
Experimental Physics and Industrial Control System (EPICS)
Application SourceRelease Control

for EPICS R3.11.6 EG E 1 v E D

0 S - n
&&a 9 4 19%

Bob Zieman and Marty Kraimer

March25,1994

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency. thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

_ _ ~

I

I

CHAPTER 1 Introduction
1.1 Overview ...
1.2 Definitions ..
1.3 Classes of Users ..
1.4 Document Conventions and Information
1.5 Environment ..
1.6 SourceIRelease control commands
1.7 Getting started ...

CHAPTER 2 Application System Area Architecture
2.1 <top> ...
2.1.1 User Editable Files ..
2.1.2 EPICS related l i i and files
2.2 <top>/cat-ascii ..
2.3 <top>/replace-ascii ..
2.4 <top>/ioc/<iocName>/ ..
2.5 <top>/<app>App/ - Root of an Application
2.5.1 < top>/<app> App/src/ ..
2.5.2 <top >/< app> Applarchlist
2.5.3 < top>/<app>App/<archV>/
2.5.5 < top>/<app>App/< * >Db/
2.5.6 < top>/<appName>/opl ...

CHAPTER 3 Procedures for Application System Area
3.1 Creating The Initial Application *tern Area
3.2 Creating Application Specific Directories
3.2.1 Creating New Applications
3.2.2 Creating New Database directories
3.3 Creating IOC directories ..
3.4 Integration ..

2.5.4 < top>/<app>App/<archU>/

CHAPTER 4 Shadow Node Procedures
4.1 Creating an application shadow node
4.2 Synchronizing an application shadow node

CHAPTER 5 AddinglModifying Components
5.1 IOC Databases ..
5.1.1 DCT databases ...
5.1.2 GDCT databases ..
5.1.3 dbsccs for DCT databases
5.2 IOC Configuration Files ...
5.2.1 vxWorks startup files ...
5.2.2 resource.def fides ..
5.3 Ascii definition files ..
5.4 Adding Application Specific Source files
5.5 Modifying Existing Application Sources r

..

..................
5.6 Operator Files ...
5.7 Building a single Application

CHAPTER 6 Source/Release Tools
6.1 Application System Area ..

1
1
1
1
2
2
2
3

5
5
5
5
5
5
5
6
6
6
6
6
6
6

7
7
7
7
8
8
8

10
10
10

11
11
11
12
12
13
13
13
13
14
14
14
15

16
16

I

6.1.1 Tools invoked in the <top> directory
6.1.3 Tools invoked anywhere ..
6.2 Application Shadow Area ...
6.2.1 apCreateShadow ..
6.2.2 apStatusSync ...
6.3 Development Tools ...
6.3.1 apSccsInfo ...
6.3.2 makesdr ...
6.3.3 Buildit ...
6.4 make ...
6.4.1<top> ..
6.4.2 <shadow> ...
6.4.3 <app>App ..
6.4.4 <database>Db ...
6.4.5 <archU> ..
6.4.6 <archV> ..

6.1.2 Tools invoked in the <top>/<app>App/ directory

6.2.3 dbsccs ...

APPENDIX A Application System Area
APPENDIX B Application Production Area Evolution

16
16
16
17
17
17
17
17
17
17
18
18
18
19
19
19
19
19

20

21

. _.__...-.
. . ..- ... __.- - - . .

'
EPICS: Source/Release Control for Applications March 25, 1994

CHAPTER 1 Introduction

1.1 Overview
This manual describes a set of tools that can be used to develop software for EPICS based
control systems. It provides the following features:

Mu1 tiple Applications

The entire system is composed of an arbitrary number of applications.

Source/Release Control

All files created or modified by the application developers can be put under SCCS, which is
a Unix Sourcehtelease control utility.

Multiple Developers

It allows a number of application developers to work separately during the development
phase but combine their applications for system testing and for a production system.

Makefiles

Makefiles are provided to automatically rebuild various application components. For C and
state notation programs, Imakefiles are provided.

1.2 Definitions

Application System Area

The set of directories and files managed by the tools described in this document. Everything
is stored in one directory tree. The top level directory contains information common to all
applications in this area as well as a subtree for each application.

Application

A subtree under the application system area that contains all the files for a single application.

Application Shadow Area

A set of directories and soft links to an application system area. It appears to the user just like
a copy of the system area.

Application Production Area

A copy of a working application system area for use by operations.
I

1.3 Classes of Users

Application System Manager

The Application System Manager is responsible for the Application System area.

1

EPICS: SourceRelease Control for Applications March 25, 1994

Application Developer
Anyone who tests, modifies, or extends an application's software. If multiple developers are
working on the same system each should develop in a private shadow area.

Application Production Manager

1.4 Document Conventions and Information
A person responsible for production application software.

<archV>

<archU>
%
<EDIT>

The following conventions and/or representations apply to the remainder of this document.
<epics>
<top>

a h a d o m

Represents the full path name of an EPICS release
Represents the root node of an application system area. It is the
directory from which we can access EPICS components.
Represents the top node of an application shadow node. "shadow
node" and "shadow area" are synonymous.
Represents the vxworks target architecture. Currently hkv2f for
the 68020 and mv167 for the 68040.
Represents the Unix architecture. Currently sun4.
Indicates a prompt for user input or activity.
Means: edit the file according to the sccs rules. Refer to the sccs
procedures in section 1.6. Note: <EDIT> includes doing a delget if
in the system area.

1.5 Environment
In order to use the EPICS Unix tools in designated directories you must add the following
line to your .cshrc file:
set path = ($path ./.epicsUnix/'arch'/bin)

1.6 SourceDZelease control commands
The Unix sccs utility is used to put all user editable files under sourcehelease control. The
unix documentation should be consulted for a complete description of sccs. This section
gives a brief description of the commands normally used by application developers. Wherev-
er <filename> is shown a list of filenames is allowed.

%sccs create <filename>
This command places a file under sccs control for the first time. After the file is placed under
sccs control a read only copy is created, i.e. an sccs edit command must be issued before the
file can be modified.
This command also creates a backup copy of the original file. It is the original file with a
comma prepended to the name. It is a good idea to remove this file.

%sccs edit <filename>
This command checks out a file so that it can be modified. If a file is checked out in an ap-
plication shadow area, other developers will not see any modifications until an sccs delta is
executed.

2
i

EPICS: Source/Release Control for Applications March25, 1994

If a developer checks out a file in a shadow area it is actually checked out from the system
area, i.e. no other developer can try to modify the same file. Other developers do not, howev-
er, see any changes made in the shadow area until the developer checks in modified files.

%sccs unedit <filename>

This command causes the SCCS directory to revert to the state it was in before the last sccs
edit <filename> command was issued.

%sccs delta <filename>

This command checks in a modified file. This should only be done when everyone attached
to an application system area is expected to see the changes. A new sccs version of the file
is created. It is possible to retrieve previous versions.
It is also possible to issue an "sccs delget", which combines an sccs delta with an sccs get,
and an "sccs deledit", which combines an sccs delta with an sccs edit.

%sees get <filename>

This command retrieves a read only version of the file. This is done automatically by one
of the tools described in this manual. It is also useful in a shadow area when the user wants
to make a temporary change to a file, e.g. for debugging purposes. In this case the user must
change the file protections before it can be modified.

%sees info

This command displays a list of all checked out files in the directory from which the com-
mand is issued.

1.7 Getting started

The normal procedure for getting started is to:

Create a system area

This is done by the application system manager. See sections 3.1 - 3.3 for details.

Get Application Specific ascii definition files.

All application developers using this application system area must agree on a common set
of ascii definition files. See section 5.3 for instructions.
After all ascii files are installed run makesdr in <top>.

Populate Each Application
I

The developers for each application should install all files related to each application. This
includes Unix sources, IOC sources, and databases. Chapter 5 explains how to install each
component. It is up to the application system manager and the application developers to de-
cide if it is easier to do this in the system area or if each application developer should do his/
her part in a shadow area.

3

EPICS: SourceRelease Control for Applications March25,1994

Prepare each IOC for booting

Modify the startup files in each ioc directory.

Perform the normal Integration steps

Perfom the steps given in section 3.4.
At this time you should have a working application system area.

4

EPICS: Source/Release Control for Applications March 25, 1994

CHAPTER 2 Application System Area Architecture
The root directory of the Application System Area and its contents is referred to as <top>. Appendix
A shows the file structure stored under <top>

2.1 <top>
2.1.1 User Editable Files

applList List of all applications.
iocList List of all iocs.

2.1.2 EPICS related links and files
The following are soft links to epics directories or files.
makefile@
ascii @ ascii definition files
epics€€@ include files
share@ various epics shared sources
Unix@
config@
vxWorks<archV>@ vxworks boot image
target<archV>@
vw@

directory for locating unix tools
directory containing files needed by source/release tools

directory containing EPICS vxworks executables
The location of vxworks components

The following files identifies EPICS releases.
curren t-re1 The current release
.current-rel-hist A history of all getrel commands for this system

The following are for record definitions. The default files are initially links to EPICS and
sdrH does not exist. Makesdr creates these if they are missing or out-of-date.
default.dctsdr
default.sdrSum
sdrWrec/ The include files for each record type.

2.2 <top>/cat-ascii
This is the place to store ascii definition files to be added to the end of EPICS definition files.

2.3 <top>/replace-ascii
This contains ascii definition files that are not part of EPICS and also fiies that replace EPICS
supplied files. It is also the place to store C include files containing definitions used in ascii
definition files.

2.4 <top>/iockiocName>/
These directories (one for each IOC) contain soft links to the EPICS components needed to
boot an IOC. Each also contains a st.cmd<archV> fie which must be customized for the
particular ioc. Any modules to be loaded into the ioc must be referenced from the
st.cmd<archV> file in arelative fashion. If other ioc specific files are needed this is the place
to put them. All user created files should be placed under SCCS control.

5

EPICS: SourceRelease Control for Applications March 25, 1994

2.5 <top>/<app>App/ - Root of an Application

Root node of an application.

2.5.1 <top>/<app>App/src/

This directory contains files that are meant to be edited by the application developer. This
includes the following:
C source.
Include files
State sequence programs.
ImakefileVx and ImakefileUnix.

2.5.2 <top>/<app>App/archList

This file initially contains entries for each target architecture directory to be built. (ex: sun4,
mv167, hkv2f). You may remove the entries you do not want built.

2.5.3 <top>/<app>App/<archV>/

This is the directory for building application specific IOC components. It contains a link to
<src>/ImakefileVx so that Buildit and make can be executed.

2.5.4 < top>/<app>App/<archU>/

This is the directory for building application specific Unix components. It contains a link to
<src>/ImakefileUnix so that Buildit and make can be executed.

2.5.5 <top>/<app>App/<*>Db/

Each application can have an arbitrary set of database directories and each database directory
can contain an arbitrary number of IOC databases.

2.5.6 <top>/<appName>/op/

This directory initially contains the following subdirectories:
adW
alh
arl.
burt
k d

These directories contain files, for the specified tools, that the application developer wants
to place under SCCS control. The user may also define other directories and contents in this
area. I

6

EPICS: Source/Release Control for Applications March 25, 1994

CHAPTER 3 Procedures for Application System Area

This chapter describes procedures that can only be executed in the system area not in a shadow area.
In general any procedure that creates a new directory must be executed in the system area. This in-
cludes:

new application directories
new ioc directories
new database directories within an application

It is up to the application developer to notify the application system manager of any new structures
to be introduced.
Any <EDIT> commands shown in this chapter could also be executed in a shadow area but it is often
easier to perform them in the system area.

3.1 Creating The Initial Application System Area

Setup the <top> Directory.
% mkdir <top>
%cd <top>
% <epics>/Unix/s harehidget re1 <epics>

The getrel command to be executed must be executed from the same EPICS re-
lease that you will be using.

This command creates any missing <top> directory components of an application
system area.

%apCreateTop

%apFixLinks

3.2 Creating Application Specific Directories

3.2.1 Creating New Applications

In order to create the initial applications or add new applications execute the following com-
mands:
%cd <top>
% <EDIT> appList

If appList is not out for edit issue the command "SCCS edit applist". Use your fa-
vorite editor to add one or more application names to the file. For example:

appNamel
appName2

%apCreateApp
%cd <top>/<appName>
% <EDIT> archList

I

Use your favorite editor to remove unwanted target architecture names from the
file.

7

EPICS: SourceAXelease Control for Applications March 25, 1994

3.2.2 Creating New Database directories
% cd <top>/<app>App/
%apCreateDbDir
This tool is interactive. You are prompted for each database name, followed by a prompt for
the database editing tool (gdct or dct) to be used in that directory.
Note that only one database editor (either gdct or dct) may be used in a given directory.

3.3 Creating IOC directories
%cd <top>
%<EDIT> iocList

Use your favorite editor to add the new ioc names to the file.
example:

iocNamel
iocName2

%apCreateIocName
For each name in ioclist, this tool creates a <top>/ioc/<iocName> directory and
populates it with "default" templates and links. Each new directory contains an
IOC startup file. The user should modify each st.cmd<archV> file to include the
application components and/or instructions to load and run the application.

3.4 Integration

Integration means going to a new release of EPICS or updating the application system area
to reflect changes made by application developers in their shadow nodes.
The primary steps are as follows:
1 The application system manager coordinates with the application developers.
2 The application developers should make sure that all DCT databases have an up

to date short form report (.rpt files) which is not out for sccs edit.
3 The application developers check in (sccs delta) from their shadow nodes any

files they want to be part of the new system.
4 If a new EPICS release is desired, the application system manager issues the fol-

lowing commands:
%cd <top>
% <epics>/Unix/share/bin/getrel <epics>

% apCreateTop
% apCreateApp
% apCreateIocName
%apF&inks
%make doFixRptDct

where <epics> is the full path name to the new version of EPICS.

Note: DCT rpt fdes must NOT be out for sccs edit.
make doFixRpt may be run instead of make doFixRptDct if make
doFixRptDct has been run once in the application system area.

8

EPICS: Source/Release Control for Applications March25, 1994

5 The application system area is rebuilt by the command:
%make world

See section 6.4.1 for what this command does.
6 After the application system area has rebuilt successfully, application developers

can resync their shadow nodes as described in 4.2.

9

I

EPICS: Source/Release Control for Applications March 25, 1994

CHAPTER 4 Shadow Node Procedures

This chapter describes procedures that apply only to an application shadow node. An application
shadow node is an image of a complete application system area. When created it contains soft links
to files in the application system area. The application developer should perform all development
in a shadow are rather than the system area so that other developers do not see hisher changes until
SCCS deltas are executed.

4.1 Creating an application shadow node.
%mkdir <shadow>

%cd <shadow>
%<epics>/Unix/carchU>/bin/apCreateShadow <top>
You will be asked to create a file with the touch command.
%touch .applShadow
%cepics>/UnixkarchU>/bin/apCreateShadow <top>

1 All files in an application shadow node are initially links.
2 All directories in an application shadow node are real except for each SCCS di-

rectory which is a symbolic link.
3 DCT Db directories only have the <*>.database file as a link initially.

NOTE Do not do this in an application system area.

An application shadow area is identical to an application system area with the following exceptions:

4.2 Synchronizing an application shadow node.

Any time the application system area is rebuilt or changed the application developer must
synchronize his or her application shadow node.
%cd <shadow>
%apStatusSync

%<edit apRemove Script via your favorite editor>
% apRemoveScript

%apCreateShadow <top>
The apStatusSync tool is designed to be invoked one or more times before producing the
correct apRemoveScript file. Status reports go to standard out and commands to remove
shadow area components are placed into the apRemoveScript file. apStatusSync should
be repeated until it runs successfully. It is the application developer’s responsibility to deter-
mine when the status is correct. apRemoveScript contains a set of (commented out) unix
commands to remove obsolete or illegal files and/or directory components in the application
shadow area. It is the application developer’s responsibility to edit the apRemoveScript file.

Repeat this step until the status is correct.

This removes the out-of-date files and directories.

10

EPICS: SourceAXelease Control for Applications March25, 1994

CHAPTER 5 Adding/Modifying Components

This chapter describes procedures for adding or modifying application components. These proce-
dures will work in the either the application system area or in a shadow area. If they are issued in
the system area remember that all users may be affected. Wherever this chapter refers to <shadow>
it is also possible to use <top>.

5.1 IOC Databases
The procedures given in this section assume that the user has changed to a database directory,
i.e. one of the following commands has been issued:
% cd cshadow>/capplName>/cdb>Db
or
% cd <top>/capplName>/cdb>Db

5.1.1 DCT databases

DCT is used to create new databases and/or modify existing databases. This subsection de-
scribes application source/release tools that allow the .rpt files to be placed under sourcehe-
lease control.
DCT causes a problem for source/release control because DCT generates many files for a
single database. What is put under sccs control is the short form report file, which must have
a f i e extension of .rpt.
For each database in a database directory the following files can exist:

cfile>.rpt

<file>.rptO

cfile>.rptl, etc

<file>.rpt .err
cfile>Db.database

This is the file that is placed under source/release
control.
This file is generated by the make utility described
below. If such files appear after running make,
the user should resolve the differences and make
sure that only cf i iexpt remains.
If the user runs make without resolving differences
then make keeps creating new files.
After checking for real errors these can be deleted.
This is the file generated by DCT. The make utility
described below automatically adds "Db" to the
report file name.
The other files generated by DCT. cfiile>Db.ai, etc

Report files and sourcehelease control

All report files should be managed via the dbsccs commands described in section 5.1.3.

Update databases from .rpt fides that are under sccs control
%make

11

EPICS: Source/Release Control for Applications March 25, 1994

For each <file>Db.database file with a report file that is under sccs control, make performs
the following steps when the <file>Db.database is out of date with respect to the <file>.rpt,
default.dctsdr, or default.sdrsum files.

a If <file>Db.database does not agree with it’s associated <file>.rpt
then a new short form report <file>.rptO is generated (NOTE: If this
file already exists it uses <file>.rptl, etc). In this case a warning mes-
sage is also issued.

b It deletes existing <file>Db.* files and uses atdb to create a read only
<file>Db.database file from the <file>.rpt.

Note that the new .database file agrees with the original .rpt NOT the .rptO file.

5.1.2 GDCT databases

Refer to the GDCT User’s Manual for details. For each database the following files exist:
<file>
<file>.db

The file containing graphical information.
A loadable ascii file used by GDCT.

All new <file> and <file>.db files must be placed under source release control via sccs create
commands. The sccs edit, sccs get, and sccs delta commands may be issued as necessary.
It is recommended that GDCT databases are loaded with the dbLoadRecords and dbLoad-
Template commands rather than dbload.

5.1.3 dbsccs for DCT databases

Each database is normally represented as a single link to the cdbname>Db.database. This
eliminates a lot of clutter in the DCT database directory. The dbsccs tool allows an applica-
tion developer to edit specific databases.
DCT should be used to create a new <dbname>Db database, and dbsccs create should be
used to create the <dbname>.rpt file and put it under sccs control. Once the <dbname>.rpt
is under sccs control, DCT can be used to modify the <dbname>Db database only when the
<dbname>.rpt file is out for edit.

%dbsccs create cdbnarne>.rpt
This command performs the following functions:

If <dbname>.rpt is already under sccs control the command aborts.
If <dbname>Db.database is missing, a link or not writable the command aborts.
If a <dbname>.rpt file already exists, it is renamed <dbname>.rptO. (NOTE: If
this file already exists it uses <dbname>.rptl, etc)
dbta is invoked to create a <dbname>.rpt file.
sccs create is invoked on the new <dbname>.rpt file. The writable <dbname>.Db
database files are removed.
atdb is used to create aread only <dbname>.Db database file from<dbname>.rpt.

%dbsccs edit cdbnamexrpt

12
i

I

EPICS: Source/Release Control for Applications March25, 1994

This command performs the following functions:
If <dbname>Db.database is writable the command aborts.
sccs edit is used to take cdbname>.rpt out for edit.
The <dbname>Db.* files are removed.
DCT is invoked to create a writable <dbname>Db database.

NOTE: If a writable cdbname>Db database exists, DCT can be used to delete the database
before issuing dbsccs edit.

%dbsccs delget <dbname>.rpt
This command performs the following functions:

If <dbname>.rpt is missing, a link or not writable dbsccs aborts
dbta is invoked to create <dbname>.rpt file from the <dbname>Db database.
The writable DCT <dbname>Db database files are removed.
atdb is invoked to create a read only <dbname>Db.database file.
sccs delget is invoked for <dbname>.rpt

%dbsccs unedit cdbnamexrpt
This command performs the following functions:

sccs unedit is invoked on <dbname>.rpt
A backup rpt is made if <dbname>.Db.database was modified.
The writable cdbname>.Db database files are removed.
atdb is used to create aread only cdbname>.Db database file fiom<dbname>.rpt.

5.2 IOC Configuration Files
For each ioc an ioc directory exists under <top>/ioc. In each such directory avxWorks startup
file exists for each supported vxworks board support package. In addition resource files can
also be placed under source/release control.

5.2.1 vxWorks startup files
The startup files (for example ctop>/ioc/uocname>/st.cmd<archV>) must be modified af-
ter initial creation and when the set of databases to be loaded changes. The normal sccs edit
and sccs delta commands should be used as necessary. When initially createdthe startup files
are prototypes, which contain modification instructions.

5.2.2 resource.def files
The iocInit command in the startup file can have an optional '7resource.def7 parameter. If it
does, then the resource.def file is processed. This file should appear in the same directory
as the startup file. It should be placed under source/release control with the sccs create com-
mand. Commands sccs edit and sccs delta can be used as necessary.

5.3 Ascii definition files
All applications under <top> must share the same set of ascii definition files. Two directories
are available for application ascii files. <top>/replace-ascii/is the place to store files that are
replacements for EPICS files and ctop>/cat-ascii/ is the place to store files that don't exist
in EPICS and files that should be added to the end of EPICS files.

13

EPICS: Source/Release Control for Applications March25, 1994

The command makesdr must be run any time there is a change to any ascii input file used
by makesdr. After makesdr completes all databases must be rebuilt and any affected record
or device support must be rebuilt.
After makesdr is executed all applications must be rebuilt. The following commands will
rebuild all applications:
%cd <top>
%make

If, however, you are working in a shadow area and are only dependent on a single application,
the following commands can be used to rebuild the single application:
%cd <shadow>
% makesdr
%cd <app>App
%make

This will rebuild all out-of-date applications.

5.4 Adding Application Specific Source files
All application specific source files are put in <top>/<app>App/src. When any new file is
placed in this directory it should be put under source/release control via the sccs create com-
mand. Depending on the type of file other files will have to be edited.

Unix Source Files
%cd arc>
% <EDIT>ImakefileUnix

%cd <app>App/carchU>
%Buildit
%make

IOC Source files

Edit this file to build the new Unix component.

This includes C sources and sequence programs. Ifthe sources are for record, device, or driv-
er support remember that ascii definition files must be prepared and makesdr executed as
described above. In addition the following must be performed:
%cd arc>
% <EDIT>ImakefileVx

%cd <app>App/<archV>
%Buildit
%make

Edit this file to build the new IOC component.

5.5 Modifying Existing Application Sources
In this case just edit the source in a r c > and then execute the make command in either the
<archU> or <archV> directory.

1

5.6 Operator Files
All files placed in the op directory should be managed via the sccs commands.

14

EPICS: SourceRelease Control for Applications March25,1994

5.7 Building a single Application
% cd <shadow>/cappName>/
%make

This does a make in each defined <archV>, <arc1 J> and also each <*>Db direc-
tory. If a "makefile.pvt" makefile exists it is then invoked.

Individual application components can be rebuilt by qualifying the make command:
%make doGets

%make bldDb

%make bldMakefiles

This brings all SCCS files in this directory and below up-to-date.

This recreates each database as described in section 5.1.

This performs a Buildit and make in each defined <archV> and <archU> directo-
ry.

%make bldPvt
If a file named makefile.pvt exists then a make is performed using this file.

All of the above can be performed by issuing the command:
%make world

EPICS: Source/Release Control for Applications March25,1994

CHAPTER 6 SourceDZelease Tools

6.1 Application System Area
This section describes tools that should be issued only in an application system area, NOT
in a shadow area.

6.1.1 Tools invoked in the <top> directory

getrel

This command is executed in <top> to get a new release of EPICS. It is always issued in
<top>. When issued it must be executed with a full path name to the release of epics desired.

ap Crea teTop

This command must always be issued in directory <top>. The first time this command is is-
sued, it creates all directories and files needed for an application system area. It must also
issued whenever a new release of epics is obtained via the getrel command. In this case it
makes sure that application system area is correct for the new release.

apCreateApp
This command creates the directories needed for each application that resides under <top>.
It is executed in <top> whenever new applications are added to file <top>/appList.

apCreateIocName

This command creates the directories needed for each ioc that resides under <top>/ioc. It is
executed in <top> whenever new iocs are added to file ctop>/iocList.

apFixLinks

This command will regenerate generic links.

apFixDc tRp t

This command will convert DCT short form reports to dbta report format. Executing ap-
FixDctRpt with parm dct will force use of dct instead of atdb to read the short form report.

6.1.2 Tools invoked in the <top>/<app>App/ directory

ap CreateDbDir

This command creates the database directories used by a particular application. It is executed
in <top>/<app>App and is an interactive tool.

6.1.3 Tools invoked anywhere

doGets
This command uses make to ensure that all SCCS controlled files in this directory and below
are up-to-date.

16

EPICS: SourceAXelease Control for Applications March2.5, 1994

6.2 Application Shadow Area

This section describes tools that only apply to a shadow area.

6.2.1 apCreateShadow

The first time this command is executed in a directory it creates a complete shadow area. It
is also issued to fill in missing links whenever the application system area has been rebuilt.

6.2.2 apStatusSync

This command is issued whenever the shadow area must be resynced with the system area
because the system area was rebuilt. It issues error messages to standard out and also writes
unix commands into a file apRemoveScript. If it reports errors the user should fix the errors
and reissue the apStatusSync command. When the user is satisfied then the apRemoveScript
must be edited and executed. apRemoveScript contains a number of rm commands but they
are commented out (preceded by #). The user should decide which files should really be re-
moved.

6.2.3 dbsccs

A tool for managing databases in a shadow directory. See section 6.3.1 for details

6.3 Development Tools
This section describes tools that can be issued in either a system area or in a shadow area.
They are issued in shadow areas during development and in the system area during integra-
tion.

6.3.1 apSccsInfo

This tool will search all directories below the current directory and list all SCCS controlled
files that are currently out-for-edit.

6.3.2 makesdr

The purpose of the makesdr tool is to allow application developers to build a private de-
fault.dctsdr file. Makesdr allows application developers to modify, by appending to or re-
placing, any EPICS ascii definition file used in creating the default.dctsdr file. The de-
fault.dctsdr file is required by DCT/GDCT. The makesdr tool also allows new ascii
definition files to be introduced into the application environment.
Makesdr first searches the EPICS ascii directory followed by the cat-ascii directory and then
the replace-ascii directory in order to determine the composition of each ascii definition file.
The composed ascii files are then processed by cpp and the various SDR "bld" tools in order
to produce SDR structures for the default.dctsdr file, record header files, and the de-
fault.sdrSum file. The end result of a successful makesdr run is that EPICS record header
files etc. are either replicated or updated into a new sdrWrec directory. makesdr corrects
any EPICS files according to the contents of the local ascii directories. If the default.dctsdr
or default.sdrSum filesAinks changed they are replaced with the new versions. Ascii files
placed in the replace-ascii directory supercede all other ascii input files with the same name.

17

EPICS: SourceRelease Control for Applications March25, 1994

The application developer is expected to include the sdrWrec directory when doing a
vxworks build.
Directory sdrWrec/ is created from scratch the first time makesdr is run. It contains either
copies of EPICS header files or the versions created by makesdr.
Note: makesdr only rebuilds if something is out-of-date.

6.3.3 Buildit

This command creates a Makefile from an Imakefile. Whenever an Irnakefie is modified
Buildit must be executed. Note that the Imakefiies are stored in arc>, but Buildit is executed
in <archV> for vxworks and in carchU> for unix.

6.4 make
This command rebuilds various application components. What it does depends on where it
is executed.

6.4.1 <top>

make doFix
runs apFixLinks

make doFixRptDct
runs apFixDctRpt dct

make doFixRpt
runs apFixDctRpt

make doGets
runs doGets

make domakesdr
runs makesdr

make bldMakefiles
Rebuids Makefiles from the Imakefiies in each application

make doapplications
Runs ”make” on the makefie in each application

make doappworld
Runs ”make world” on the makefiie in each application

make world I

Does all of the above
make

defaults to ”make doapplications” above.

18

I

EPICS: Source/Release Control for Applications March25, 1994

make dotar
Creates a compressed tar file in the directory above <top> and names the file

”ctop>.Tar.Z”. Ex: if this was the <top> directory for par the file would be
named par.Tar.2.

make tarinfo
displays directions for unpacking the compressed tar file.

6.4.2 <shadow>

The same as 6.4.1 except that apFixLinks is a nop.

6.4.3 capp>App

See section 5.7 for what make in a application directory does.

6.4.4 cdatabase>Db

The actions described in 5.1 are performed.

6.4.5 carchU>

The unix components are rebuilt.

6.4.6 c a r c h b

The IOC components are rebuilt.

19

I

EPICS: SourceRelease Control for Applications

APPENDIX A Application System Area

March25,1994

Application System Area
1 , -------

+PP>APPl

- -' I archList ** I
I

I .

------ makefile8

I Links to EPICS components : ascii/@ -7 current-re1 ; epicsW8
ishare/@ : Unix/Q
; config/@
I .epicsUnixB Unix components ;
I vxWorks<archV>*@

I target<archV>Q ioc components I

I default.dctsdrQ

,-------------------------. r
I
I
I
I

I ; default.sdrSum@ I I <archV>/

I
I :sdrWrecl +; default.sdrSum I I default.dctsdr

I - cat-asciil

I - replace-ascii/

I - makefile8
iocList

iocl

I . 0

source files . . .
lmakef ileVx
ImakefileUnix

**

imake support

I
I
I
I
I

ImakefileQ
Makefile - J .-------------------------.

<archU>/

Modified SDR components

Ima kef ile 8
Ma kef ile

I makefile.dct87 or
I makefile.gdct81 I
db-input-files ** I
default.sdrSum8
default.dctsdr8 I

- _ _ _ _ _ _ .

r------
c*>.ascii **

<*>.ascii **
L------J

** I I a p p L i s t **

I
resource.def ** I

** i I
** ** : I

I I

km/
alh/
adU
ar/

I **
I
I
I
I

arSet/ **
a r c h a d **
arReq/ **

!J Figure 1 I - J L ------- I ---- - ----
dct DiRGdct Dir

doGets
apCreateShado

** user editable SCCS controlled files

apCreateTop
apCreateApp

apCreatelocName makesdr
apCreateDbDir apStatusSync

EPICS: Source/Release Control for Applications March25, 1994

APPENDIX B Application Production Area Evolution

One problem that still has to be addressed is generation of a production area for use by operations.
This appendix presents a possible set of procedures that could be used. Please refer to the next page
for a flow diagram architecture.

1 The application manager creates and maintains the application system area (A:).
This would include changing to a new EPICS release.

2 Application developers create and maintain shadow areas accessing the applica-
tion system area (A:). Deltas are applied to the application system area to make
changes permanent.

3 The production manager requests a new version of the application system area.
4 The application system manager fulfills this request by replicating the applica-

tion system area (A:) into the application integration area (B:) and running a base-
line set of regression tests.

5 The Unix system manager changes ownership of the application integration area
(B:) to the application production manager.

6 The application production manager retires the (D:) previous production area.
7 The application production manager moves the current application production

area (C:) to the previous production area (D:).
8 The application production manager moves the application integration area (B:)

to the application production area (C:)
9 The application production manager deletes and recreates a production shadow

area (E:) to be used for quick fixes.

I

21

' EPICS: SourceRelease Control for Applications March2.5, 1994

A:

Application Architectures

B:
r-------
I Application
I

System Area 1LZ-l; I Integration

Applicatio
hadow Area 0 . .

Figure 2

C:
Application
Production

Area

D:
Previous
Production
Area

E:
Production
Shadow
Area

22

	CHAPTER 1 Introduction
	1.1 Overview
	1.2 Definitions
	1.3 Classes of Users
	1.4 Document Conventions and Information
	1.5 Environment
	1.6 SourceIRelease control commands
	1.7 Getting started

	CHAPTER 2 Application System Area Architecture
	2.1 <top>
	2.1.1 User Editable Files
	2.1.2 EPICS related lii and files
	2.2 <top>/cat-ascii
	2.3 <top>/replace-ascii
	2.4 <top>/ioc/<iocName>/
	2.5 <top>/<app>App/ - Root of an Application
	2.5.1 < top>/<app> App/src/
	2.5.2 <top >/< app> Applarchlist
	2.5.3 < top>/<app>App/<archV>/
	2.5.4 < top>/<app>App/<archU>/
	2.5.5 < top>/<app>App/< * >Db/
	2.5.6 < top>/<appName>/opl

	CHAPTER 3 Procedures for Application System Area
	3.1 Creating The Initial Application *tern Area
	3.2 Creating Application Specific Directories
	3.2.1 Creating New Applications
	3.2.2 Creating New Database directories
	3.3 Creating IOC directories
	3.4 Integration

	CHAPTER 4 Shadow Node Procedures
	4.1 Creating an application shadow node
	4.2 Synchronizing an application shadow node

	CHAPTER 5 AddinglModifying Components
	5.1 IOC Databases
	5.1.1 DCT databases
	5.1.2 GDCT databases
	5.1.3 dbsccs for DCT databases
	5.2 IOC Configuration Files
	5.2.1 vxWorks startup files
	5.2.2 resource.def fides
	5.3 Ascii definition files
	5.4 Adding Application Specific Source files
	5.6 Operator Files
	5.7 Building a single Application

	CHAPTER 6 Source/Release Tools
	6.1 Application System Area
	6.1.1 Tools invoked in the <top> directory
	6.1.2 Tools invoked in the <top>/<app>App/ directory
	6.1.3 Tools invoked anywhere
	6.2 Application Shadow Area
	6.2.1 apCreateShadow
	6.2.2 apStatusSync
	6.2.3 dbsccs
	6.3 Development Tools
	6.3.1 apSccsInfo
	6.3.2 makesdr
	6.3.3 Buildit
	6.4 make
	6.4.2 <shadow>
	6.4.3 <app>App
	6.4.4 <database>Db
	6.4.5 <archU>
	6.4.6 <archV>

	APPENDIX A Application System Area
	APPENDIX B Application Production Area Evolution

