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ABSTRACT 

The nature of Boltzmann’s constant is very unclear in the physics literature. In 
the first part of this paper, on general considerations, we examine this situation in 
detail and demonstrate the conclusion that Boltzmann’s constant is indeed both 
fundamental and universal. As a consequence of our development we find there is 
an important implication of this work for the problem of the entropy of information. 
In the second part we discuss, Szilard’s famous construction showing in detail how 
his result is incompatible with the demonstrations in both parts I and 11. 

General Considerat ions 

1. I .  Introduction 

Of all the fundamental constants of physics Boltzmann’s constant, (and its nature) 
is the most unclear in the physics literature. Generally, but not always, Boltzmann’s 
constant is accorded fundamental status, as for example in the most recent compila- 
tion of “The Fundamental Physical Constants” by Cohen and Taylor [l]. 

In a 1983 article, Weinberg [2] addressed the question as to  “what is a fundamental 
constant?” His answer, in part, included these comments: 

“The list of fundamental constants depends on who (and I would add 
on when one) is compiling the list . . . A hydrodynamicist would put in the 
list the density and viscosity of water, an atomic physicist would put the 
mass of the proton and the charge of the electron.” 

Weinberg’s definition of a list of fundamental constants is this: 
“A list of constants whose value we cannot calculate in terms of more 

fundamental constants, not just because the calculation is too hard, but 
because we do not know of anything more fundamental . . . ” 

lconsultant: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 



Weinberg concludes by saying: 
“The membership of such a list thus reflects our present understanding 

of fundamental physics.’’ 

Veneziano [3] returned to the question of fundamental constants in 1992, and 
gave examples of fundamental constants (among them f i  and e)  and then mentioned 
Boltzmann’s constant with this comment: 

“As far as Boltzmann’s constant k is concerned, I hope we all agree 
on refusing it membership! Had we understood immediately that tem- 
perature is randomly distributed energy, we would have measured it in 
ergs without any need of introducing k .  What is fundamental is not IC, 
but the identification of temperature with randomly distributed kinetic 
energy. In fact, in modern textbooks, temperature is presented from the 
very beginning as an energy.” 

(We comment on this view below.) 
Actually with dimensional constants, fundamental or not, things are not quite so 

simple, and there are extreme views which have been advanced in many textbooks 

Just to  cite an example, Brian Ellis [4] concludes a chapter as follows: 
~41. 

“Simply by adopting different conventions concerning the expression of 
physical laws, universal (dimensionful) constants may be created or elimi- 
nated at will. I t  is quite absurd to suppose that these constants represent 
magnitudes of peculiar invariant properties of space and matter.’’ 

Thus, indeed, some people would like to go as far as saying that there is no 
meaning to a dimensionful fundamental constant! They should all, it is claimed, be 
taken out of the list of fundamental constants. 

Such a viewpoint is actually much too extreme, as can be seen in this way. A 
dimensional relation between two physical quantities has only three invariant possible 
values for the dimensional constant: zero, finite or infinite. The important statement 
is that a finite value exists, which can be a fact of crucial physical importance. 

The point made by Veneziano, in excluding Boltzmann’s constant as fundamental, 
is a very common view and requires some discussion. The crucial point is that the 
thermal energy (of a distribution) is not an ordinary energy (say like the kinetic energy 
of an electron) but is a very special energy (not assignable to an elementary particle). 
This is clear, as Max Born points out [5], from the fact that thermal energy obeys a 
first-order equation in time, and hence thermal energy has no inertia. (In fact, the 
basic problem presented by thermal energy, was to distinguish heat energy (AU), 
which is conserved (by the First Law of Thermodynamics) from the “caloric energy” 
(entropy) which is not conserved (by the Second Law of Thermodynamics).) The vast 
difference between the nature of these two distinct “thermal energies” is clear from 
the fact that the First Law is absolute, whereas the Second Law is statistical. 

It is our aim to discuss the nature of Boltzmann’s constant from several points 
of view, in order to make clear the essential reason why Boltzmann’s constant is, in 
our view, both fundamental and universal. To do so, will require first that we review 
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(s1.2) some basic results from (classical) thermodynamics, as amended in critical 
ways by quantum mechanics. We then turn (51.3) to a paper by Koppe and Huber 
[6], which demonstrates some remarkable results, calculating ab initio Boltzmann’s 
constant! This work is then analyzed in detail to show that it is not as simple as it 
purports to be, presenting our analysis in 51.4. 

1.2. Absolute Temperature 

Temperature is an intuitive concept because it invades our everyday experience. It 
follows in the Aristotelian tradition of appealing to common knowledge, much as the 
concepts of force, mass, and time appeal to common knowledge, each being fraught 
with difficulties when examined in greater detail. At the most primitive level, tem- 
perature is an ordered sequence of points marking common levels of thermodynamic 
equilibrium, and the empirical fact that equilibrium will be approached by most sys- 
tems is sometimes referred to as the zeroth law of thermodynamics [7]. (We remark 
that this law would be invalid without the existence of quantum mechanics, so that 
classical thermodynamics is not an a priori self-contained discipline.) An alternative 
statement is that temperature determines the direction of heat flow when an object is 
placed in contact with another object. To be pleasantly circular, heat is then defined 
as energy in transit due to temperature difference - again appealing to intuition to  
subdue objections. The definition provides order but no measure, and physics thrives 
on numbers. 

In order to get a number, we appeal to the less intuitive concept of entropy. En- 
tropy has entered popular usage as a measure of disorder, and it is common knowledge 
that systems set in order inevitably become disordered in the course of time. Few 
people know how to assign a number to disorder, whereas numerical temperature is 
used every day. A meaningful measure of disorder is log W ,  where W is the number 
of microscopic states corresponding to the state of the system. The thermodynamic 
definition adds a scale factor, 

Entropy = S = -k log W, 

where IC 21 1.380662 
temperature thereby 

x 10-16erg ‘I(-’ is Boltzmann’s constant. The definition of 
becomes a well defined number, 

1 dS - - 
T - d Q ’  

where Q is heat. This is also the succinct statement of the second law [3]. 

1.3. The Ab Initio Calculation of Boltzmann’s Constant b y  Koppe and Huber 

Koppe and Huber introduce their paper [6] by citing in the first section an actual 
dialogue with other physicists concerning their calculation: 

“Theoretician: By the way, it appears not to be generally known that 
Boltzmann’s constant is not a fundamental constant of nature, but can 
be calculated from other, known, constants. 



Experimenter: So? What does that do for us then? 
Theoretician: Unfortunately there exists not the slightest prospect to 

actually carry out the calculation. 
Experimenter: ? 
Theoretician: That is simply the result of the preposterous way in 

which the experimentalists have defined the Kelvin degree.” 

This surprising claim by Koppe and Huber would seem to settle, definitively, 
the nature of Boltzmann’s constant. Certainly from the criterion of Weinberg (in 
‘$1)’ if their claim is correct, then Boltzmann’s constant can hardly be considered 
fundamental. 

How do Koppe and Huber actually carry out their calculation? First they notice 
that, quantum mechanically, the specific heat of the diatomic gas HD shows a max- 
imum at a definite measurable value of the Kelvin temperature. They then use the 
best available data on the interatomic interaction potential of H and D ,  to calculate, 
quantum mechanically, the absolute value of the relative kinetic energy at which this 
maximum should occur. 

Then by equating the two energies - the calculated energy for the maximum 
and the observed Kelvin temperature (measured experimentally) - they deduce a 
numerical value for the (dimensional) Boltzmann constant. 

Remarkably they obtain a value for that Boltzmann constant that is in error by 
only FZ 7%. 

It would appear from this calculation, that Koppe and Huber have certainly 
verified their claim. We examine this critically in the next section. 

1.4. Further Discussion 

The calculation, reviewed in 51.3, is eminently satisfying for Koppe and Huber 
demonstrate explicitly that a reasonable value of Boltzmann’s constant k can be 
calculated ab initio using the absolute temperature scale. 

Yet on further reflection, the Koppe/Huber calculation has its own puzzling as- 
pects. The input datum for this calculation was the actual, measured, interaction 
potential between the two atoms, H and D, of the HD molecule. (In principle, this 
interaction could itself be calculated ab initio from the fundamental electromagnetic 
interaction of the H and D atoms.) What would have happened if they had used 
another pair of atoms, with very likely a quite different potential? Molecular in- 
teractions are, in the final analysis, electromagnetic; what if the calculations were 
necessarily to be at very high energies. Would the running (renormalized) value of 
the electromagnetic interaction then enter? Would Boltzmann’s constant then it- 
self have a “running” value? Or, to pick an extreme case, suppose we were to use 
baryons as composite objects in an extremely energetic thermal equilibrium, would 
Boltzmann’s constant be the same for such a calculation using QCD? Conceivably 
the Boltzmann constant could be different for different interactions, and the accepted 
value of Boltzmann’s constant in present day use would simply be a reflection of the 
fact that only electromagnetic interactions are of importance in everyday terrestrial 
physics. More mundanely, it is known that besides the famous triple point of water 



defining the Kelvin scale there are other triple points (in water) - why should we 
expect the calculations for these, in principle, to yield precisely the same value of 
Boltzmann’s constant? Why, in other words, is Boltzmann’s constant universal - if, 
indeed, it really is? 

The answer to these questions can be found by examining, in more detail, the un- 
derlying physical assumptions and physical methodology implicit in the Koppe/Huber 
calculation. First of all the underlying physical calculation was necessarily quantum 
mechanical and it is essential to realize that the use of quantum mechanics, far from 
being an extension of classical thermodynamics and statistical mechanics, is actu- 
ally necessay  for these disciplines to be physically valid. Next one sees that the 
physical distribution functions of the rotational degrees of freedom (including the 
proper (quantal) “freezing-out” of the higher levels) were assumed to lead to thermal 
equilibrium with the translational degrees of freedom of the HD molecule (moving 
effectively as a point mass). These translational degrees of freedom, in effect, furnish 
the necessary “heat bath” to allow, by collisional interactions, the assumed thermal 
equilibrium of the rotational and translational degrees of freedom to be obtained. 

The truly essential ingredient in the Koppe/Huber calculation can be seen to be 
the assumption of thermal equilibrium for the rotational and translational degrees of 
freedom. The calculated maximum in the specific heat curve played only the r6le of an 
identifying characteristic for determining a definite point on the absolute temperature 
scale with its associated, calculated, energy. 

We argue that the universality of the Boltzmann constant stems f rom this require- 
ment  of thermal equilibrium (the “zeroth law” [7]). 

An example (involving the same logic) might help here. Consider the situation for 
Kirchhoff Is observation that different physical objects in a Hohlraum, at an elevated 
temperature, all radiate in precisely the same way and are, hence, indistinguishable. 
This is so despite the fact that the various objects may have, and do have, vastly 
different emissivities at different frequencies. I t  is the condition of thermal equilibrium 
that ensures the univerality found by Kirchhofl in a Hohlraum. 

In exactly the same way, despite the multiplicity of possible interactions, charac- 
teristic quantal energies, and distinct quantal distribution functions, the condition of 
equilibrium implies that the Boltzmann constant is  universal. 

We conclude that Boltzmann’s constant is indeed a fundamental, universal, con- 
stant. 

1.5. Application 

Our discussion began with the unusual r6le of Boltzmann’s constant in the pan- 
theon of fundamental (dimensional) constants, then used the little-known fact that 
this constant could be calculated ab initio, and finally came, full-circle, to the conclu- 
sion that - despite all these particularities - Boltzmann’s constant is nonetheless 
universal and fundamental. Several colleagues, with whom we have discussed these 
results, (to their initial disbelief), end with the put-down: “So what?” Aside from 
the satisfaction of deepened understanding, and, of course, pedagogical usefulness, is  
there anything more t o  these considerations? We think there is, and offer the following 
application as evidence. 

The essential point made evident by our analysis is the fundamental r6le of ther- 



mal equilibrium in the determination not only of the absolute temperature but of 
Boltzmann’s constant itself. Thermal equilibrium between different degrees of free- 
dom can, however, only be achieved if there is some physical interaction between 
these different modes. What h n d  of interaction - QED, QCD, contact, whatever - 
makes little difference, but some interaction there must be. 

It follows that if there is no conceivable mechanism of interaction, there can be 
no thermal equilibrium, no meaning to temperature, and in consequence no ‘meaning 
to ‘(Boltzmann’s constant” for such systems. 

This conclusion is implied by our analysis, and, although this result sounds si- 
multaneously obvious and vacuous, there is indeed an application. 

Consider the famous (but not entirely uncontroversial) result of Szilasd [8] who 
devised, and analyzed, a conceptual model for Maxwell’s demon concluding that 
- to avoid violating the second law of thermodynamics - pure information mus t  
be associated with physical entropy. Szilard found that one bit of information was 
equivalent to a physical entropy of, at least, the amount: k log 2. That is: 

s p e r  bit of information 2 k 1% 2- (3) 

To arrive a t  this result, Szilard (just as in Einstein’s analysis of Brownian motion) 
reversed Boltzmann’s definition of entropy: S = -k log W (where W is a probability). 
Szilard defined his probability as: Wl = e - S 1 / k .  His result then followed for a two- 
state system using Wl+ W, 5 1. To maintain the validity of the second law, Szilard 
postulated that the entropy deficit was to be made up by the “informational entropy.” 

This ingenious, and plausible, new concept found by Szilard - although attacked 
immediately and subsequently - has, to a surprising extent been accepted and ex- 
tended by many physicists and mathematicians [9]. 

Let us consider Szilard’s proposal in the light of our analysis of the rGle of Boltz- 
mann’s constant. We found, put succinctly, that if there is no physical interaction 
there is no Boltzmann’s constant (that is, k is undefined). S o  where does the constant 
IC in Szilard’s basic fornula,  (eq. 3), come from? It can not be the universal Boltz- 
mann I C ,  since this requires that the “informational degrees of freedom” interact with 
physical degrees of freedom to achieve thermal equilibrium. Then, and only then, can 
a Boltzmann constant be defined for the informational degrees of freedom. 

Information, per se, is, however, an idealized concept, which is in principle com- 
pletely subjective, since the idealization necessarily eliminates information as such 
from the physical realm. Let us be precise: “information” is always carried by some 
physical object (be it computer memories, neuronal memories, or library pages, . . . )  
and, as such, certainly has physical entropy. But this physical entropy is device- 
dependent, and varies by many orders of magnitude from one device to another. 
Informational entropp is, by contrast, the entropy associated with an idealized, device- 
independent, information structure (arrangement), with such an entropy being asso- 
ciated to the information itselfand not to its physical carrier. 

How is one to determine this purely informational entropy? The idealization 
involved in this concept seems to indicate minimal, or even vanishing, physical entropy. 
But how can one be sure? 

Consider Szilard’s formula again: Sper bit of information 2 k log 2. Recall that k is 
well-defined only in thermal equilibrium. What thermal equilibrium was involved in 



getting Szilard’s result? Clearly the absolute temperature involved was irrelevant to 
his argument, and indeed his result - as given in eq. (3) - is manifestly independent 
of temperature. This leads to  a contradiction. 

According to the third law of thermodynamics (called the Nernst theorem by 
Fermi [lo]), Szilard’s result cannot be correct, since the third law asserts that: any 
physical entropy must  vanish as T +. 0. 

Remark: The third law has been itself the subject of controversy. The discussion 
by Fermi [lo] and the very careful foundational analysis of Tisza [7], we believe, can 
resolve all of these objections. For the reader’s confidence let us remark that the 
ideal gas law also violates the third law, but the quantum-mechanical ideal gas law 
for Fermi-Dirac (and Bose-Einstein) statistics verifies this law. 

There is a way to escape the contradiction: take k = 0 in eq. (3). This result - 
that the “Boltzmann constant for information” is zero - is actually quite reasonable, 
since this is exactly what one might expect from our earlier analysis on the essential 
r6le of interactions, equilibrium and dimensional constants. 

We conclude: idealized information is, from the idealization itself, devoid of phys- 
ical interactions and in consequence has no physical entropy. 

Remark: To avoid a possible misunderstanding, let us state clearly that the con- 
siderations given above do not in any way affect the validity and applicability of the 
Shannon concept of entropy as used in communication theory. The entropy as defined 
by Shannon is not a physical entropy but a dimensionless probability measure. The 
Boltzmann definition of physical entropy: 

is used by Shannon, but in the dimensionless form: 

Clearly the “Shannon entropy” is a probability measure, and not a physical entropy, 
since it is dimensionless and the probabilities do not refer to  the normalized phase 
space (dpdq/h)  of any quantum mechanical degrees of freedom. 

2. An Analysis of Szilard’s Construction 

2.1, Introduction 

Szilard [S] in his famous paper of 1929 is credited with demonstrating that infor- 
mation is necessarily connected with physical entropy, so that one bit of information 
corresponds to the entropy 2 klog2. In our analysis of the nature of Boltmann’s 
constant, in Section I, above, we demonstrated that pure information-that is, ide- 
alized information-has no physical entropy associated with it. These two results 
are incompatible, and accordingly we need to investigate this problem, by examining 
both results critically, in the specific context of Szilard’s construction. That is the 
purpose of this concluding section. 



2.2. Resume‘ of Szilard’s thought experiment 

In our description of Szilard’s thought experiment [8], we follow closely Jauch 
and Bar6n’s version [ll]. They made only physically irrelevant changes in Szilard’s 
experimental set-up to make the system more convenient for analysis. 

In the experiment, a rigid, hollow, heat-permeable cylinder, closed at both ends, 
is used. It is fitted with a freely moveable piston with a hole large enough for the 
molecule to pass easily through it. The hole can be closed from the outside. All 
motions are considered reversible and frictionless. The cylinder is in contact with a 
very large heat reservoir to keep the temperature of the entire machine constant. 

Within the cylinder is a gas consisting of a single molecule. At the beginning of 
the experiment, the piston is in the middle of the cylinder and its hole is open so that 
the molecule can move (almost) freely from one side of the piston to the other. The 
hole is then closed, trapping the molecule in one half of the cylinder. 

The observer now determines the location of the molecule by a process called by 
Szilard ‘Messung’ (measurement). If it is found to the left of the piston, the observer 
attaches a weight to the piston with a string over a pulley so that the pressure is 
almost counterbalanced. He then moves the piston very slowly to the right, thereby 
raising the weight. When the piston reaches the end of the cylinder, the hole in the 
piston is opened and the piston is moved back to the middle of the cylinder, reversibly 
and without effect on the gas. At the end of this process the starting position has 
been reached, except that a certain amount of heat energy Q from the heat reservoir 
has been transformed into potential energy A of the weight lifted. 

By repeating the process a large number of times (say, N), an arbitrarily large 
quantity of the heat energy Q = N A  from the reservoir is transformed into potential 
energy without any other change in the system. This violates the second principle of 
thermodynamics. 

In order to ‘save’ the second law, Szilard assumes that the obseruation of the 
molecule, for determining in which half of the cylinder it is contained, is in principle 
connected with an exactly compensating increase of entropy of the observer. In this 
way, Szilard postulates his basic result as eq. (3) of Section 1, above. 

2.3. The Necessity for Observation 

The necessity for observation, in order to have Szilard’s machine function, was 
questioned very early on by Popper [12] and by Jauch and Bar6n [ll]. These authors 
pointed out that it was not necessary to decide which half of the machine the molecule 
was in, after the shutter was closed, since it was easy to allow the system to expand- 
doing external work-regardless of which half contained the molecule. 

If this is correct, it brings Szilard’s conclusion immediately into question, at its 
very foundation, since Szilard’s whole point was to prove that “information” supplied 
the missing entropy in a cyclic process which would otherwise violate the second law 
of thermodynamics. 

Like so many plausible considerations on Szilard’s engine, their remark is neither 
true nor false, since Popper and Jauch-Bar6n have pre-supposed that classical physics 
sufices to discuss a one-molecule heat engine. As we will demonstrate conclusively, 
the use of quantum-mechanics is essential in Szilard’s problem. 



Remark: The fact that quantum-mechanics is essential in discussing classical 
thermodynamics correctly is well known [5], [7], [SI. We have already cited the fact 
that the validity of the zeroth law [7] requires the classical dilemma on the stability of 
atoms to be resolved by quantum mechanics. Similarly, the Boltzmann definition of 
entropy required quantum mechanics to determine the unique cell size in phase space. 
Quantum mechanics also is required to justify the third law of thermodynamics [lo]. 

Thus it is quite natural that Szilard’s daring use of a one-molecule heat engine, 
using classical thermodynamics, cannot be correct without explicit consideration of 
quantum mechanics. 

With no loss in generality, we can, however, confine Szilard’s engine to one di- 
mension, which greatly simplifies the manipulations. A single molecule in a one- 
dimensional box is a standard quantum mechanical problem. The wave function 
q ( x ) ,  has the boundary conditions: 

q o )  = *(a)  = 0 

and the wave functions are: 

with eigenenergies: 
2 E N = - x ( $ ) .  h2 

2M 
Let us put this system into thermal equilibrium at the temperature T .  Then: 

e- E N  / k T  

f (N)  = Probability of state N = ~ (9) c 
N=O 

However, this one-molecule engine must be efectively classical-in order to carry 
out Szilard’s argument-and this implies that the average quantum number, Nu,, is 
Nu,, >> 1 so that kT  itself is macroscopic, (s &e.u.) with T M 300degK. (Taking 
M M melectron and a = lcm, one finds N,,, s lo7, so that the quantum mechanics is 
well described semi-classically.) In this limit, this one-dimensional semi-classical gas 
(of one molecule!) then obeys perfect-gas laws. 

2.4. Operation of the Quantum-Mechanical One-Molecule Engine 

Now let us examine the physical operations Szilard assumes it is possible to carry 
out on his heat engine. 

(a) Operation of the Shutter: 
The action of “closing the shutter” is to divide the space occupied by the “gas” 
into two equal parts. We take this to mean that at x = a/2,  all of the wave 
functions of the molecule must vanish: 

shutter closed + Q(z = a / 2 )  = 0. 



(b) What  eflect does closing the shutter have on the thermal wave function? 
Clearly the shutter makes all of the admissible states vanish at x = a/2.  At 
first glance, this appears to mean that the quantum number N goes in effect to  
2N (with the same a)-that is, the available volume for the one-molecule gas 
decreases by 1/2--but this is not correct. 
In fact, for small N ,  we have: 
N = odd integer, + large changes in the region centered at z = a /2  
N = even integer 3 no change at  J: = a12 
For large N :  
N = even integer, no change; N = odd integer, very small change - 
effectively only in the immediate vicinity of 

x = a/2 ,  with size = a/2N (11) 

(Effectively, the wave function shifts to a linear combination principally of N’ = 
N+1.) 

Result: For a thermal wave function, closing the shutter makes a negligible (mi- 
croscopic) change in the (macroscopic) average energy: A E / E  M Nu;:, Nu,, >> l. 

This result is exactly what one would expect for a classical gas (with M Avogadro’s 
number of molecules), that is, dividing a classical gas into two pieces does not in any  
way alter the energy or the entropy. Since the pressure on both sides of the shutter 
is the same, the shutter does not move (assuming that the system is so constructed 
that the shutter could move to extract energy). 

We see that Szilard’s one-molecule gas-at a macroscopic temperature - is ef- 
fectively unchanged in energy or entropy if we insert a shutter dividing the system 
into two parts. 

Why then does Szilard claim that-after the shutter is closed-the “side contain- 
ing the molecule” is at a differential pressure so that work can be extracted? The 
answer is that Szilard assumes that after the shutter is closed we then observe the 
molecule t o  be, say, on the left  hand side, and subsequently, we extract heat from this 
side by expansion. 

This assumption which Szilard has made seems very plausible. After all, in our 
one-molecule quantum mechanical “gas,” the molecule is certain to be measured on 
the right hand side or the left hand side with probability 112 for either. 

But matters are not quite this simple. To observe the molecule on one side (LHS, 
say), means that the resulting quantum state has zero probability f o r  all states where 
the wave funct ion is non-zero on the right hand szde. 

That is: observation makes a profound difference in the thermal wave function: 
observation implies 

(12) 

The new ‘thermal’ wave function depends critically on the measurement. However 
one chooses to define this (‘observation,” it is clear that the new state is, energet- 
ically, macroscopically much larger. Qualitatively, the observation has compressed 



“the one-molecule gas” to exactly half the volume. This compression-be it adia- 
batic, isothermal or some variant thereof-then permits energy to be extracted by 
expansion, since work has been done on the system, increasing its energy. 

Clearly there is no violation whatever of the second law (any entropy change 
came from the mechanics of the way the “observation” was made). I t  is equally clear 
that no energy can be extracted that wasn’t put into the system by the preparation 
(“observation”) of the new state. 

2.5. Further Analysis 

To be quite clear let us analyze this sequence of events further. We have seen 
that inserting the shutter in the system, dividing the “gas” into two parts makes a 
negligible change in the energy and entropy of the system (just as it would classically 
for a macroscopic gas with an idealized (vanishingly thin) partition). Until the “gas” 
is observed to be confined to one side or the other, the one-molecule gas still has 
the same physical space available. This is non-intuitive to be sure, but quantum 
mechanics is unequivocal on this point. 

This analysis shows that the objection of Popper and Jauch and Bar6n-that 
the Szilard engine could extract energy without requiring any observation-is clearly 
wrong. Without observation the “one-molecule” gas (with a closed shutter divid- 
ing space into two parts) is essentially unchanged, the molecule still has both sides 
available for its thermal wave function. This situation is precisely the analog of the 
familiar two-slit “paradox” of quantum mechanics: the photon goes through both 
slits (unless observed to do otherwise). 

The act of observation is not a simple procedure of deciding between two alter- 
natives. The effect of observation prepares the system in a state Qnew as given by 
eq. ( la) ,  but the occupation numbers of the denumerably infinite number of possible 
eigenstates in the confined space must be determined. (More precisely one doesn’t 
even have a superposition of eigenstates, since the system is surely going to be over- 
whelmingly likely to be statistical, that is, incoherent with random phases.) 

The physical entropy change caused by the observation is by no means limited 
to a simple choice of one of two alternatives, that is, k log 2. The entropy change is 
given by quantum mechanics as: 

where f ( ~ )  . . . are the level occupation probabilities. It is not obvious that this en- 
tropy change is necessarily microscopic (AS/k = l), since for N = lo7,  A S  might 
conceivably be macroscopic. 

Out of the myriad of possible observations, let us select one which recommends 
itself as the simplest. We 
can certainly do this, by imagining that instead of inserting the shutter and then 
observing, we instead slowly compress the gas moving the divider (shutter) from one 
end to the middle. (Of course, to be adiabatic one must isolate the one-molecule 
system from the heat bath temporarily.) 

Quantum mechanically, the word adiabatic has the meaning that the occupation 
probabilities f i y - . .  are to be unchanged in the process. The energies of course do 

Let us choose to make our observation adiabatically. 



change slowly, by a factor of 4 when the system is slowly compressed by a factor of 
2. To maintain the adiabaticity condition, eq. (12) shows that the temperature must 
also increase slowly, in concert with the slow increase in energy, ending up a t  a final 
temperature a factor of 4 larger than initially. 

The final state achieved by the adiabatic process can be seen to be a fully ac- 
ceptable ((observed” state just as if it were to be achieved by closing the shutter and 
“observing” (even though it is most improbable to expect to  find such an adiabatic 
state in this latter way!). 

The next step in Szilard’s heat engine cycle is to expand this state (possibly even 
adiabatically) and extract energy. This can certainly be done, since the new state has 
a much higher temperature, but of course we are not going to profit by this extracted 
energy! 

The really essential point, however, is that we can achieve, in principle, a complete 
cycle of the Szilard heat engine without any entropy change whatsoever. Quite clearly 
the physical entropy change eq. (13) has nothing whatever to do with k log 2. 

Let us return to the original question: Did Szilard demonstrate that “information” 
is associated with physical entropy? In particular, did he prove that the “information” 
(in running one cycle of the Szilard engine) supplies physical entropy Iclog2? 

Consider the previous analysis. The Szilard “information” was one of two alter- 
natives. Hence, the Shannon, dimensionless, information is indeed log 2. By contrast, 
the physical information amounts to defining the new state, eq. (12). The resulting 
energy change (from “preparing” (or, equivalently, ‘(observing”)) the new ‘thermal’ 
state is macroscopic ( L E  ==: &e.u.), whereas the entropy change depends critically 
on how the new state is prepared. One can even, in principle, make the new state by 
an adiabatic process (as above) so that the change in entropy is zero. 

There is simply no way to compare these two “entropies”. The point is that the 
physical entropy change was determined completely by the physical operations on 
the system. By contrast, the Shannon entropy is a priori, independent of method of 
measurement. After making the observation, the Szilard engine can certainly be used 
to extract energy. This is clear since the “gas” is compressed (by the observation) 
and can be expanded to extract energy. Where does this energy come from? It is 
clearly energy put into the gas by the act of observation. There is accordingly no 
violation of either the first or second law of thermodynamics. 

In our view, these considerations make it very clear that information per se is 
a subjective, idealized, concept independent of physical entropy. Physical entropy 
depends on physical objects and physical interations, and any entropy change due to 
observations is entirely due to the entropy changes in the physical apparatus (includ- 
ing the system observed) in carrying out the observations. 
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