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W. K. Lee, R. C. Blasdell, P. B. Fernandez, A. T. Macrander and D. M. Mills 
Experimental Facilities Division, Advanced Photon Source, Argonne National Laboratoty, Argonne, 
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(Presented on 19 Oct 1995) 

The inclined crystal geometry has been suggested as a method of reducing the surface absorbed power 
density of high-heat-load monochromators for third-generation synchrotron radiation sources. 
Computer simulations have shown that if the crystals are perfectly aligned and have no strains then 
the diffraction properties of a pair of inclined crystals are very similar to a pair of conventional flat 
crystals with only subtle effects differentiating the two configurations. However, if the crystals are 
strained, these subtle differences in the behavior of inclined crystals can result in large beam 
divergences causing brilliance and flux losses. In this manuscript we elaborate on these issues and 
estimate potential brilliance and flux losses from strained inclined crystals at the APS. 

1. INTRODUCTION 

The inclined crystal geometry, as shown schematically 
in Figure 1, was originally suggested [1,2] as a method of 
reducing the surface-absorbed power density of high-heat-load 
x-ray monochromators for third-generation synchrotron 
sources. Computer simulations [3] have shown that if the 
crystals are perfectly aligned and have no strains (thermal or 
mechanical), then the diffraction properties of an inclined, 
double-crystal monochromator (DCM) should be fairly 
similar to that of conventional flat crystals; that is, the 
asymmetry parameter, b = kinc.dk0ut.n = -1 for the 
inclined crystal. Several synchrotron tests of the inclined 
geometry have proven that it is indeed an effective method for 
reducing the thermal strains in single-crystal high-heat-load 
x-ray monochromators [4,5]. 

Ray-tracing results [3,6,7], however, have revealed that, 
under certain conditions, the subtle differences between the 
inclined geometry and the conventional flat geometry may be 
significant. In particular, small thermal or mechanical strains 
can induce a large transverse beam divergence causing large 
brilliance and flux losses. The object of this paper is to 
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Fig. 1. Schematic of the inclined crystal geometry 
elaborate on these issues and to remind potential users of the 
possible pitfalls of the inclied crystal geometry. 

II. THEORETICAL DISCUSSION 

To understand the cause of these pitfalls, it is useful to 
review the essential points of the inclined-crystal geometry. 
It is assumed here that the reader has some understanding of 
dynamical diffi-action theory [S-1 13. This discussion will be 
based on the approach of Batterman and Cole [IO]. With 
exception of the experimental results, the discussion will use 
the reference axes as shown in Figure 1. 

Figure 2 shows a familiar dispersion surface. For 
conventional symmetric and asymmetric reflections, a 2-D 
picture of the dispersion and Laue spheres [ 1 I] is sufficient; 
Le., the reciprocal lattice vector, H, the crystal surface 
normal, n, and ALL the wave vectors (incident and reflected, 
inside and outside the crystal) lie in the same plane (and thus 
can be drawn on a piece of paper). The waves inside the 
crystal and the external exit wave, kout, are determined by 
the so-called tie points, which are the intersection of the 
crystal normal, n, to the dispersion surfaces (for the internal 
waves) and to the "exit Laue sphere". (The "exit Laue 
sphere" and "entrance Laue sphere" are defined as spheres of 
radius k = lkincl = lkoutl centered at H and 0 respectively. 
0 is the origin of the reciprocal lattice. For later reference, 
points A and C in Figure 2 shall be referred to as "entrance" 
and "exit" points.) However, in the case of the inclined 
geometry, the normal to the crystal surface, n, lies out of the 
plane spanned by the incoming wave vector, kinc and H (YZ 
plane in Figure 2). Thus, the tie points on the dispersion 
surfaces (which correspond to the internal wave vectors) and 
the exit point (point C in Figures 2 and 3) will not lie in the 
YZ plane. Figure 3 shows a 3-D version of the dispersion 
surfaces. The important thing to note is that the exit beam, 
kout, is now out of the YZ plane. We refer to this out-of- 
plane effect on the diffi-acted beam as a "rho-kick" or Prefl. It 
is easy to see that, for a particular inclination angle (or n), the 
amount of rho-kick is dependent on the incidence angle. As 
the incidence angle changes, the entrance point moves along 
the surface of the entrance Laue sphere, causing the exit tie 
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Fig. 2. A typical "conventional" dispersion surface diagram for 
the general case where n is in the plane spanned by H and kine, 
but not necessarily parallel to H .  For clarity, only the Q 
polarization surfaces are shown. For the case drawn here, there is 
only one tie-point, B. k = lkincl = Ikoutl. A 0  is the (external) 
incident wave vector, kine. B is the intersection of the a 
dispersion surface with a vector through A ("entrance point"), 
parallel to the crystal normal, n. Similarly, C ("exit point") is the 
intersection of a circle of radius k about H with a vector through 
A, parallel to the crystal normal, n. BO and BH are the internal 
diffracted beams, KOaQ and K H " ~ .  Note that IKI < k due to the 
index of refraction. CH ij: the external diffracted beam. 
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Fig. 3. A 3-D version of the dispersion surface diagram. As in 
Figure 2, only the Q polarization surfaces are shown. As before, 
A 0  is the external incident wave vector, kin. B is the 
intersection of the a branch of the dispersion surface with a 
vector through A, parallel to the crystal normal, n. Similarly, C is 
the intersection of a sphere of radius k about H with a vector 
through A, parallel to the crystal normal, n. BO and BH are the 
internal diffracted beams. A, 0, and H all lie in the YZ plane 
(plane of the paper). But now, B and C lie out of the YZ plane. 
Thus, the external diffracted beam, CH, no longer lies in the YZ 
plane. Note that the normal, as drawn here depicts an asymmetric 
inclined (or rotated inclined) geometry. For a symmetric inclined 
crystal geometry, the normal n, would lie in the ZX plane. In 
other words, if we had drawn the normal for the symmetric case 
here, it would be parallel to OH (the projection of n would be 
parallel to H). 
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point to move along the exit Laue sphere. By simple 
geometry, one can easily map out the Prefl (rho-kick) 
dependence on the incidence angle Bine. Figure 4 shows the 
definition of the rho-kick angle, Prefl, and several other angles 
of relevance to this discussion. The definition of Prefl is 
similar to that in reference [3]. 68,1 is defined as the angle 
between kout and kout projected onto the YZ plane. That is, 

Figure 5,  which is the crux of this paper, shows, for 
Si( 11 1) crystals of various inclination angles, the rho-kick 
dependence on Binc - OBragg for a single reflection. @inc is 
the incidence angle, and 8Bragg is the kinematic Bragg 
angle.) The slopes, which depend on the inclination angle, 
are almost linear and are almost independent of energy. For 
an 85' inclined crystal, the slope of the line is about 22, 
while that for a 78" inclined crystal is about 9.2. Figure 6 
shows a plot of 8inc vs 8refl for an 85' inclined Si(ll1) 
crystal diffracting at 13.84 keV. We see that, although Bine 
# 8refl, the difference is very small. Because Prefl varies 
almost linearly with 8inc - @rag@ and 8inc = erefl, we can 
also treat Figure 5 as a plot of the rho-kick from a double- 
inclined-crystal monochromator (+/- geometry) versus the 8 
misorientation angle between the two crystals, A8 = elout - 
82inc = Blinc - 82inc. In other words: 

For a set of perfect inclined crystals in the parallel (+/-) 
geometry, the rho-kick does not present a problem because, 
by reversibility, the second crystal of the DCM will add its 
own rho-kick, which exactly cancels out the rho-kick from the 
first crystal. The doubly diffracted beam will thus still be 
parallel to the incoming beam, kine, although there will be a 

Fig. 4. Definition of some relevant angles in the inclined 
geometry. The p angles are defined as the angle between the y- 
axis and the appropriate k vector projected onto the XY (or 
Bragg) plane. P is the inclination angle. The horizontal 
divergence of the beam is characterized by the angle 69xm1, 
which is the actual 'out-of-plane' angle. Notice that 69xm1 < 
Prefl; the difference is more pronounced at higher Bragg angles. 
@gxm1/Prefl) e 0.995, 0.97, and 0.87 for 20 keV, 8 keV, and 4 
keV, respectively. The ratio is independant of p. 
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Fig. 5. Plot of Prefl versus 8inc - 8Bragg for Si(ll1) single 
reflection for various inclination angles and energies. The 
incoming beam is highly collimated with Pint = 0. At the 
kinematic Bragg angle, 8Bragf Prefl = 0. As explained in the 
text, this can also be viewe as a plot of Prefl versus A 8  
misalignment between a (+/-) pair of inclined crystals in a DCM. 

very slight transverse offset. Due to the extremely high 
slopes shown in Figure 5, the problem occurs when there is a 
slight difference between Blrefl and 92inc. This may occur, 
for example, if one crystal has fabrication/mounting/thermal- 
induced strains. Then, the rho-kick from the second 
reflection will not exactly cancel the rho-kick fiom the first 
reflection. Compared to the flat crystal geometry, the effect of 
these strains are highly amplified (by the values of the slopes 
in Figure 5 )  in the inclined crystal geometry. For example, 
in the case of an 85' inclined DCM, the slope (Figure 5 )  is 
about 22. Thus, a 0 misalignment of 1 p a d  between the two 
crystals would induce a 22 p a d  horizontal divergence in the 
monochromatic beam. 
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Fig. 6. Plot of 8refl- Bine versus Bine for an 85" inclined Si(l11) 
crystal reflecting at 13.84 keV [3]. Although Orefl # Bine, the 
difference is small. 

111. EXPERIMENTAL RESULTS 

Several in-house measurements have been made to veri@ 
the above simulations. The measurements were performed 
with a Spellman x-ray generator with a copper anode, 
operating at 50 kV x 40 mA. A pair of 2 mm x 2 mm slits 
were placed at the exit window of the Spellman generator to 
cut down background scattering. A -8.5-m-long evacuated 
beam pipe transported the beam to the experimental hutch. A 
pair of 1 mm x 1 mm slits were placed inside the hutch, near 
the first crystal. The distance fiom these defining slits to the 
source is about 9 m. The measurements were performed with 
the first crystal scattering horizontally (opposite to the 
synchrotron and Figure 1) and the second crystal scattering 
vertically. Rocking curves (RCs) were obtained by rotating 
the second crystal. (The term "rocking-curve" is used very 
loosely here as these measurements are very different from the 
conventional double-crystal rocking curves.) The rocking 
curves should therefore be sensitive to any rho-kick from the 
first crystal. Figure 7 shows a schematic of the experimental 
setup. Note, however, referring to Figure 4, that it is actually 
8Bm1 that gets convoluted into the RC width for the second 
(analyzer) crystal and not Prefl. However, for the 8-keV case, 
the difference between 60xml and Prefl is very small (-3%, 
see later section). The same second crystal (flat Si( 1 1 1)) was 
used in all the measurements. All reflections were fiom the 
Si(ll1) planes, and the energy was 8.04778 keV (CuKal 
line). The width of the rocking curve is therefore a function 
of the vertical divergence of the incoming beam, the energy 
width of the CuKal  line, and the Darwin width. Because 
the horizontal divergence of the beam incident on the first 
crystal exceeds the Darwin width, the vertical divergence of 
the beam off the first crystal has a contribution equal to the 
Darwin width times the magnification factor due to the rho- 
kick effect. The measured RCs are generally Gaussian in 
shape. The results are shown in Table I. 

While detailed simulations of the experiments are still 
being carried out, some simple interpretations can be made. 
As mentioned above, the RC widths should be a function of 
the vertical divergence off the first crystal, &e energy width of 
the CuKal  line, and the Darwin width. Every photon 
reflected by the first crystal must have hit the first crystal at 
the right angle (Bragg angle plus the small refractive index 
correction) to within half the Darwin width. Therefore, for 
the inclined-crystal case, the range of rho-kick from first 

Fig. 7. Experimental setup used to verify the Prefl. simulations. 
For ease of drawing and clarity, the flat crystal case IS shown. 
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Table I: RC width comparisons between flat and inclined first 
crystal. Setup as shown in Figure 7. 

Measured 
FWHM 

Flat first crystal - 
flat second crystal 

85" inclined first crystal - 
flat second crystal 

1 57" +/- 6" 37.6" +I- 2" 

crystal should be about 22 times (slope of the line in Figure 
5 )  the Darwin width (6.8") = 150". (The actual value of the 
Prefl should vary from about 64" to about 214". But because 
we have an arbitrary zero in the rotation, the RC 
measurement only records the width of the divergence.) If we 
assume that the rho-kick adds in quadrature to the measured 
value for the flat-flat case, we see that the RC for the good 
inclined crystal should be 4-=155". The 
measured value was 157". This first set of measurements 
clearly supports the simulations shown in Figure 5. 

For the second set of measurements, a channel-cut first 
crystal was used, scattering in the horizontal plane. The flat 
second-crystal analyzer remained the same as for the previous 
measurements, scattering in the vertical plane. These 
measurements would better simulate an actual inclined DCM. 
According to the simulations, if the channel-cut crystal is 
totally strain free, then we should not see any increase in the 
vertical beam divergence after the channel-cut crystal. The 
rho-kick from the second channel-cut reflection would exactly 
undo the rho-kick from the first channel-cut reflection. On the 
other hand, if the channel-cut crystal is strained, we should 
see an increase in the vertical divergence after the channel-cut 
crystal. The increase in vertical divergence depends on the 
difference between the angle at which the photon leaves the 
first reflecting surface, 8lOut, and the angle at which the 
photon hits the second reflecting surface, 82inc. This may 
occur if the crystal is strained. Using Figure 5, we can 
predict the amount of rho-kick from an inclined DCM if we 
know the relative strain between the two crystals. 

The channel-cut crystal was fabricated such that it can be 
used as a normal flat-flat Si(l11) channel-cut crystal or as a 
70.5' inclined-inclined channel-cut crystal. Measurements 
were made with the channel-cut crystal in both the flat and 
the inclined geometries for comparison. As before, rocking 
curves were measured by rotating the second flat analyzer 
crystal, scattering vertically. The results of the triple bounce 
RC (flat horizontal - flat horizontal - flat vertical on one hand, 
and inclined horizontal - inclined horizontal - flat vertical on 
the other hand) are shown in Table 11. The slope of the rho- 
kick, Prefl vs 8inc - 8Bragg plot for the case of a 70.5' 
inclined crystal, is about 5.5. (As before, although we are 
actually sensitive to 68xml and not Prefl, the difference 
between the two is very small at this Bragg angle.) 

Again, if we assume that the rho-kick adds in quadrature 
to the RC width, we see that the inclined channel-cut case 
has an increased vertical divergence of about 
4- = 18". If we assume that this is all due to the 
rho-kick effect (see discussion below), this suggests that there 
is 18/5.5 = 3.3" strain in the channel-cut crystal. This is 

slightly higher than the measured strain of 2", a value we 
measured using MoKa radiation in the flat Si(333) geometry. 
The ratio (3.312 = 1.65 times) can be explained as follows: 
(1) the strain measurements were performed at a much higher 
energy (17.5 keV) in the flat Si(333) geometry, (2) the beam 
footprint on the crystal is larger in the inclined case, and thus 
the strain as seen by the beam may be larger, (3) the beam is 
more grazing in the inclined case and is probably more 
sensitive to surface roughness. For the same reasons (2&3), 
the increased vertical divergence of 18" should be considered 
only as an upper limit to the possible rho-kick effect; Le., the 
effect of the rho-kick phenomena is very likely less than 18". 
However, until detailed simulations are performed, this is a 
good starting point. 

Because the difference between the inclined and flat 
measurements was quite small in the above case, we decided 
to "rough uptt (with 240 grit Sic) the first reflecting surface of 
the channel-cut to get a bigger effect. The measured strain 
using MoKa radiation in the flat Si(333) geometry was 13" 
for the roughened crystal. Comparing the inclined and flat 
cases, we see that there is an increase of 4- = 123" 
in the vertical divergence of the beam from the inclined 
channel-cut. As before, if we assume that this is entirely due 
to the rho-kick effect, we obtain a strain field in the crystal of 
123/5.5 = 22.4". The ratio of this number to the measured 
strain is 22.4/13 = 1.72, which compares quite well with the 
similar ratio of 1.65 in the previous measurement. 

Finally, in order to confirm that, without strains, the 
inclined and flat cases should be identical, we etched the 
channel-cut crystal thoroughly (removed - 0.006" surface 
material) and checked with MoKa radiation in the flat 
Si(333) geometry that it is indeed strain free. Then, we 
repeated the above measurements. In this case, we find that 
there is no difference in the RC width between the flat 
channel-cut crystal case and inclined channel-cut-crystal case, 
as expected. 

These measurements clearly support the rho-kick effect 
simulations as shown in Figure 5. 

IV. BRILLIANCE AND FLUX LOSS 
ESTIMATES 

In order to estimate the brilliance and flux losses due to 
the rho-kick effect described above, a phase space discussion 
of the source and the effect of the crystal on the phase space is 
useful. At the APS, the radiation characteristics are 
dominated by the emittance of the stored positron beam. At 
energies above 5 keV, the contributions to the beam size and 
divergence of the x-ray photon beam arising from diffraction 
limitations can be neglected; Le., only the particle beam 
contributions need to be considered. Under these 
assumptions, the product of the source photon emittances of 
the APS undulator A can be written as [ 121: 

5 = E X .  Ey 

= &&* . cycy' (3) 
= (325 mm)(23 mrad) . (86 mm)(9 mrad) (1 c values) . 
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Table 11: RC width comparisons with a channel cut first crystal in the flat and inclined 
orientations. Setup is as shown in Figure 7. 

Measured FWHM Flat channel-cut first crystal - 70.5" inclined channel-cut first 
flat second crystal crystal - flat second crystal 

Original channel-cut 39 +I- 2" 43 +I- 2" 
First reflection surface 69 +I- 4" 141 +I- 9" 
roughened with 240 grit 
After a long acid etch 40 +I- 2" 40 +I- 2" 

Here ex and ey are the horizontal and vertical phase spaces 
emittances, Cx and Cy are the horizontal and vertical source 
photon beam sizes, and 2,' and Zyt are the horizontal and 
vertical source photon beam divergences. Figure 8 shows 
schematically, for a particular wavelength, the vertical phase 
space at the source with the major axes along the y and y' 
directions. By the time the beam reaches the nominal 
position of the frst crystal monochromator (Figure 8(b)) the 
ellipse is significantly stretched out in the'y axis. The long 
major axis of the ellipse is now inclined with a slope 

- 1  mv=- 
dml ' 

where dml is the distance from the source to the center of the 
crystal. The width of the ellipse at a given value of y' is still 
characterized by Zyy but now the total width of the ellipse is 
given by 

width and in the y axis by the physical size of the crystal.) If 
a strain field exists in the crystal that has a distribution of 
slopes at each meridinal (vertical) point on the crystal 

(a)Vertical phase space 
at the source 

Y' 

t 

The total height of the ellipse (in y') is still characterized by 
Zyl , but now the width of the divergence distribution at a 
given value of y is given by 

(b)vefiicd phase  ace 
at 30 m b m  source 

This is the divergence arising from the source size, and it is 
this quantity that is of use in a discussion about the 
preservation of brilliance through a crystal. For the APS 
undulator A with the first crystal at dml = 30 m, one fmds 
that (1 B values) 

AytC = 86 pm/30 m = 2.9 p a d  
AxtC = 325 pm/30 m = 10.8 prad , 

where AxtC is the equivalent quantity for the horizontal phase 
space. 

Ignoring reflectivity losses, for a strain-free symmetric 
crystal whose Darwin acceptance width is larger than Xy' and 
whose physical size is larger than Ay, the phase space 
immediately after the crystal looks the same as the phase 
space immediately before the crystal. (If the Darwin 
acceptance width is smaller than Zyi andlor the physical size 
of the crystal is smaller than Ay, then the phase space ellipse 
after the crystal will be limited in the y' axis by the Darwin 
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Fig. 8. Schematic drawing of the vertical phase space (shaded 
ellipse) of the undulator A beam at the source (a) and at the 
nominal monochromator first crystal position (b) 30 m from the 
source. Note that the ellipse is stretched in y as the beam 
diverges. The two open ellipses in (b) schematically show a 
"mosaic" broadening function, which, if convolved with the beam 
emittance at each value of y, would significantly increase the area 
of the ellipse (the emittance) and therefore decrease the brilliance 
of the reflected beam. Note that the width of this function 60ym 1 
must be kept less than or equal to the quantity AyIc in order that 
there be no significant brilliance loss. Also note that AyIC << 
Zyi, the source vertical divergence. A similar picture can be 
drawn for the horizontal phase space. 
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characterized by the quantity 1, a smearing of the vertical 
divergence of the reflected beam at each value of y by SByml 
(equal to 2 6OYc 1 for the symmemc case) is produced. Then 
in order for there to be no significant loss in beam emittance, 
the condition (The above expression for SOxml is equivalent to a tilt (or 

chi) misalignment.) For an inclined crystal, the rho-kick 
effect adds to the horizontal divergence, and, for the relatively 
small Bragg angles encountered here, the rho-kick effect will 
dominate. 

Refering to Figure 4, it is perhaps useful to note the 
small difference between SOm1 and Prefl. In terms of b u t  
and the reference axes, S , 9 ,  and z :̂ 

I 

(7) 

must be satisfied. This is schematically represented in 
Figure 8(b), where the open ellipses (which represent the 
mosaic broadening function at two y-points) are shown 
slightly larger than S8yml but much narrower than Zyf. 
Clearly, if this "mosaic" was present in the crystal, it would 
noticeably broaden the phase ellipse of the reflected beam. 

Assuming that the quantitites add in quadrature and that 
reflectivity losses are negligible, one can estimate the vertical 
phase space emittance immediately downstream of the 
monochromator as 

The ratio (SBxmI/Prefl) = 0.995, 0.97, and 0.87 for the 
Si(ll1) 20 keV, 8 keV, and 4 keV cases, respectively. The 
ratio is independent of p. 

Based on our current estimates/measurements of 
fabrication and thermally induced strains, we can estimate the 
severity of the brilliance loss for gallium-cooled flat and 
inclined Si( 1 1 1) crystals. With the current methods of 
crystal fabrication (particularly, the bonding process), the 
typical strain induced in the crystal is about 6 p a d  (1 CY 
value) over the entire 4-inch diameter surface. For the 
thermal-induced strains, we base our estimates on the results 
ofreference [13]. 

For the flat geometry case: 

A similar expression holds for the horizontal phase space. In 
general, if the total smearing of the reflected beam vertical 
divergence (averaged over x at each pointy) is characterized 
by 68ym1, and the total smearing of the reflected beam 
horizontal divergence (averaged over y at each point x) is 
characterized by Sexml, then the product of the reflected 
beam emittances is approximately S8yml= 2 SBcl 

SBml = 0.5 SBcl for Bragg angle of 14.2O. 

For the 78" inclined geometry (8-keV) case: 

The beam brilliance is inversely proportional to the product 
of the horizontal and vertical beam emittances. The brilliance 
loss, (Bml/Bo), due to the strain field is then For the 85" inclined geometry (4-keV) case: 

(10) 

For a symmetric flat crystal with a randomly distributed 
slope error of the crystalline planes of SOCl, the reflected 
beam (assuming diffracting in the vertical plane) will have 
increased vertical (S8ym 1 ) and horizontal (SBxm 1)  
divergences given by: 

-- Bm1 - (xx * cx+(Zy *Zy)) - 
BO 5ml 

where, as described above, SBcl (fabrication) = 6 pad ,  and 
SBcl (thermal) = 5.5 p a d  for the 85" inclined, 4-keV case 
and 2.5 p a d  for the 78" inclined, 8-keV case. 

The effect of the various beam divergences on the beam 
brilliance for a flat crystal, a 78" inclined crystal (with the 
APS undulator A first harmonic of 8 keV), and an 85" 
inclined crystal (with the APS undulator A first harmonic of 
4 keV) are shown in Table 111. All crystals are Si(l1 l), and 
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Table 111: Brilliance loss, (BmlBo), as defined in equation (lo), for the case of flat and inclined geometry. 

Bmlmo BmImo 
( k W  ( P W  (wad) (wad) (fat)) (thermal) (total) 

Crystal Energy Fab. strain Thermal strain Total strain BmI/Bo 

Flat 6 0.22 
78" incl. 8 6 2.5 6.5 0.045 0.22 0.04 
85" incl. 4 6 5.5 8.1 0.02 1 0.025 0.01 

Table 1V: Flux loss, (Fml/Fo), as defined by equation (17), for the case of flat and inclined geometry. 

Crystal Energy Fab. strain Thermal Total strain FmI/Fo FmIRo FmIflo 
(keV) (prad) strain (prad) (prad) (f&) (thermal) (total) 

Flat 6 0.83 
78" incl. 8 6 2.5 6.5 0.54 0.87 0.50 
85" incl. 4 6 5.5 8.1 0.30 0.33 0.2 1 

the thermal results assume a 100-mA ring current. We 
assume that the total strain consists of the strains from the 
fabrication-induced and thermal-induced strains added in 
quadrature. The brilliance loss estimate for the thermal- 
induced and total strain, flat-crystal case is not given because 
there is no data for the expected thermal-induced strain for a 
flat crystal. (However, it has been calculated that, for a 
closed-gap situation, with a flat, gallium-cooled crystal 
oriented for 4-keV Si( 11 1) reflection, the temperature on the 
crystal would approach its melting point!) 

Thus, based on our present crystal cooling and 
fabrication capabilities, the brilliance loss estimates for both 
inclined crystal cases presented here would appear 
unacceptable. Comparing the brilliance loss due to the 
estimated fabrication-induced strains, one sees that a 78" 
inclined crystal would be 5 times while the 85" inclined 
crystal would be 10 times worse than the flat crystal. Taking 
the thermal strains into account, these estimates predict that 
for the 85" inclined case, the brilliance may be down by a 
factor of 100 compared to the incoming beam! It is true that 
the situation would improve somewhat with a lower 
inclination angle (slope of Figure 5 would decrease). 
However, unless a better cooling scheme is realized, the 
lower inclination angle would most likely result in a higher 
thermal-induced strain. Table I11 strongly suggests that if 
brilliance is of importance to the experimenter, and lower 
fabrication strains are not achieved, then the inclined crystal 
geometry would not be a good candidate for the high-heat- 
load monochromator. We note that these statements apply to 
the total (vertical x horizontal) brilliance. Users who are 
interested only in the vertical part should not be similarly 
concerned since the extra brilliance losses introduced by the 
inclined geometry are confined to the horizontal part of the of 
the overall brilliance. 

For the user who is more interested in photon flux 
(photons/s/mm2) rather than brilliance, it is usehl to make 
similar flux comparisons between the flat and inclined crystal 
geometries. For the APS 1-ID beamline, the monochromator 
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is at dml = 30 m from the source and the monochromatic 
hutch is at d' = 30 m fiom the monochromator (60 m from 
the source). Thus, the undistorted beam sizes, as given in 
equations (3 & 5 )  are: 

Ay=Xyt. (dm1 + d') = 9 prad x 60 m = 540 pm 

Ax=&'. (dm1 +d') =23  pradx 60 m = 1380 pm . 

An estimate for the total beam size at a distance d' from the 
monochromator, is: 

Ayml =.I (68yml . d')2 + Ay2 (15) 

The beam flux is inversely proportional to the beam cross- 
sectional area A. and Aml. Thus, the ratio of the distorted 
to the undistorted beam fluxes is therefore: 

Table IV compares the ratio of the distorted to the 
undistorted beam fluxes (Fml/Fo) for the flat and inclined 
geometries using equation (17). The beam sizes are 
computed at a distance of 60 from the source. The 
monochromator is located at 30 m from the source. As 
before, the thermal strain data are based on reference 1131. 
Also, note that equation (17) does not take into account the 
particle source size. 

From Table IVY we see that, although it is less severe 
than the brilliance loss, the flux loss is significant. For the 
worst case scenario presented here, the flux loss is by a factor 
of U0.21 = 4.8. Comparing flat and inclined crystals, we see 
that, as before, the effect of the fabrication-induced strain is 
worse for inclined crystals. 
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Finally, it should be pointed out that, despite the high 
losses of brilliance and flux of the beam from inclined 
crystals, the total throughput (total number of photonsh) 
from the inclined DCM should be about the same as that of 
the flat DCM. The rho-kick affects the horizontal divergence 
of the beam and is therefore a second order effect on 8. In 
other words, the rho-kicked reflected beam off the first crystal 
of the DCM will still be reflected from the second crystal 
because the change in 82inc is very small. 

V. SUMMARY 

In summary, this paper presents simulations and 
supporting experimental measurements which indicate that 
small amounts of strains in the inclined crystal can cause a 
large increase in the horizontal reflected beam divergence. 
The "amplification factor" of the distortion can be as large as 
19.7 for an 85" inclined crystal. With the current best 
estimates for fabrication- and thermal-induced strains, the 
beam brilliance loss may be as much as 100 times and the 
flux loss may be by as much as 4.8 times. Although the net 
throughput of the inclined DCM should be the same as the 
flat DCM, such severe losses in the beam brilliance and flux 
would appear to be unacceptable to most users. 

In order to improve the performance of the inclined 
DCM, clearly, special attention must be given to minimizing 
the strains in the crystal. While it may be difficult to reduce 
the thermal-induced strains (for room-temperature-cooled 
crystals), there should be ways to reduce the fabrication- 
induced strains. Currently, most of the fabrication-induced 
strains originate from the bonding process. Thus, cooling 
geometries that do not require bonding, such as core-drilled 
crystals, may be more appropriate. In order to reduce the 
thermal-induced strains, it may be necessary to go to 
cryogenic cooling. 
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