
. , , . . I I . _ . , . .

DOE/MC/3 1182'- 5201
(DE96004482)

Fractal Modeling of Natural Fracture
Networks

Final Report
June 1994 - June 1995

Martin V. Ferer
B.H. Dean
Charles Mick

April 1996

Work Performed Under Contract No.: DE-FG21-94MC3 1 182

I For
U.S. Department of Energy
Office of Fossil Energy
Morgantown Energy Technology Center
Morgantown, West Virginia

BY
West Virginia University Research Corporation
Morgantown, West Virginia

Y

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manu-
facturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

This report has been reproduced directly from the best available
COPY.

Available to DOE and DOE contractors from the Office of
Scientific and Technical Information, 175 Oak Ridge Turnpike,
Oak Ridge, TN 37831; prices available at (615) 576-8401.

Available to the public from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, VA 22161; phone orders accepted at (703) 487-4650.

DOEMCB 1182 - 520 1
(DE96004482)

Distribution Category UC-132

Fractal Modeling of Natural
Fracture Networks

Final Report
June 1994 - June 1995

Martin V. Ferer
B.H. Dean

Charles Mick

Work Performed Under Contract No. : DE-FG2 1 -94MC3 1 182

For
U.S. Department of Energy

Office of Fossil Energy
Morgantown Energy Technology Center

P.O. Box 880
Morgantown, West Virginia 26507-0880

BY
West Virginia University Research Corporation

Department of Chemical Engineering
P.O. Box 6845

Morgantown, West Virginia 26506-63 15

April 1996

0 bj ectives
West Virginia University will implement procedures for a fractal analysis of

fiactures in reservoirs. This procedure will be applied to fracture networks in outcrops

and to fiactures intersecting horizontal boreholes. The parameters resulting from this

analysis will be used to generate synthetic fiacture networks with the same Fractal

characteristics as real networks.

Background
Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture

network. 1 Reliable characterization of the actual fracture network in the reservoir is

severely limited. The location and orientation of fractures intersecting the borehole can be

determined, but the length of these fractures cannot be unambiguously determined.

Fracture networks can be determined for outcrops, but there is little reason to believe that

the network in the reservoir should be identical

because of the differences in stresses and history.

Seismic techniques do provide some large scale

(resolution of tens or hundreds of feet)

information about the fracture density and

average Fracture orientation, although there is

some controversy about interpretation of the

multi-component surface seismic data, especially

regarding which layer is being probed.
Fig1 Outcrop Fractures at MWX site.
Shows the primay fractures (Set I) and the

seconm fractures (Set 2).

Furthermore, independent of the

assumption of fiactal behavior, it is known that

typical fiactures in the second set should begin

and end at fractures of the first set.2 This effect is commonly observed in real fracture

networks from outcrop studies, for example 92% of the secondary fractures in the MWX

outcrop (Fig. 1) satisfjr this ~riterion.~ Imposing this constraint upon the secondary

2

fractures increases the visual similarity between our networks and the real network over

simulated networks from other fractal modeling schemes..'

Because of the lack of detailed information about the actual fiacture network,

modeling methods must represent the porosity and permeability associated with the

fracture network, as accurately as possible with very little apriori information. Three rather

different types of approaches have been used: i) dual porosity simulations, ii)'stochastic'

modeling of fracture networks, and iii) fractal modeling of fracture networks. The dual

porosity approach is a natural extension of the gridding schemes widely used in describing

reservoirs, however in assuming mesoscopic scale (tens or hundreds of feet) averages of

fracture porosities and permeabilities, they may be smoothing the very heterogeneities

which control the recovery. This may limit reliability for strongly anisotropic fracturing.

That is, even if fractures are located randomly throughout the grid-block so that an
average porosity may be sensible, the conductivity of similar fractures differ widely

invalidating assumptions of an average permeability.

Stochastic models which assume a variety of probability distributions of fracture

characteristics have been used with some success in modeling fracture networks.5-7 The

advantage of these stochastic models over the dual porosity simulations is that real

fracture heterogeneities are included in the modeling process. On the other hand these

stochastic models need information about all features of the actual fracture network to

provide the most accurate modeling. In the highest level (most accurate) model for each

set of fractures nith a given orientation, one needs to determine the probability

distribution of i) the location of independent fractures ii) the location of fracture clusters

or swarms iii) locations of fractures within clusters, iv) cluster lengths, v) fracture

lengths, vi) fracture apertures, and vii) fracture orientations. The less reliable the

information determining these probability distributions; the less reliable the fracture

network. Reliable information about many aspects of the real fracture network is

impossible to determine; the assumption of self-similar fractal behavior (if valid) enables us

to predict features of one aspect of the distribution from other aspects of the distribution;

Le. i), ii), and iii) result from the box-counting along the borehole which, in turn, predicts

features of the distributions for iv), v), and vi) for self-similar fractal networks.

3

Aspects of fractal geometry have been applied to mimic the heterogeneity

associated with layering in real reservoirs for a number of years. In these cases, the

variation in permeability with height at the borehole was found to obey fiactal statistics,*

and the correlations implicit in fractal geometries allowed them to interpolate between the

known permeabilities at the borehole in such a way that results from flow models agreed

with analyses of production logs and tracer breabhr~ugh.~ Examples in the open

literature reporting the use of fractal geostatistics to treat naturally fiactured reservoirs are

less common.4.10 If a set of natural fractures is described by a self-similar fractal

geometry, the self-similar, scale invariance of the fracture network implies relationships

among the fracture distribution, and the various length scales: Clustering or fiacture

correlation, fracture aperture. and fracture length. Therefore, if fracture networks obey a

self-similar fractal geometry, borehole data locating orientational sets of fractures, will

enable a determination of the fractal dimension and 'lacunarity'. This along with relatively

- generic information about the typical aperture size and length of fractures,l will allow us

to produce a self-similar fractal network. The clustering occurs naturally in the fractal

network because of the correlations inherent in fractal geometries. The fractal parts of the

aperture size and length distributions (even the fracture shape distributions) should be the

same as the fractal parts of the fracture location vs. scale distributions.

In the sections following this introduction, we will i) present 'fractal' analysis of the

MWX site, using the box-counting procedure' 1$ 12; ii) review evidence testing the fractal

nature of fiacture distributions and discuss the advantages of using our 'fractal' analysis

over a stochastic analysis; iii) present an efficient algorithm for producing a self-similar

fracture networks which mimic the real MWX outcrop fracture network.

Project Description-Fractal Analysis
Illustrative Example Before analyzing the MWX outcrop (Fig. I), one must

understand the box-counting procedure used in these tests as well as our method for

generating the fracture networks. As discussed later in this section, the box-counting

procedure automatically reproduces the random aspects of the distribution of fractures in

addition to reproducing the clustering obvious in Fig. 1.

4

For a simple example of the box-counting procedure consider the distribution of

fractures intersecting a length of borehole

(Fig.3a). To determine the fractal dimension as

well as the range of size scales over which the

distribution is fractal, one covers the array of

fractures by successively smaller and smaller rulers (one-dimensional 'boxes'), and then one

counts the number of 'boxes' or rulers covering one or more fractures. If the distribution

has a fractal dimension D, over a range of sizes, then

Fig. 2a Fractures intersecting a borehole.

N = A(A)D', (1)

where N is the number of rulers which cover fiactures, the constant A is called the

lacunarity, and the scale 4 determines the length of the rulers (L / A) . If one covers the

21 fractures in Fig.2 by a ruler of

length L , (shown at the bottom of

Fig.2b) one ruler covers the

fractures; with two rulers of length

LE (near the bottom of Fig.2b) both

cover fractures; with four rulers of

length L/4 all 4 cover fractures, but

with 8 rulers of length L/8, only 6

cover fractures. This is continued

e . : : . : : : : : . : : : : I +
I I

r I
I 4

4

Fig. 2b The louer half of the figure shows the fractures in
Fig. 2a with thc scale rulers 'covering' the set of fractures
from a ruler of length L. proceeding upwards to rulers of

length L/64 just below the fractures. The top half shows the
same set of 'covering' rulers of length L/128.

down to 128 rulers of length L/128 as shown in Table I.
Since there are only 24 fiactures, at scales smaller than L/128, there will only be 24

rulers covering fiactures. A log-log plot of the box-counting for Fig. 2 is shown in Fig.3

below. The fractal relationship is given by the solid line N = 2.12 A057 except at large and

small scales for the following reasons. At small A , (coarse scales L, L/2 and L/4), N
equals the number of rulers (N = A) because all the rulers cover fiactures. In later

sections we refer to this as the initial covering I regime. At very large A , (very fine scales

L/256 and L/1024), only 24 rulers are covered because there are only 24 fractures and

there is no more detail in the fracture pattern - so that the box-counting 'cuts-off' or

5

'saturates' at 24. Hence, for this fracture pattern, the pattern is fractal between the initial

covering and cutoff regimes (over the

range of scales A = 8 to 128) with a fractal

dimension of 1.5 and a lacunarity of 2.12.

The ruler counting for this 1-d slice of the

2-d fracture network gives an exponent:

D,- 1, i.e. the actual 2-d fractal dimension

minus one.

Before continuing, it should be

Table I

t Li4 I 4
LIS 6

U16 I 8 1
L/32 I 13
L/64 17 I
Ll128 I 21
Ll256 21

pointed out that this fracture pattern was generated by our algorithm to have a lacunarity

of 2.12 and a fiactal dimension of I + + over the range of scales from L/8 to L/128. The

algorithm used to generate this pattern is described in a following section.

It is important to realize, however, that if the distribution of fiactures in Fig. 2a

were completely random (Le., if there were no

clustering of fiactures) the points fiom the box-

counting would obey a linear relationship (A' = A)

up to cutoff That is, each box (on the average)

would contain one fracture up to the total number

of fractures (in this case = 24); at finer v
scales the one fiacture would randomly occupy

one of the smaller boxes. However, because of
! ! ! 4 ! ! ! ,,.J ! !&

I 1 IO 10 100
A

clustering. groups of fractures are closer together Fig. 3 Fractal Plot for Fig.2.

than average. Therefore, when using the box-counting procedure, the linear regime ends

before N = JVfofd; and one enters the 'fractal' or clustering regime where some boxes are

empty and others have several fractures much closer together than average. The box-

counting procedure then provides a method for characterizing (and thus for reproducing)

this clustering.

6

Results
MWX Outcrop First the primary set of fractures in Fig.1 were analyzed. A series of

eight lines (boreholes) of length L
were drawn through the set of primary

fractures, and the box-counting

procedure was used on each of these

boreholes. The results for the number

of boxes covering fractures vs. the

scale A is shown in Fig.4.

The initial covering regime persisted

until scale 16. The cutoff regime

began at scale 80. In-between the

data are well represented by the fractal

power law N = 4.9 AoJ2', indicating a

fractal dimension Df r 1.43. It should

1 [/' , . . . , , , ~ , . , , , J
1 coc I co O t - e t n

1

Fig. 4. or the primaq fractures. the bos-counting from
the 'boreholes' on the MWX outcrop (Fig.l), shows the
initid covering (the linear increase, N = A , up to the

dustering or fractal regime), the fractal regime. and the
cutoff regime.

be noted that at intermediate scales the simple doubling rule: A = 2 ", (c.f Figs. 2 &: 3 and

Table I) was used to provide more data in the fractal regime.

The secondary set of fractures in Fig.1 were analyzed in the same way. A series

lines of length L , perpendicular to these secondary fractures, were drawn through the

secondaq fractures, the box-counting was performed and the values N (A) were

averaged. Fig.5 shows the plot of Nvs. A and indicates that for these secondary fractures

the initial covering regime persists until scale 6 - and that the cutoff regime begins at scale

40. Between the number of rulers the fractal power law: N = 3.47AoU3 applies;

indicating a fractal dimension D, = 1.34. Again, intermediate scales were used to provide

more data in the fractal regime.

To determine the length distribution fiom the data provided by M. McKoy,j we

plot the total number of fractures with lengths greater than a given length L, N(L), vs. L .
It should be noted that this total number N(L)
with lenghs 1 2 L is the integral of the

number density of fractures n (I) with length

2 integrated from L = L up to the one fiacture

of maximum length ;

i.e. JV(L) = l r - m n (l) d l .

This graph of the data is shown in Fig.6. It is

fit by the characteristic exponential cutoff for

the greatest lengths L 2 14, and by a fractal

power law for the smallest lengths

(4 I L 5 14). For a self-similar fiactal

fracture network, the number density should

be given by n (l) = q l -Df; so the total number

is:

N (L) = 7 L ' 9 11
(1 - 0,)

Hence, the data is consistent with a fiactal

dimension: Dr = 1.48.

This data does not determine

unambiguously whether or not the clustering

regime is rigorously fiactal. That is, this data
does not favor a strictly power law regime (i.e.

fractal behavior) between the linear, initial

covering regime, and cutoff However, the
power law assumption used to draw the lines

does represent a good fit to the box-counting

10 c

j

'CC . 7--

i
1

I 10 I3C
DeI:a

Fig. 5 For the secon- fractures, the bos-

counting from the 'boreholes' on the MWX

outcrop (Fig.1). shows the initial covering
(the characteristic linear regime). the fractal
regime. and the cutoff regime.

1-

.. 10 : tl:

:. i

1 I.-. . A , A W L

'.. : , .

IO0 io frxtwe ;tnq:h

Fig. 6. The number of fractures .S(L) with

lengths greater than L plotted against L.
This shows the exponential cutoff for the
larger lengths and the fractal regime for the
smaller lengths.

data. Therefore, at worst, by assuming that the intermediate regime is fractal, we may be

8

only providing a good approximation to the data. If the assumption of fractal clustering

only provides a good approximation to the true clustering, our simulated fracture

networks will represent a good approximation to the actual fracture network - which is all
that is necessary.

On the other hand, it is encouraging that the power laws fiom the box counting

and length distributions are all consistent with the same fiactal dimension: D, = 1.4, to

within a realistic uncertainty fiom the data fitting. This equality of fractal dimensions From

all length measures is the hallmark of self-similar fracture networks.

A program to carry out the box-counting procedure and return the fractal

dimension and lacunarity has been developed in order to process multiple sets of data fiom

various boreholes. To test these programs as well as the routines for simulating the

fracture networks, numerous trial runs have been performed to analyze the "borehole

fractures" from simulated networks.

Box-counting Results and Analysis - (Robert Pietsch #1) Horizontal Borehole Data

The box-counting program performs three major hnctions: i) M W X data scan, ii)

implements the box-counting algorithm, and iii) performs a least squares analysis. The

data scan hnction is used to read in the data and can be easily modified for different data

formats. The least squares analysis is an optional fbnction - and was not used in this

report since the box-counting results were transferred to a an external file and processed

graphically instead of numerically.

In practice, the initial orientation and ruler length of the borehole sample (fiom the

Mwx data set) are specified by the user. These parameters are then modified to cany out

the box-counting procedure. The degree of deviation from the borehole is then checked

and stored in a generic array. If this value is too low, the corresponding fiacture

orientation is not included in the final analysis of the box-counting procedure. The ruler
initial puler iength

A
increment variable is initialized using the value: . Delta is initially set

equal to one and then doubled at each iteration. While the ruler increment is less than the

modified initial ruler length, a check is performed to see if the number fiom the fiacture

9

orientation column falls within the specified

range. If so, the variable 'rulers-covered

is incremented by 1. The loop continues

until the value of 'nrfer.~-cosereu" equals

the total number of fractures; indicating

that saturation has been reached. These

values may then be stored in a separate

datafile for hrther graphical analysis.

The results for a typical box-

counting run using the Robert Pietsch

Box Courting fw Honzon:al Borelu e

Fig. 7 Bos-counting results.

data are shown in Fig.7. Our analysis shows that in the fractal regime: A = SO0 + 7000,

the total number of fractures is given by: N = 76.5 A" 36, implying that Df 2 1.4.

Are Fracture Networks Fractal?
There is evidence that real fracture networks are fractal both in outcrops where

Barton and others found a fractal dimension of Df = 1.55, for different fracture systems,13

as well as from underground data in the Fanay-Augeres uranium minelo where they found

a vaying fractal dimension. The variation in their fractal dimension may result From use

of too great a range of scales. As we saw for very large scales, all the rulers are covered

so their finding a 'fractal dimension' of 2 at large scales is not surprising. Similarly, at very

small scales one approaches a limit where the number of 'boxes' covered equals the

number of fractures so the fractal dimension approaches 1; this may be an artifact of the

neglect of small aperture fractures (micro-cracks which may be significant in determining

number at their 0.005 meter scale).

The length of the fractures has been found to be fractal,*4 and the shape of the

fractures has also been determined to be Fra~tal15-1~. This suggests that all features of the

fractures may be fractal: distributions of i) centers, ii) lengths, iii)widths, and iv) shapes.

The evidence that the shapes are Fractal suggests that porosities and permeabilities may

also obey fractal statistics. If all geometrical aspects of the fracture distribution are fiactal

10

with the same fractal dimension, the fracture distribution is self-similar. This may seem to

be a very unusual occurrence, but in fact many examples of development (or growh)

which occur in random media (like the development of Fractures in stressed rock

formations) have a self-similar geometry. The first level of our geostatistical modelins will

assume a self-similar fractal geometry for the fracture distribution. Higher levels of our

geostatistical modeling could use actual measurements to determine the fractal distribution

of (e.g.) the fracture widths.

The Fracture Generation Algorithm
Here we describe the implementation and design of an algorithm that was developed to

generate a 2-d fracture networks. As we have
discussed, the primary assumption in our model is

that the network geometry is fractal - i.e. has a self-

similar or scale invariant geometry. Using this

information we have developed a program to

generate complete 2-d fracture outcrop networks

using on1 y the Zucutimiry, fiucml Jimetisioi, itritial

covering, and cutoff parameters obtained from MWX
data.

The PASCAL programming language was

chosen to emphasize both modularity and structure in

the development of the algorithm. Since the

PASCAL syntax is completely analogous to

psezrdocode used in general algorithm descriptions,

the program can be easily modified by others or

BEGIN
initialize

T
witegrogramgarametas~to-file v

gmnaate-initial-hct-s~~
T

display-initial l7ac-h
T -
j REPEAT

G2%2- 1
' paate-hmizcmtal-badurcs

1

Eliminate-raiundant-hcaures
v

Rcad-Fract-2-Data
T

for 12:=1 to 6 ofhonz fracures do

Generate-Fracfures- Amg- kuetures
.~ign_~~s_to_Fracts_.uarg_Fraas

end

r B m G2 - 4 qucq2d

..

Ehl)

Fig. 8. Procedure Flowchart for
2d frac.pas

converted to another programming language at a later time.
The algorithm is most clearly described by reference to the procedure flowchart in

Fig.8. The body of the program (Appendix A) consists primarily of variable and

procedure declarations whose execution begin on p.36. The procedures listed on p.36

1 1

(and in Fig.8) define the highest level of program hierarchy. All other procedures declared

in the body of the program are called from within these procedures.

The most general description of the program is obtained by examining Fig.8. In

the broadest sense the program performs 2 tasks (separated by the dotted line):

(1) Generates a horizontal fracture set.

(2) Generates a vertical fracture set - consistent with the fiacture set in (1)

To generate the horizontal fracture set the program first generates a 1-dimensional

fracture set along a left-justified line extending downward in the vertical direction (see

Fig. 10). This is accomplished by the procedure GEXERA TE-INITIAL-FRACTURE - SET
whose flowchart is given in Fig.9. The first step in the procedure initializes the first row

in the ?-dimensional riiler array L[i,k], where i=l.?

and k can range fiom 1 to 2 I ' = 8192 as declared

using the TYPE and VAR clauses at the beginning

of the program. The range of the for loop given by

the variable Ri is the initial number of nrlers chosen

to cover the fracture set in a 1-1 ratio. If a fracture

is covered by a ruler, than the value of the array

corresponding to this specific ruler is given the value

1. Conversely, an empty ruler site is given the value
0.

Having initialized the L [l , i] array the

GEltER.4 TE-INlTIAL-FRA CTURE procedure

divides each ruler into two new rulers (by mapping

each ruler variable in L [l , i] to two new ruler

PROCEDURE
(E.enerate_initial_fracture_set)

BEGIN
v

for i := l to Ri do
,- begin
I L[l , iJ :=I
' end -

v
* repeat

G:=G+I
generation-parity

generate- 1 d-fractures
display the fractures

R:=2*R

v
END

- until G=One-d-Generations

Fig. 9 Flowchart for the
generate - initial f racture-set

procedure.
variables in L[2,i]). To accomplish this task the procedure begins the repeut. ..zintil loop

shown in Fig.9 and increments the counting variable G (initially = 0) to the value of 1.

The GENER4TION-PARITy procedure then determines if G is odd or even and assigns

the variables e andfthe values (1 and 2) or (2 and 1) respectively, depending on whether

G is odd or even.

12

Next, the procedure randomly chooses one of the 2 new rulers in L[2,k] for each

of the rulers in L[l , ~] and assigns this ruler a value of 1 - while giving the other ruler a

value of 0. In this way, the covered fractures of the initial level are brought down to the

nest level of 2 y R, rulers. The remaining rulers are then assigned fractures according to

the distribution:

(2)
w.here N is the number of fractures, I is the lacunanty, DI is the fractal dimension, and

D, - 1 . V = l A ,

(rornl lengrh of fracture set = 1)
number of rulers

A = . The progress of the algorithm is checked by displaying

the fracture locations graphically as the

program is running. M e r a single pass through

the loop the number 6f rulers, R, is doubled and

the whole process begins again. At the next

5

iteration the

values of e

assignment.

C 8

I = \ I d ~ a m ~ b r o s o n r ~

parity of G will change, as will the

and f according to the previous
;
: -

= /
3= Using the mapping: 1 4

1
0 - - -

- - n L - - -
U e , i I + L [f ,A,

-
the values of 4 2 , j] provide input for the next I) - I __ -1 .. ; 4 ;, - 3 - - ..

_ L
.. ..

iteration and the values of L[1 , i] are replaced h o m x n ~ p s i r i m *adimu) Y.U. f

program is shown in Fig. 10 and is analogous to direction.

Fig.2a. Using Df = 1.5, I = 2.12, with an initial covering of 4, we obtain 24 fractures

with 4 x 25 = 128 rulers after 5 generations. For the Robert Pietsch data (c.f. Fig.7); the

I-d fracture output is shown in Fig.11 using Df = 1.4, I = 76.5, with an initial covering of

800.

13

Continuing i i t h the generation of the horizontal Fracture set the program enters
the repeat ... trntil loop shown directly above the

dotted line in Fig.8 and increments the counting

variable G2 (initially = 0) to the value of 1. The

loop executes the:

GENERA TE-HORIZONTAL-FRACTURES

procedure to produce a vertical Fracture set for

each value of the grid step in the x direction.

Fig. 12 shon-s the procedure flowchart:

In the first iteration

(G2=1) the procedure

assigns a length

Fig. 11. l d fracture generation output (extension in the x-
using Robert Pietsch data.

direction) to each

To obtain the Fracture length we assume a Fracture site.

probability density fbnction given by

(3 1 I - Dl
p (L) = A L ?

where L is the Fracture length and A is a constant. The

probability that a given Fracture will have a length 2 L'

(greater than 2 arbitrary units) is then given by the distribution .
hnction:

BEGIX
7

if G2= 1 then
begin

, Asstgn-Fracture-Lmgths - end
7

duplay the fracwes 'on screen
7

if GZ.1 then

Count-Ended-Fractures
display the fractures on screzn

7
if n d c d > 0 then

* begin

- begin
: Add-needed-fradura
; .~sign_New._Fracture_tengths

end
7

end
7

END

(according to the distribution), the constant A is determined fiom

so that

14

15

Substituting (6) into (4) then gives

(7)

Generating a random number sj between o -+ I (labeled as s3 in the

ASSIGN - FRACWRE-LENGTHS procedure) and then setting this equal to (7), we can

solve for the length L' to obtain:
I .,(1 - (& -) (2 - D f)

Next, we generate a second random number s, between o -+ I and calculate the final

fracture length from
L = s4 L ' . (9)

In this way, the fracture sites are assigned lengths in the horizontal direction. Using the

parameters D, = 1.5, I = 2.7, and R, = 16 we obtain 29 fractures with 6 ~2~ = 128 rulers

after 3 generations giving the output shown in Fig. 13.

Referring to Fig. 6 we notice that to the left of L z 14 (linear regime) the length

assignments may be made using the procedure outlined above. To the right of L r 14

(exponential ctitoffi we have a non-linear distribution and so we must use:

(10) 0 oJ7L P , (L) = 129e-

To incorporate the data from region 11 into our fracture generation program (while
avoiding having to solve a non-linear hnction for L') we are modifLing the program by

reading in the values fiom (3) and (10) into an array for each fracture length L' between 2
and 100. Generating a random number between 2 and 100, we can then determine the

corresponding fracture length fiom the array.

At the next iteration, G2 is greater than 1 and the program will step forward by a

specified amount in the x-direction (= (G2 - 1) x step) to determine (using the previous

length assignments) how many fractures extend past this point. If fractures have ended,
new fracture assignments must be made to maintain the distribution in (2). The number of

fractures that have not crossed the grid point are counted by the procedure

COUNT - ENDED - FRACTURES and stored in the variable needed. If fractures have

ended, the procedure ADD - NEEDED-FR4CTUR.L-S is called as shown in Fig.12. To

guarantee that the new Fracture
- _- - assignments produce a Fractal 4J2 ,p------- __-- 1
s li: c I----.--- distribution, we must reverse the ' t

ruler doubling process and reassign
250

fractures that have crossed the ' 290

specified grid point to half as many

rulers used in the final step of the

, 393

a

P

f : 3 5

:: 4 : 6: 1 3 ::i ::: .d:
;
I - initial 1-d fracture generation -dpoana .dtc l irr NUJ -

process. The unoccupied fracture Fig. 13. Lengths are assigned to the initial fracture

sites are then assigned new fractures set.

following the same procedure described for the initial fracture generation.

After new fractures have been added (beginning from x = (G2 - 1) x step) the

ASSIGN NEW FRACTURE LENGTHS procedure uses (8) and then (9) to determine their

length. The x, and x, coordinates (endpoints) for each of the fiactures are stored in the

arrays LfxI[i] and Lfx2[jJ and the whole process continues until the distribution is

generated for the specified number of

horizontal site locations. The

endpoints of the fiactures along with

their vertical position are written to

the file FRACT-l.DAT for each

value of the gridstep x given above

by the

DISPIA Y-FRAC-mENSIONS
procedure. The output is shown in

Fig.14 . The parameters used were
Fig. 14 Horizontal fracture outcrop

Df = 1.5, I = 2.7, and R , = 16 which were determined from the MWX outcrop using the

box counting procedures described in a previous section.

16

To generate the vertical fracture set \ve first generate a fracture distribution along

each of the horizontal fractures by applying our I-d generation algorithm to each fracture

in the datafile FRACT - I.DAT. Since the horizontal fracture positions were previously

stored at each value of the gridstep, a fracture crossing N gridpoints is stored ii times by

the D1SPf.A Y-FRIC-LYTEVSIONS procedure. Therefore, before we can assign vertical

fractures along each of the horizontal fractures we

must first eliminate ail duplicate fractures from the

data set. This is accomplished by the

EIJitIIXA TE-RED U'DA N T-FRA C TC /RES
procedure listed below the dotted line in Fig.8. The

result of this operation is stored in a new file:

FRACT-2.DAT. M e r obtaining a unique set of

horizontal fractures we reinitialize our variables by

reading in the FRACT-2.DAT values with the

READ - FRAC _ _ 2 DATA procedure as shown in Fig.8.

Starting in the upper left hand comer of Fig. 14

and proceeding downward vertically, the program

produces a fractal distribution (using a parameter set

determined from the vertical fracture data) along the

first fracture in the data set. In our-model we assume

that vertical fractures can only begin or end along a

horizontal fracture. In this case, we need only find the

BEGIN
T

for i:O to R2-1 do

1
if (;lfrocrwe sire IS ocmped) then

'I =tf>l[l'I
XI1 -1.h I [I21 -Lu*c- 1% 2

- begin

____- begin

sort-fractures
! choosc_thc_nc~_frcture_below
! rernrrrake rhe array varwbles

1 it(nor ar/racmre boundar)) then

i r k ~ m 2;:acrure
1 'wire rr lofiac-3 darfi!e

A v
,

end

: -----end

- -4- end
1

T
END

Fig. 15 Procedure flowchan for
.~SSIG.~_LE.~GTH.S-TO-FR~ CTC:

RES-A LO.1'G-FR-1 CTi*RES.

next horizontal fracture below each vertical fracture site to determine the fracture

endpoint and therefore its' length. To begin the process the program enters the for loop

below the READ-FMC-2-DATA procedure in Fig.8. If the it-th horizontal fracture has

a length greater than a certain number of units, the program executes the

GENERA TE - FRACTURES_ALONG-FMCTURES procedure to generate a fracture set

along the i2-th fracture. The flowchart for this procedure is completely analogous to the

flowchart given in Fig.9 except that in this case we use a slightly different I-d fracture

17

generation procedure (GENERA TE-ID-FMC~TUES2) to incorporate the vertical

fracture parameters and new fractal distribution fbnction.

M e r producing a fracture distribution along the i2-th horizontal fracture, the

program executes the

.-I SSIGV-L E.VG THS-TO-FR-I CTC ‘RE.5-A LO.\.%-FR-I CTCR E.$ procedure whose flowchart is given

in Fig.15. The outer for loop in the procedure scans through all rulers of the fracture

distribution just produced by the GENERATE FRACTURES ALONG FRACTURES
procedure. If a fracture

site is occupied then the

vertical position of the

horizontal fracture is

stored in the variable

y l . The location of the

fracture along the i2-th

horizontal fiactures’

length is then stored as

.ql. Now that we have

the x and y values of

the vertical fractures’ starting point - we scan the fracture set (using the SORT

FRACTURES and CHOOSE-THE-Nm- FRACTUE-BELOW procedures) to find the

vertical position of the next horizontal fracture beneath our given fracture. This position

is then stored as y2. I f the value ofy2 corresponds to a fracture within the boundaries of

the network (and not at an adjacent grid site starting at the top of the screen) then the

vertical fiacture is displayed and its’ position stored in the file: FMC-3.DAT. The

program terminates when the horizontal fiactures have been scanned and vertical fractures

are generated along their lengths. Using the identical parameters that were used for

Fig.14 along with the parameters Df,,wmcd = 1.2, fwbcd = 1, and R,.wrircd = 4; we obtain the

output shown in Fig. 16 which may be compared with the MWX data in Fig. 1.

18

Conclusions & Future Work
To model the fracture outcrop networks occurring in naturally fractured tight-gas

reservoirs we have taken an approach that incorporates:

A) Fractal .4nalvsis of Available Data:
We characterize the h W X fracture data using four parameters (for the distribution of
both horizontal and vertical fractures): i) Lacunarity, ii) Fractal Dimension, iii) Initial

Covering Scale, and iv) Cutoff - determined from the distribution of fracture lengths.

B) Fracture Generation:
We generate self-similar fracture networks using data from I.) with an algorithm that

incorporates fractal geostatistics.

From our work we have found that there are several advantages in an approach that uses

fractal statistics:

i) The networks produced by our model appear to be in agreement with actual

fracture networks but do not require extensive apriori knowledge of the network. Using

data from isolated borehole sites we can generate entire networks with an algorithm that
assumes a self-similar or scale invariant geometry.

ii) We are able to generate horizontal and vertical fractures separately (although

not independently) using distinct parameter sets in each case. The fractures can then be

analyzed and combined later to produce complete self-consistent networks.

iii) Since the data is generated using a statistical approach, the algorithms require

relatively little computer time to produce complete networks

iv) Evidence suggests that real fiacture networks obey fiactal statistics.

The characterization and analysis of the network data produced by our algorithms is not

yet complete. By varying other parameters such as gridsize, fracture length, and the

horizontaVvertical orientation of fractures, we believe that it will be possible to generate

fracture distribution patterns that are ‘optimally similar’ in the fractaVstatistica1 sense - to

real fracture networks occurring in nature.

Currently we are analyzing the distribution of fractures along horizontal boreholes

in the Austin Chalk and fracture lengths from nearby outcrops. The results fiom this
analysis will be used to produce simulated fracture networks.

19

References
1.

2.

3.

4.

c - .

6.

7.

8.

9.

i 0.

1 1 .

12.

13.

14.

15.

16.

17.

Skopec, R. A., JPT. December 1993, 1 168, (1993).

Davidge, R. W. "Mechanical Behavior of Ceramics." 1979 Cambridge University

Press. New York.

McKoy, M., private conununication. (1994).

Xie, H. "Fractals in Rock Mechanics." Geomechanics Research Series. Kwasniewski

ed. 1993 A. A. Balkema. Rotterdam.

McKoy, M.. Development of Stochastic Fracture Porosity Models and Application

to the Recovery Efficiency Test (RET # I) Well in Wayne County, West Virginia

(1993).

Long. J. C. S. and D. M. Billaux, Wat. Resources Res. 23, 1201, (1987).

Billaux, D., J. P. Chiles, K. Hestir and J. C. S. Long, Int. J. Rock Mech., M n . Sci.

& Geomech. Abstr. 26,28 1, (1989).

Hewett, T. A. "SPE 15386 Fractal Geostatistics for resemoir hetero's." 1986 SOC.

of Pet. Eng. Richardson,TX.

Matthews, J. L., A. S. Emanuel and K. A. Edwards, JPT. 1139, (1989).

Chiles, J., Math. Geol. 20, 63 1, (1988).

Feder, J. "Fractals." 1988 Plenum Press. New York.

Mandelbrot, B. B. "The Fractal Geometry of Nature." 1982 W. H. Freeman

Publishers. New York.

LaPointe, P. R., Int. J. Rock Mech., Min. Sci. & Geomech. Abstr. . 25, 421, (1988).

Heffer, K. J. and T. G. Bevan, fracture length scaling (1990).

Roach, D. E., A. D. Fowler and W. K. Fyson, Geology. 21,759, (1993).

Roach, D. E. and A. D. Fowler, Computers & Geosci. 19,849, (1993).

Maloy, K. J., A. Hansen, E. L. Hinrichsen and S. Roux, Phys. Rev. Lett. 213,

(1992).

20

Appendix A: Program Listing: 2 d j
(Pascal Sozrrce,* 670 lilies

PROGRAM td-fiac2; {--- Progrum declaration -1

USES crt7graph; {--- Libraries that will be used --]

TYPE
ruler=array[1. .2,1. .8 1921 of inteser;
one-d-array=array[1.. 16001 of real;

VAR {--- C'ariables are explained as rricountered --)

Nac.pas

compiled and developed using Borland - Turbo Pascal Version 7.0 under DOS 6.22 on a 486DX2-66
with 16MB of memov. The fracture network figures were produced with .\fathemafica ver. 2.2.1 running
under Windows 3.11.

21

u,
Y-steP,
One-d-Generations,
One-d-Generations2.
Two-d-Generat ions:
L
temp,

xf2,
cx,
CY,
SX,

SY 3

k
1Y 7

Lf,
s3,
s4,

integer;
:ruler;

Yl
SI,
s2,
Y l ,
Y2.
y3,
Lacunarity,
Lacunarity2,
Fractal-Dim,
Fractal-Dim2,
f-lenth
L f i l ,
L f a
LfYl
xl ,
x2,
Fractures,
Resolution,
Gnumber,
Covered
datafile,
datafile2,
datafile3
write1
write

:real;

:one-d-array;

: string[6];

:text;

:boolean;
:string[1);

22

FUNCTION N(d:integer):integer;
horizor ial fract irres---)

f--- This jirrtctiort gh-es the distribution of the

BEGIN

END;
N:=Round(Lacunarity*Exp((Fractal-Dim- 1)*ln(d));

FUNCTION N2td:integer):integer; /--- This firiiciiori gives the distrihiiiioii of the
verlical fractures-)
BEGIN

END;
N2:=Round(Lacunarity2*Exp((Fractal-Did- 1)*ln(d)));

PROCEDURE initialize; {- htitia f i x graphics screeti aid scaling
parameters --1

BEGIN
clrscr;randomize;G:=O;G2:=0;
Magnif:=3;count_f:=O;
c 1 :=detect;c2:=0;initgraph(c 1 ,c2,'c:\tpBGI');
setbkcolor(3);
SetFillStyle(EmptyFiI1,O);
nl:=8; write1 :='O';wnte:=false;
cx:=l OO;cy:=100*(getmaxy/getmaxx);
sx:=50; { g e t m d n 1 ; } sy :=O. 8*getmaxy/n 1 ;
settextjustifjr(centertext,centertext);
ou ttextxy(trunc(getmaxx/2), 10,'2-D Fractures');
delay(1000);

END;

PROCEDURE display - initial - - frac data; {-- Uisplq rwriotrs pmamezers oti-screett ---)
BEGIN

k:=O;
for i:=l to R do

begin

end;
if L[f,i]=l then k:=k+l;

setcolor(4);
outtextxy(Trunc(0.1 *getmaxx),Trunc(0.95 *getmaxy),'Rulers =');
outtex-xy(Tmnc(0.14*getmaxx+22),Trunc(O.98*getmaxy),'Starting Fractures =I);

outtextxy(Trunc(O.l4*getmaxx+ 13),Trunc(0.92*getmaxy),'Initial Covering =I);

str(R.,Resolution);
str(k,Fractures);
setcolor(15);
outtextxy(Trunc(0.175*getmaxx),Trunc(O.95 *getmaxy),Resolution);
outtextxy(Trunc(0.3 1 5 *getmaxx),Trunc(0.98*getmaxy+O),Fractures);
str(Ri,Resolution);

23

ou ttek?xy(Tru nc(O.2 9 5 *getmaxu), Tru nc(0.92 *ge tmaxy),Resolu tion);
END;

PROCEDURE generationqanty; {-- Delertniire if6 is odd or e w r --)
BEGIN

begin
e:= 1 ;
f=2;

if (Gi2-trunc(g/2)) >O then

end;

begin
e: =2;
f = l ;

if (G/2-trunc(g/2)) =O then

end;
. END;

PROCEDURE display-1 d-fractures; /--- Display Fract. alotigy at aprevioirs Gen. ---)
BEGM

ly :=O. 7 *get maxy/R;
for i:=O to R-1 do

begin
if (i/2-trunc(i/2)) >O then setcolor(9);
if (i/2-trunc(i/2)) =O then setcolor(12);
line(trunc(sx), trunc(cy+ly *i),

trunc(sx).tn1nc(cy+ly*(i+0.95)));
if (L[e,i+l]=l) then

begin

end;
put pixel(trunc(sx),trunc(cy+ly*i+ly/2), 1 5);

end;
END;

PROCEDURE display- 1 d-fiactures2; {--- Display Fract. aloirgy at thefitral Gen. ---)
BEGIN

ly :=O. 7 *get maxy/(2 *R);
for i:=O to 2*R-1 do

begin
if (i/2-trunc(i/2)) >O then setcolor(9);
if (i/2-trunc(i/2)) =O then setcoIor(l2);
line(trunc(sx),trunc(cy+Iy*i),

trunc(sx), trunc(cy+ly * (i+O. 95)));
if (L[ci+l]=l) then

begin
putpixel(trunc(sx),trunc(cy+ly*i+ly/2), 1 5);

24

end;
end;

END;

PROCEDURE display-Id-fiactures3; {-- niis hacks tip to R 2 aridshows Lfe,i/ --)
BEGm

ly : =O. 7*getmauy/(R/2);
for i:=O to trunc(R/2)-l do
begin

if (i2-tnrnc(i2)) >O then setcolor(13);
if (i/2-trunc(i/2)) =O then setcolor(4);
line(txunc(sx- I S) , trunc(cy+ly *i),

if (L[e,i+l]=l) then
trunc(sx- 1 S),trunc(cy+ly*(i+O.95)));

begin

end;
putpisel(trunc(sx- 1 S).trunc(cy+Iy*i+ly/2), 15);

end;
END;

PROCEDURE display - 1 d-fiactures4; {--- Show fractures by pixel at each Gen. ---)
BEGIN
ly:=0.7*getmq/(R);
forj:=O to R-1 do
begin

if (j/2-trunc(j/2)) >O then setcolor(9);
if (i/2-trunc(j/2)) =O then setcolor(12);
line(trunc(sx+(G2- 1)*Step *Magnif), trunc(cy+l y *j),

if (L[fJ+l]=l) then
trunc(sx+(G2- 1) * Step*Magni f),trunc(cy+l y * G+O. 95)));

begin

end;
putpixel(trunc(sx+(G2- 1)*Step* Magnif), tmnc(cy+ly*j+ly/2), 1 5);

end;
END;

BEGIN
PROCEDURE display - fracturesjl ; {--- Show fractures at a previoiis stage ---I

Ix:=Abs(LW[i2]-Lfk 1 [i2])/(R2);
for il:=O to R2-1 do

begin
if (i1/2-trunc(i1/2)) >o then setcolor(1);
if (i 1/2-trunc(i 1/2)) =O then setcolor(1);
line(trunc(sx+(Lfkl [i2]+Ix*i I)*Magnif+3) ,trunc(Lfyl[i2]),

if L[e,il+l]=l then
trunc(sx+(Lfk 1 [i2]+lx*(i 1 +0.95))*Magnif+3),trnc(Lfy 1 [iz]));

25

begin

end;
putpisel(trunc(sx+(Lf>c I [i2]+lx*i 1 +ld2)*Magnif+3), trunc(Lfj.1 [i2]), 1 5) ;

end;
END;

PROCEDURE display-fracturesj2;

Ix: =Abs(Lfk2[i2]-Lfx 1 [i2])/(2 *E);
for il:=O to 2*R2-1 do

BEGM

begin
if (i1/2-trunc(il/2)) >O then setcolor(1);
if (il/Z-trunc(i1/2)) =O then setcolor(1);
line(trunc(sx+(Lfk I [i2]+lx*i l)*Magnif+3)

if L[f,il+l]=l then

,trunc(LfyI [i2]),
trunc(sx+(L& 1 [i2]+1x* (i 1 +O. 9 5))* Magnif+3), trunc(L@ 1 [i2]));

begin

end;
putpixel(trunc(sx+(L&l [i2]+lx*i I+lx/2)*Magnif+3), trunc(Lfy1 [i2]), 15);

end;
END;

PROCEDURE display-fiac-extensions;
BEGM

ly:=0.7*getmaxy/R; {-- ntis gises the nder ietigths iti the y-direc. ----)
if g2=1 then {---Create dataJiiefLact-l.dat ---)

begin
assign(datafile,'c:\tp\files\FRACT- 1 . D AT');
rewrite(datafi1e);

end;
B ar(tru nc(sx+490), trunc(cy), trunc(getmax..), t runc(cy+3 40)); {--- Erase old data

from the screen --1
for i:=O to R-1 do

begin
if (L[ci+l]=l) then

begin
count-f=count f+ 1 ;
str((g2-1),Gnuiber);
Lfy I [i+ l]:=cy+ly*i+ly/2;

writeln(datafile,Lfxl [i+l
fract- I . dat ---I

setcolor(1);

3:2,' ',LW[i+]:3:2,' ',Lfy

line(trunc(sx+L& 1 [i+ 1]*Magnif+3),trunc(Lfy 1 [i+ 1 I),

trunc(sx+Lfk2[i+ I] *Magnif+3), trunc(Lfi 1 [i+ 1 I));
on screen --1

[i+l :2); {---write to

{-- display the fractures

26

setcolor(8);
if (G2- 1)>0 then f--- Draw the pidliiies 011 the screen ---I
line(trunc(sx+(G2- 1)*Step * Magnif), trunc(cy),

trunc(sx+(G2- 1)* Step*Magnif),trunc(cy+ly*(R- 1)+ly/2));
if Step>=lO then

set color(8);
str((g2- l)*step,Gnumber);
outtextxy(trunc(sx+(G2- 1)* Step*Magnif+O),trunc(cy-20),Gnumber);
str((g2- 1),&umber);
outtextxy(trunc(sx+(G2- 1)* S tep*Magnif+O),trunc(cy+345),Gnumber);

(--- Pritit the grid values oti the screeti -1
begin

end;
end;

end;
END;

PROCEDURE generate-1 d-fiactures; {--- I - d Algorithm - Generates F'ertical
Slices alorig x--1

BEGIN

begin
for i:= 1 to R do {-- Divide Measiritg Scale and Bring down Fractures --I

if L[e,i]= 1 then {- /ffLacttires are preserit, addfiactzires belou -1
begin

forj:=l to 1 do
begin

s: =random(2)+ 1 ;
if s=l then
begin

L[f,2*i-1]:=1;
L[f, 2 * i] : =O;

end;

begin
if s=2 then

L[f,2* i- 1] :=O;
L[f,2*i] :=l;

end;
end;

end

begin
else {-- If no fiactwes are present, add spaces --]

L[f,2*i-l]:=0;
L[f , 2 * i J :=O;

end;
end;

27

for i:=l to (N(2*R)-N(R)) do {------ Ad’fractitres accordiiig to distribtrtirtiori ---)
begin

repeat

until (L[e,s]=l) and not ((L[E2*s-I]=1) and (L[f,2*s]=l));
s:=random(R)+ 1 ;

if L[f,2*s-l]=l then L[f,?*s]:=l else L[f,2*s-l]:=l;
end;

END;
PROCEDURE generate-1 d-fiactures2;

BEGIN

begin
for i:=l to R2 do {-- Divide Meastrrirrg Scale mid Bring down Fractures --)

if L[e,i]=l then {-- Iffractures are present, addfiactures below. -)
begin
forj:=l to 1 do

begin
s:=randorn(ll)+l;
ifs=l then
begin

L[f,2*i- 1]:=1;
L[f,2*i] :=O;

end;

begin
if s=2 then

L[f2*i-l]:=O;
L[f,2*i] := 1;

end;
end;

end

begin
else {-- /fno fractures are present, add spaces ---)

L[f,Z*i- 1]:=0;
L[f,2*i] :=O;

end;
end;

for i:=l to (N2(2*R2)-N2(R2)) do {--- AddfLactrrres ----I
begin

repeat

until (L[e,s]=l) and not ((L[f,2*s-l]=l) and (L[f,2*s]=l));
s:=random(RZ)+l;

if L[f,2*s-l]=l then L[f,2*s]:=l else L[f,2*s-1]:=1;
end;

END;

28

PROCEDURE Assign-Fracture-Lengths; {- Assign Ierigths to hori:o~ttalfiacrr(res---)
BEGM

begin
if G2= 1 then {---- Assign initial lengths to fracttrres --]

for i:=l to R do
begin

if L[f,i]=l then
begin

s3 :=(random(1 OO)+ I)/ 100;
Lf=Exp((2/3)*Ln((Exp(1.5*Ln(100))-Exp(1.5*Ln(2)))*s3));
s4:=(random(1 OO)+ 1)/100;
Lfi 1 [i] :=O;
Lfx2[i] : =s4* Le

end;
end;

end;
ESD;

PROCEDURE Count-Ended-Fractures;
ended-)

BEGIN

begin

{-- corirtt horizorttal fiactures that have

for i:= 1 to R do {---- If a fiactrire has ended, cozint it ---)
if (L[Ei]=I) and (Lfx2[i]<(G2-l)*Step) then

begin
needed:=needed+ 1 ;
L[f i] :=O;
L f i l [i]:=(G2- I)*Step;
Lfx2 [i] :=O;

end;
end;

END;

PROCEDURE Display-Grid-info; {-- display grid values oil screen---)
BEGIN

str(needed,Gnumber);ou ttextxy(trunc(sx+(G2-2) * S tep*Magnif+7), trunc(cy-
40),Gnumber);

setcolor(I 5);outtextxy(trunc(22),trunc(cy-4O),'Need:');
outtextxy(trunc(22), trunc(cy-20),'Grid: 7;

, END;

PROCEDURE Add-needed-fractures; {---add horizontalfractrrres that have ended ---)
BEGIN

for i:=l to needed do
begin

29

repeat
Bar(tmnc(sx-4 5) , tmnc(cy- 1 0).

trunc(sx-20),trunc(cy+3 3 5)) ;
s: =random(round(W2))+ 1 ;
str(s,resolution);setcolor(1 4);
outtextxy(trunc(sx-3O),Trunc(cy- 1 7~ly*2*s).resolution);

until (L[e,s]=l) and not ((L[f,2*s-l]=l) and (L[f.Z*s]=l));
if L[f,2*s-l]=1 then

begin
L[f, 2 *SI : = 1 ;
Lfk 1 [2*s]:=(G2- 1)*Step;

end

begin
else

L[f,2*s- 1 I:= 1 ;
LEV1 [2*s-l]:=(G2-1)*Step;

end;
display-1 d-fiactures4; {--- show the new fracture positioris CIS they are added --I

end;
END;

PROCEDURE Assign-New-Fracture-Lengths; {-- Assign lengths to naufractures --I
BEGIN

for i:=l to R do
begin

if (L[f,i]=l) and (Lfxl[i]=(G2-l)*Step) then
begin
sj:=(random(100)+1)/100;
Lf=Exp((2/3)*Ln((Exp(1.5*Ln(100))-Exp(1.5*Ln(2)))*s3));
s4:=(random(100)+1)/I 00;
LW[i]:=(G2-l)*Step + s4*Lc

end;
end;

END;

PROCEDURE generate-horizontal-fiactures;
fracture set ---I

{-- procedirre for generating horiz.

BEGIN
needed:=Q; {--- Iiiitialize this variable for the next geiieratioii ---I
if G2= 1 then {---Assig?r@acture Ieiigths for the initial gerieratiort --]
Assign-Fracture-Lengths;

display-frac-extensions;
display-1 d-fiactures4;

30

if G2>1 then
begin
Count Ended-Fractures;
Display Grid-info;
display1 d-fractures3 ;
display-1 d-fractures4;
if needed>O then
begin

Add-needed-fiact ures;
Assign-New-Fracture-Lengths;

end;
end;

END;

PROCEDURE generate-iitiaI-fracture-set;;
BEGIN

begin

end;
G:=O;
repeat

for i:= 1 to Ri do {--- Set thefirst Level Fractures --I

L[l,i]:=l;

{--- start I-d fractirre generalion -------I
{----- G Cowrts the Generations -------)
{--- is G odd or evert ? ---------------- 1

G:=G+l;
generationqarity;
generate - - 1 d fractures; {---- Algorithm ------------- 1
display I d-fractures;
display-1 - - d fractures2;
R: =2*R; {-- doirble the scde resolictioit --I

until G=One - - d Generations; {--- erid of Id loop --I
END;

BEGIN
reset(datafi1e);
m:=O;
while not Eof(datafi1e) do {-- Read iri values and cotriit how manyfi.omflact-l.dat-

PROCEDURE Eliminate-redundant-Fractures;

-1
begin

m:=m+ 1 ;
readln(datafile,Llk 1 [m],LW[m],Lfyl [m 1);

end;
close(datafi1e);
for i:=l to m do

begin
if Lfyl[i]O(-l) then

begin

31

forj:=l to m do
begin

if (ioj) and ((Lfk 1 [i]=Lfk I ti]) and (Lf;t2[i]=LfXCj]) and (Le 1 [i]=L@I li]))
then

Lfy 1 J :=- 1 ;
end;

end:
end;
Assign(datafile,'c:\tpViles'$RACT-2.DAT'); {---Create file of tiiiiqiie fractures---)
Rewn te(datafi1e);
for i:=l to m do

begin
if Lfy I r i le(- 1) then

begin
writeln(datafile,Lfi l[i]:3:2,' ',Lfjrl [i]:3:2,' I.

LW[i]:3 2,' ',L@ 1 [i] : 3 2);
end;

end;
close(datafi1e);

END;

PROCEDURE Generate-Fractures - Along - Fractures; {-- assign fracizires aloitg horiz.
fraciiires-)

BEGIN
R2:=Ri2;
for i:=l to R do

G:=O;
L[1 ,i]:= 1;

{-- Sei the firsi Level Fraciures --)

repeat
G:=G. 1 ;
generationqarity;
generate-l d-fractures2;
display-fiacturesj 1 ;
display-fiacturesj2;
R2 :=2 *R2;

until G=One-d-Generations2;
END;

32

PROCEDURE Switch(Var a,b.Real); {--- n7is is rised in the sortirig procedure ---I
Var
c:real;

BEGIN

a:=b;
b:=c;

END;

c-=a. - ,

PROCEDURE Sort - fractures; {--- sort the fractiires fo assign vertical fiacttrres to next
otir below -1

i3j4:integer;

for i3:=2 to u do

Var

BEGIN

begin
for i 4 : q DownTo i3 do

begin
if (Lfirl[i4-1]>Lfyl[i4]) then

begin
Switch(LQl[i4], Lfyl[i4-1]);
Switch(Lfxl[i4], Lfxl[i4-1]);
Switch(Lfx2[i4] , Lfk2[i4-I]);

end;
end;

end;
END;

PROCEDURE Choose-The-Next-Fracture-Below; {--- Go through sorted Iist --I
VAR
i5 :integer;
BEGIN

i5:=0;
repeat

i5:=i5+1;
until (Lfyl[i5]>yl) and (xfl>=Lfkl[i5]) and (xfl<=LfX[iS]);
y2:=LQl [is];

END;

PROCEDURE Read-Fract-2-Data;
VAR

i5 :integer;
BEGIN
i5:=0;

33

reset(datafi1e);
while not Eoqdatafile) do

/--- dataflie is Frac - 2.daf ----)

begin
iS:=iS+I ;
readln(datafile,Lk 1 [i5].L@l [iS],Lk2[iS],L@l [i5]);

end;
u:=i5;
close(datafi1e);
END;

PROCEDURE Assign-Lengths-to-Fracts-Along-Fracts;
ver f icai fractures -)

. BEGIN

begin
for i:=O to R2-1 do {--Assign lengths tofractures ---I

if L[f,i+l]=I then
begin

y l :=Lfyl[i2];
lx:=Abs(LW[i2]-Lfi 1 [i2])/(R2);
xfl :=L& 1 fi2]+1x*i+l.d2;
xf2: =LW[i2] +Ix * i+l;u/2;
Sort-Fractures;
C hoose-The-Next-Fracture-Below;
setcolor(1);
Read-Fract-2-Dat a;
if (y2>=0) and (y2<=500) then

begin
Line(Trunc(sx+(xfl) *Magnif+3),Trunc(y 1),

Append(datafile3);
writeln(datafile3,xfl:3:2,' ',yl:3:2,' I,

close(datafile3);

Trunc(sx+(xfl) *Magnif+3),Trunc(y2));

xfl:3:2,' ',y2:3:2);

end
else ~ 2 7 1 ;

end;
end;

END;

{- generate arid display

PROCEDURE writegrogramgarameters-to-file; {--- make a akztaflle of the
parameters used --]

BEGIN
Assign(datafile3 ,'c:\tpVilesVr-text .dat');
Rewrite(datafile3);
writeln(datafile3,Lacunarity:3 :2,' ',Lacunarity2:3:2,' I,

34

Fractal Dim:3:2,' ',Fractal_Dim2:3:2,' '.
Step,' ',One_d_Generations,' ',One_d_Generations2);

close(dat afile3);
E m ;

35

BEG IN
initialize;

f------- The Progranr starts here, arid executes the procediires-------- 1

writeqrogamqarameters-to-file;

generate - initial - fracture-set;

display-initial-fiac-data; {--- disp1n)-s iiiitial program ii fo ----I

G2:=0; {-- initialize G2 -1
REPEAT {---- Start 2dpactrire geiieratiori ------I

G3:=G2+ 1;
generate-horizontal-ftactures;

UNTIL G2=Two - - d Generations;

close(data file); (--- DataJile is I->ac - I .dit . coirtaiiiiirg the eircjpoiiiis of the hori:oiital
juctiires ---I

Eliminate-redundant-ftactures; {--Remove duplicate fmcturesfrom frac-ldat and save as frac-2.dat -
-1

Read-FractZ-Data; {---Reiiitialize variables nith tiiiiqrie fracture rwhies ---)

Assign(datafile3,'c:\tp\files\fract-3 .dat'); {-- Create the datafile: fmct-3.dat io store vertical
Jractures ---I

Rewrite(d atafile3);
close(dat afile3);

for i2:=1 to u do (--- ii is the totd ritiniher of horizonial fracitires ---)
begin

if Abs(LfX?[i2]-Lfx 1 [i2))>=20 then [- smrt verricaifiactwa onlv aiong borizon./ractrcres wrb [engtb 2
30 units -}

begin
Generate-Fractures-Along-Fractures;
Assign - Lengths-to-Fracts - Along-Fracts;
end;

end;

setcolor(14);
outtextxy(trunc(0.8*getmaxx),20,'Done.');

fiiiished ---)
readln;
closegraph; {--- exit from graphics mode -1

{ I------ Program ends here --------- I

{-- Priiit a message that the program is

{--- wait trritil a key is pressed ---I

END.

36

