated schematically in figure 5. A perfectly 
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Figure 5. Schematic representation of a section of beam in a periodic focusing lattice with the beam 
traveling in the vertical direction. On the right are shown the excursions of the beam envelope in a 
simple lattice where the interval between focusing elements changes by a factor of two for each plot 
and the amplitude of oscillations changes quadratically with this interval. 

ordered beam in the focusing lattice will undergo these oscillations and if we had a way of 
determining the spread in the transverse beam velocities there would be again an apparent 
temperature which may be written as 

where barn is the change in the beam radius between focusing elements, and Nfi is the 
number of focusing cells per betatron period. The important point is that these oscillations 
imposed by a periodic focusing field are not, by themselves, as destructive to ordered 
structure as the shear effect considered above, the ordered system can survive these 
oscillations as a rather plastic one and the restoring forces balance the perturbation so that 
an ordered array with superimposed envelope oscillations are obtained with no (or very 
little) coupling into random, "thermal" excitations*~4~9. The only caution is that the beam 
has normal modes396 illustrated in figure 6 that should be avoided: for the pure radial 
volume oscillation the eigen-frequenc of the beam is at the betatron frequency, while for 
the quadrupole shape oscillation it is P 2 times that. So the period of focusing cells should 
avoid harmonics of these modes. Still, the kinetic energy associated with these oscillations 
is best minimized, and it is desirable to have as many focusing elements per betatron 
period as practical. 

It should also be noted that any transverse cooling, should it become practical, 
would freeze these transverse oscillations at that point in the lattice and the location for 
transverse cooling in the lattice would need to be considered with caution. 
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Figure 6. Normal modes of a beam in a constant focusing field are illustrated. On the left a radial 
"monopole" volume oscillation was excited; this seems to be a true eigen-mode of the system and 
does not couple into other degrees of freedom. On the right a quadrupole shape oscillation appears to 
be damped into more complicated modes. The simulation had 1000 ions. 

Periodic Bending with Cooling to Constant Angular Velocitv in the "Soft Beam" 
Limit 

A technique that would cool the beam to a velocity profile, with a gradient 
appropriate to the bend radius, such that the particles all follow their trajectories 
isochronously, would be ideal for a lattice where bending is continuous -- all longitudinal 
shear effects would disappear. However, in a real lattice, that consists of discrete bending 
elements and straight sections, even such cooling can present problems. In the limit when 
the bending elements are short compared to the straight sections they will impose a shear 
on the particles; they will be sheared in one direction in the bending elements and gradually 
catch up in the straight sections. Figure 7 illustrates this. For instance, a 90" bend is pretty 
violent: for two particles separated radially by a distance d, such a bend would introduce a 
longitudinal displacement n/2 times d, in other words about 1.6 times the interparticle 
spacing. It is difficult to see how an ordered system could displace such violent effects. 
Of course, the ideal state would be one where the particles are displaced half that amount 
before the bend in one direction (+ d4), and then by the same amount in the other direction 
after the bend, but the displacement is till large. Clearly the more the bending elements are 
distributed the better -- a 60" bend would imply that the total displacement would be .n/3 
and from before to after it could be & d 6 ,  so the excursions may become survivable. 
Simulations also confirm this in various ways. But any slight disorder in the beam will 
cause particles to rub against each other and become a source of heat. 
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Figure 7. Schematic picture, in the same sense as figure 2, of a section of beam that is cooled to a 
constant angular velocity, and subjected to discrete bending elements. Each of the successive pairs 
represents a segment of beam before and after a bend (90’ on the left and 60” on the right), with the 
change between segments taking place in the straight sections. The dark lines appear because of 
merging of the dots used to represent particles; three “adjacent” particles in the center of each 
segment are represented by open circles. 
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Bending of Beams in the “Stiff Beam” Limit 

There is a further way out: ifone can form the beam in an ordered state, then the 
crystalline structure produces a certain resistance to the shearing that is imposed on the 
beam by bends293 -- in other words the particles can be forced to move faster or slower in 
the bends by the interparticle forces. The elastic shear modulus of these structures has been 
studied in simulations, though the results are somewhat contradictory. The results3 seem 
to indicate that there is a limit to the resistance to shear that an ion beam, cooled to a 
constant linear velocity can sustain. This is shown in figure 8. 
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United States Government or any agency thereof. 



ELASTIC SHEAR MODULUS IN CONDENSED BEAMS 
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Figure 8. Values of the elastic shear modulus (relative to the focusing strength, which is represented 
by the betatron frequency) of a cylindrical beam, extracted empirically from Molecular Dynamics 
simulations. When the imposed shear from the circular orbit, represented by the reciprocal of the 
betatron tune vp is larger than the elastic shear modulus. Two values representing "small" and "large" 
storage rings are shown on the right. The elastic shear modulus is a function of the linear particle 
density h, plotted on the bottom scale and the corresponding number of shells is shown on top. 

As with any solid, the crystallized beam has a natural elastic resistance to shear. 
The elastic shear modulus may be characterized by a limiting natural shear frequency of the 
beam, and the requirement is that this natural frequency be larger than the driving 

. Simulations suggest that the values for this is frequency: ushear ' @cyclotron 
Ushear -- ~ p / h ,  in other words the condition for a beam to survive bending shear is that 

. Vp 2 h  (3) 

With such a beam, cooling to constant linear velocity would be sufficient, for instance. 
Such lattices do exist in large storage rings, such as LEP and RHIC, or could have existed 
in the SSC, with the rate of bending relatively slow compared to the strength of the 
focusing -- and beams with 4-10 shells could survive in such rings. The value of vp for 
smaller rings is typically around 2.5, corresponding to the single-shell regime. 

Options 

a) Minimizing Heating from Bending Shear 

1. Find a method of cooling to constant anaular veZoci9. (even a rough gradient will 
ease the problem), and/or 



2. 

3. 

4. 

5. 

b) 

1. 

2. 

3. 

4. 

Find a method to compensate for bends by changing the velocity profile in special 
inserts (rf or electrostatic solutions suggested -- none seem viable at present). 

Use high v i  and hiah multiplici? to increase the elastic shear modulus of the beam 
and minimize shear heating effects (appropriate in any case). 

Put up with bending shear and settle for “sliding strings” (but this needs extremely 
strong cooling, which does not seem practical at present). 

Stick to sparse beams (one-dimensional “strings” or single shells). (This may seem 
like giving up on a proper crystal -- also, it is not clear whether longitudinal cooling 
can be effective in this regime, since the transverse degrees of freedom will be very 
weakly coupled to the longitudinal ones.) If achievable, this could be a start. 

Minimizing Heating from Discrete Focusing Elements 

Maximize number offocusina elements in lattice per betatron period. (amplitude of 
oscillation decreases quadratically with number) 

Focusing lattice and all aspects of ring should be as evenly mated (and with as short 
a repeating cycle) as possible. 

Avoid harmonics of the betatron frequency f f ~  -also harmonics of fif~ for equal 
vertical and horizontal frequencies (these are the frequencies of the normal modes and 
one should avoid driving them.) N.B. These values need to be modified for 
asymmetric focusing . 
Any transverse cooling (should a practical scheme develop) will be most effective at 
a waist or maximum in the cold beam envelope. 

StabiIity of the Ordered State and a Point about Simulations 

, I wish to make a point about simulations that may be important. There have been 
simulations in which configurations were found, with an accelerator lattice that included 
both periodic bending and “realistic” alternating-gradient focusing, similar but not identical 
to the solutions found with uniform focusing and bending. Now in such simulations the 
nature of the ordering, the cooling, and the stability of the configuration against 
perturbations is crucial. The principal point I wish to make is about the size of the sample 
that is followed in simulations. 

In Molecular Dynamics simulations usually a section of the beam is treated, but 
then the question is what to do at the ends of this section. The usual procedure is to make 
the system self-enclosed -- that is let the particles at one end of the system interact with the 
forces from the other end. Thus the system must be periodic, at least with the length of the 
cell. In figure 9 there are examples for a simple case, showing that the configuration that 
comes from a simulation with Molecular Dynamics is strongly influenced by the choice of 
the length of the repeating cell, whether the number of ions in it is divisible by 2, by 3, or 



by neither, even when the cell length is many times the repeating length for the lowest state 
as may be seen in figure 9. This can be particularly important for beams with many more 
ions, where there are multiple shells. A short repeating cell will have a symmetry forced 
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Figure 9. The effect of choice of repeating cell is shown on simulations of a beam with a fixed linear 
particle density h = 3.0. The patterns seen are determined by the length of the cell. (a) shows the 
head on view for 16 ions in the cell -- they are lined up in pairs, along two perpendicular direction, (b) 
and (c) show results for 15 ions in the x-y plane and the x-z plane respectively -- the pattern is 
different with sets of three particles at a given z-coordinate along the beam forming triangles and the 
triangles rotating in orientation by 144 degrees; (d), (e), and ( f )  show a portion of the x-z plane for 49, 
50, and 51 ions respectively. 

on it that may not be the actual lowest state for a long beam, and the extent to which a 
particular configuration is stable under the repeating bending shear and focusing may very 
much depend on the symmetry of the configuration. It is therefore important to do 
simulations with as long a repeating unit cell as possible. 



Summary 

It seems that the time has come in the pursuit of lower and lower beam 
temperatures to start focusing more detailed attention to the reality of storage rings -- 
conventional cooling techniques and measures of temperature are generally not the 
appropriate ones at the lowest temperatures. Finding solutions to these serious problems 
does not appear to be impossible, but these considerations must be kept in mind in 
designing new storage rings with the aim to approach the regime of ordered three- 
dimensional beams. In particular, such rings will have to 

a. Use calculations of the lattice with thefull effects o f  space charge included. (N.B. 
averaged over time, space charge exactly cancels the focusing fields for a cold beam 
and therefore must be explicitly included.) 

b. Find technical solutions and incorporate several of: 

i. 

ii. 
iii. 
iv. 

cooling to introduce a longitudinal velocio aradient and favor constant angular 
velociw 
high multiplicih, in bending and focusing elements; 
stronger focusing (hiah betatron tune); 
high symrnetn, in the ring design. 

c. Finally, simulations should try to incorporate as much realism as possible, with 
larger repeating cells and more detailed descriptions of the lattice. 

This research was supported by the U.S. Department of Energy, Nuclear Physics 
Division, under Contract W-3 1- 109-Eng-38. 
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