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0 bj ectives 
West Virginia University will implement procedures for a fractal analysis of 

fiactures in reservoirs. This procedure will be applied to fracture networks in outcrops 

and to fiactures intersecting horizontal boreholes. The parameters resulting from this 

analysis will be used to generate synthetic fiacture networks with the same Fractal 

characteristics as real networks. 

Background 
Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture 

network. 1 Reliable characterization of the actual fracture network in the reservoir is 

severely limited. The location and orientation of fractures intersecting the borehole can be 

determined, but the length of these fractures cannot be unambiguously determined. 

Fracture networks can be determined for outcrops, but there is little reason to believe that 

the network in the reservoir should be identical 

because of the differences in stresses and history. 

Seismic techniques do provide some large scale 

(resolution of tens or hundreds of feet) 

information about the fracture density and 

average Fracture orientation, although there is 

some controversy about interpretation of the 

multi-component surface seismic data, especially 

regarding which layer is being probed. 
Fig1 Outcrop Fractures at MWX site. 
Shows the primay fractures (Set I )  and the 

seconm fractures (Set 2). 

Furthermore, independent of the 

assumption of fiactal behavior, it is known that 

typical fiactures in the second set should begin 

and end at fractures of the first set.2 This effect is commonly observed in real fracture 

networks from outcrop studies, for example 92% of the secondary fractures in the MWX 

outcrop (Fig. 1) satisfjr this ~riterion.~ Imposing this constraint upon the secondary 
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fractures increases the visual similarity between our networks and the real network over 

simulated networks from other fractal modeling schemes..' 

Because of the lack of detailed information about the actual fiacture network, 

modeling methods must represent the porosity and permeability associated with the 

fracture network, as accurately as possible with very little apriori information. Three rather 

different types of approaches have been used: i)  dual porosity simulations, ii)'stochastic' 

modeling of fracture networks, and iii) fractal modeling of fracture networks. The dual 

porosity approach is a natural extension of the gridding schemes widely used in describing 

reservoirs, however in assuming mesoscopic scale (tens or hundreds of feet) averages of 

fracture porosities and permeabilities, they may be smoothing the very heterogeneities 

which control the recovery. This may limit reliability for strongly anisotropic fracturing. 

That is, even if fractures are located randomly throughout the grid-block so that an 
average porosity may be sensible, the conductivity of similar fractures differ widely 

invalidating assumptions of an average permeability. 

Stochastic models which assume a variety of probability distributions of fracture 

characteristics have been used with some success in modeling fracture networks.5-7 The 

advantage of these stochastic models over the dual porosity simulations is that real 

fracture heterogeneities are included in the modeling process. On the other hand these 

stochastic models need information about all features of the actual fracture network to 

provide the most accurate modeling. In the highest level (most accurate) model for each 

set of fractures nith a given orientation, one needs to determine the probability 

distribution of i) the location of independent fractures ii) the location of fracture clusters 

or swarms iii) locations of fractures within clusters, iv) cluster lengths, v) fracture 

lengths, vi) fracture apertures, and vii) fracture orientations. The less reliable the 

information determining these probability distributions; the less reliable the fracture 

network. Reliable information about many aspects of the real fracture network is 

impossible to determine; the assumption of self-similar fractal behavior (if valid) enables us 

to predict features of one aspect of the distribution from other aspects of the distribution; 

Le. i), ii), and iii) result from the box-counting along the borehole which, in turn, predicts 

features of the distributions for iv), v), and vi) for self-similar fractal networks. 
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Aspects of fractal geometry have been applied to mimic the heterogeneity 

associated with layering in real reservoirs for a number of years. In these cases, the 

variation in permeability with height at the borehole was found to obey fiactal statistics,* 

and the correlations implicit in fractal geometries allowed them to interpolate between the 

known permeabilities at the borehole in such a way that results from flow models agreed 

with analyses of production logs and tracer breabhr~ugh.~ Examples in the open 

literature reporting the use of fractal geostatistics to treat naturally fiactured reservoirs are 

less common.4.10 If a set of natural fractures is described by a self-similar fractal 

geometry, the self-similar, scale invariance of the fracture network implies relationships 

among the fracture distribution, and the various length scales: Clustering or fiacture 

correlation, fracture aperture. and fracture length. Therefore, if fracture networks obey a 

self-similar fractal geometry, borehole data locating orientational sets of fractures, will 

enable a determination of the fractal dimension and 'lacunarity'. This along with relatively 

- generic information about the typical aperture size and length of fractures,l will allow us 

to produce a self-similar fractal network. The clustering occurs naturally in the fractal 

network because of the correlations inherent in fractal geometries. The fractal parts of the 

aperture size and length distributions (even the fracture shape distributions) should be the 

same as the fractal parts of the fracture location vs. scale distributions. 

In the sections following this introduction, we will i) present 'fractal' analysis of the 

MWX site, using the box-counting procedure' 1$ 12; ii) review evidence testing the fractal 

nature of fiacture distributions and discuss the advantages of using our 'fractal' analysis 

over a stochastic analysis; iii) present an efficient algorithm for producing a self-similar 

fracture networks which mimic the real MWX outcrop fracture network. 

Project Description-Fractal Analysis 
Illustrative Example Before analyzing the MWX outcrop (Fig. I), one must 

understand the box-counting procedure used in these tests as well as our method for 

generating the fracture networks. As discussed later in this section, the box-counting 

procedure automatically reproduces the random aspects of the distribution of fractures in 

addition to reproducing the clustering obvious in Fig. 1. 
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For a simple example of the box-counting procedure consider the distribution of 

fractures intersecting a length of borehole 

(Fig.3a). To determine the fractal dimension as 

well as the range of size scales over which the 

distribution is fractal, one covers the array of 

fractures by successively smaller and smaller rulers (one-dimensional 'boxes'), and then one 

counts the number of 'boxes' or rulers covering one or more fractures. If the distribution 

has a fractal dimension D, over a range of sizes, then 

Fig. 2a Fractures intersecting a borehole. 

N = A(A)D',  (1) 

where N is the number of rulers which cover fiactures, the constant A is called the 

lacunarity, and the scale 4 determines the length of the rulers ( L  / A ) .  If one covers the 

21  fractures in Fig.2 by a ruler of 

length L , (shown at the bottom of 

Fig.2b) one ruler covers the 

fractures; with two rulers of length 

LE (near the bottom of Fig.2b) both 

cover fractures; with four rulers of 

length L/4 all 4 cover fractures, but 

with 8 rulers of length L/8, only 6 

cover fractures. This is continued 

e . : : . : : : : : . : : : :  I +  
I I 

r I 
I 4 

4 

Fig. 2b The louer half of the figure shows the fractures in 
Fig. 2a with thc scale rulers 'covering' the set of fractures 
from a ruler of length L. proceeding upwards to rulers of 

length L/64 just below the fractures. The top half shows the 
same set of 'covering' rulers of length L/128. 

down to 128 rulers of length L/128 as shown in Table I. 
Since there are only 24 fiactures, at scales smaller than L/128, there will only be 24 

rulers covering fiactures. A log-log plot of the box-counting for Fig. 2 is shown in Fig.3 

below. The fractal relationship is given by the solid line N = 2.12 A057 except at large and 

small scales for the following reasons. At small A ,  (coarse scales L, L/2 and L/4), N 
equals the number of rulers ( N  = A )  because all the rulers cover fiactures. In later 

sections we refer to this as the initial covering I regime. At very large A ,  (very fine scales 

L/256 and L/1024), only 24 rulers are covered because there are only 24 fractures and 

there is no more detail in the fracture pattern - so that the box-counting 'cuts-off' or 
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'saturates' at 24. Hence, for this fracture pattern, the pattern is fractal between the initial 

covering and cutoff regimes (over the 

range of scales A =  8 to 128) with a fractal 

dimension of 1.5 and a lacunarity of 2.12. 

The ruler counting for this 1-d slice of the 

2-d fracture network gives an exponent: 

D,- 1, i.e. the actual 2-d fractal dimension 

minus one. 

Before continuing, it should be 

Table I 

t Li4 I 4 
LIS 6 

U16 I 8 1 
L/32 I 13 
L/64 17 I 
Ll128 I 21 
Ll256 21 

pointed out that this fracture pattern was generated by our algorithm to have a lacunarity 

of 2.12 and a fiactal dimension of I + + over the range of scales from L/8 to L/128. The 

algorithm used to generate this pattern is described in a following section. 

It is important to realize, however, that if the distribution of fiactures in Fig. 2a 

were completely random (Le., if there were no 

clustering of fiactures) the points fiom the box- 

counting would obey a linear relationship (A' = A )  

up to cutoff That is, each box (on the average) 

would contain one fracture up to the total number 

of fractures (in this case = 24); at finer v 
scales the one fiacture would randomly occupy 

one of the smaller boxes. However, because of 
! ! ! 4 ! ! ! ,,.J ! !& 

I 1  IO 10 100 
A 

clustering. groups of fractures are closer together Fig. 3 Fractal Plot for Fig.2. 

than average. Therefore, when using the box-counting procedure, the linear regime ends 

before N = JVfofd; and one enters the 'fractal' or clustering regime where some boxes are 

empty and others have several fractures much closer together than average. The box- 

counting procedure then provides a method for characterizing (and thus for reproducing) 

this clustering. 
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Results 
MWX Outcrop First the primary set of fractures in Fig.1 were analyzed. A series of 

eight lines (boreholes) of length L 
were drawn through the set of primary 

fractures, and the box-counting 

procedure was used on each of these 

boreholes. The results for the number 

of boxes covering fractures vs. the 

scale A is shown in Fig.4. 

The initial covering regime persisted 

until scale 16. The cutoff regime 

began at scale 80. In-between the 

data are well represented by the fractal 

power law N = 4.9 AoJ2', indicating a 

fractal dimension Df r 1.43. It should 

1 [/' , . . . , ,  , ~ , . , , , J 
1 coc I co O t - e t n  

1 

Fig. 4. or the primaq fractures. the bos-counting from 
the 'boreholes' on the MWX outcrop (Fig.l), shows the 
initid covering (the linear increase, N = A ,  up to the 

dustering or fractal regime), the fractal regime. and the 
cutoff regime. 

be noted that at intermediate scales the simple doubling rule: A = 2 ", (c.f Figs. 2 &: 3 and 

Table I) was used to provide more data in the fractal regime. 

The secondary set of fractures in Fig.1 were analyzed in the same way. A series 

lines of length L ,  perpendicular to these secondary fractures, were drawn through the 

secondaq fractures, the box-counting was performed and the values N ( A )  were 

averaged. Fig.5 shows the plot of Nvs. A and indicates that for these secondary fractures 

the initial covering regime persists until scale 6 - and that the cutoff regime begins at scale 

40. Between the number of rulers the fractal power law: N = 3.47AoU3 applies; 

indicating a fractal dimension D, = 1.34. Again, intermediate scales were used to provide 

more data in the fractal regime. 



To determine the length distribution fiom the data provided by M. McKoy,j we 

plot the total number of fractures with lengths greater than a given length L,  N(L), vs. L .  
It should be noted that this total number N(L) 
with lenghs 1 2 L is the integral of the 

number density of fractures n ( I ) with length 

2 integrated from L = L up to the one fiacture 

of maximum length ; 

i.e. JV(L) = l r - m  n ( l )  d l .  

This graph of the data is shown in Fig.6. It is 

fit by the characteristic exponential cutoff for 

the greatest lengths L 2 14, and by a fractal 

power law for the smallest lengths 

(4 I L 5 14). For a self-similar fiactal 

fracture network, the number density should 

be given by n ( l )  = q l  -Df; so the total number 

is: 

N ( L )  = 7 L ' 9  11 
( 1  - 0,) 

Hence, the data is consistent with a fiactal 

dimension: Dr = 1.48. 

This data does not determine 

unambiguously whether or not the clustering 

regime is rigorously fiactal. That is, this data 
does not favor a strictly power law regime (i.e. 

fractal behavior) between the linear, initial 

covering regime, and cutoff However, the 
power law assumption used to draw the lines 

does represent a good fit to the box-counting 

10 c 

j 
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Fig. 5 For the secon- fractures, the bos- 

counting from the 'boreholes' on the MWX 

outcrop (Fig.1). shows the initial covering 
(the characteristic linear regime). the fractal 
regime. and the cutoff regime. 

1- 

.. 10 : tl: 

:. i 

1 I.-. . A , A W L  

'.. : , .  

IO0 io frxtwe ;tnq:h 

Fig. 6. The number of fractures .S(L) with 

lengths greater than L plotted against L. 
This shows the exponential cutoff for the 
larger lengths and the fractal regime for the 
smaller lengths. 

data. Therefore, at worst, by assuming that the intermediate regime is fractal, we may be 
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only providing a good approximation to the data. If the assumption of fractal clustering 

only provides a good approximation to the true clustering, our simulated fracture 

networks will represent a good approximation to the actual fracture network - which is all 
that is necessary. 

On the other hand, it is encouraging that the power laws fiom the box counting 

and length distributions are all consistent with the same fiactal dimension: D, = 1.4, to 

within a realistic uncertainty fiom the data fitting. This equality of fractal dimensions From 

all length measures is the hallmark of self-similar fracture networks. 

A program to carry out the box-counting procedure and return the fractal 

dimension and lacunarity has been developed in order to process multiple sets of data fiom 

various boreholes. To test these programs as well as the routines for simulating the 

fracture networks, numerous trial runs have been performed to analyze the "borehole 

fractures" from simulated networks. 

Box-counting Results and Analysis - (Robert Pietsch #1)  Horizontal Borehole Data 

The box-counting program performs three major hnctions: i) M W X  data scan, ii) 

implements the box-counting algorithm, and iii) performs a least squares analysis. The 

data scan hnction is used to read in the data and can be easily modified for different data 

formats. The least squares analysis is an optional fbnction - and was not used in this 

report since the box-counting results were transferred to a an external file and processed 

graphically instead of numerically. 

In practice, the initial orientation and ruler length of the borehole sample (fiom the 

Mwx data set) are specified by the user. These parameters are then modified to cany out 

the box-counting procedure. The degree of deviation from the borehole is then checked 

and stored in a generic array. If this value is too low, the corresponding fiacture 

orientation is not included in the final analysis of the box-counting procedure. The ruler 
initial puler iength 

A 
increment variable is initialized using the value: . Delta is initially set 

equal to one and then doubled at each iteration. While the ruler increment is  less than the 

modified initial ruler length, a check is performed to see if the number fiom the fiacture 
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orientation column falls within the specified 

range. If so, the variable 'rulers-covered 

is incremented by 1. The loop continues 

until the value of 'nrfer.~-cosereu" equals 

the total number of fractures; indicating 

that saturation has been reached. These 

values may then be stored in a separate 

datafile for hrther graphical analysis. 

The results for a typical box- 

counting run using the Robert Pietsch 

Box Courting fw Honzon:al Borelu e 

Fig. 7 Bos-counting results. 

data are shown in Fig.7. Our analysis shows that in the fractal regime: A = SO0 + 7000, 

the total number of fractures is given by: N = 76.5 A" 36, implying that Df 2 1.4. 

Are Fracture Networks Fractal? 
There is evidence that real fracture networks are fractal both in outcrops where 

Barton and others found a fractal dimension of Df = 1.55, for different fracture systems,13 

as well as from underground data in the Fanay-Augeres uranium minelo where they found 

a vaying fractal dimension. The variation in their fractal dimension may result From use 

of too great a range of scales. As we saw for very large scales, all the rulers are covered 

so their finding a 'fractal dimension' of 2 at large scales is not surprising. Similarly, at very 

small scales one approaches a limit where the number of 'boxes' covered equals the 

number of fractures so the fractal dimension approaches 1; this may be an artifact of the 

neglect of small aperture fractures (micro-cracks which may be significant in determining 

number at their 0.005 meter scale). 

The length of the fractures has been found to be fractal,*4 and the shape of the 

fractures has also been determined to be Fra~tal15-1~. This suggests that all features of the 

fractures may be fractal: distributions of i) centers, ii) lengths, iii)widths, and iv) shapes. 

The evidence that the shapes are Fractal suggests that porosities and permeabilities may 

also obey fractal statistics. If all geometrical aspects of the fracture distribution are fiactal 
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with the same fractal dimension, the fracture distribution is self-similar. This may seem to 

be a very unusual occurrence, but in fact many examples of development (or growh) 

which occur in random media (like the development of Fractures in stressed rock 

formations) have a self-similar geometry. The first level of our geostatistical modelins will 

assume a self-similar fractal geometry for the fracture distribution. Higher levels of our 

geostatistical modeling could use actual measurements to determine the fractal distribution 

of (e.g.) the fracture widths. 

The Fracture Generation Algorithm 
Here we describe the implementation and design of an algorithm that was developed to 

generate a 2-d fracture networks. As we have 
discussed, the primary assumption in our model is 

that the network geometry is fractal - i.e. has a self- 

similar or scale invariant geometry. Using this 

information we have developed a program to 

generate complete 2-d fracture outcrop networks 

using on1 y the Zucutimiry, fiucml Jimetisioi, itritial 

covering, and cutoff parameters obtained from MWX 
data. 

The PASCAL programming language was 

chosen to emphasize both modularity and structure in 

the development of the algorithm. Since the 

PASCAL syntax is completely analogous to 

psezrdocode used in general algorithm descriptions, 

the program can be easily modified by others or 

BEGIN 
initialize 

T 
witegrogramgarametas~to-file v 

gmnaate-initial-hct-s~~ 
T 

display-initial l7ac-h  
T -  
j REPEAT 

G2%2- 1 
' paate-hmizcmtal-badurcs 

1 

Eliminate-raiundant-hcaures 
v 

Rcad-Fract-2-Data 
T 

for 12:=1 to 6 ofhonz fracures do 

Generate-Fracfures- Amg- kuetures 
.~ign_~~s_to_Fracts_.uarg_Fraas 

end 

r B m  G2 - 4 qucq2d 

........................................................ 

-------- 
Ehl) 

Fig. 8. Procedure Flowchart for 
2d frac.pas 

converted to another programming language at a later time. 
The algorithm is most clearly described by reference to the procedure flowchart in 

Fig.8. The body of the program (Appendix A) consists primarily of variable and 

procedure declarations whose execution begin on p.36. The procedures listed on p.36 
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(and in Fig.8) define the highest level of program hierarchy. All other procedures declared 

in the body of the program are called from within these procedures. 

The most general description of the program is obtained by examining Fig.8. In 

the broadest sense the program performs 2 tasks (separated by the dotted line): 

(1) Generates a horizontal fracture set. 

(2) Generates a vertical fracture set - consistent with the fiacture set in ( 1 )  

To generate the horizontal fracture set the program first generates a 1-dimensional 

fracture set along a left-justified line extending downward in the vertical direction (see 

Fig. 10). This is accomplished by the procedure GEXERA TE-INITIAL-FRACTURE - SET 
whose flowchart is given in Fig.9. The first step in the procedure initializes the first row 

in the ?-dimensional riiler array L[i,k], where i=l.? 

and k can range fiom 1 to 2 I '  = 8192 as declared 

using the TYPE and VAR clauses at the beginning 

of the program. The range of the for loop given by 

the variable Ri is the initial number of nrlers chosen 

to cover the fracture set in a 1-1 ratio. If a fracture 

is covered by a ruler, than the value of the array 

corresponding to this specific ruler is given the value 

1. Conversely, an empty ruler site is given the value 
0. 

Having initialized the L [ l , i ]  array the 

GEltER.4 TE-INlTIAL-FRA CTURE procedure 

divides each ruler into two new rulers (by mapping 

each ruler variable in L [ l , i ]  to two new ruler 

PROCEDURE 
(E.enerate_initial_fracture_set) 

BEGIN 
v 

for i := l  to Ri  do 
,- begin 
I L[l , iJ :=I  
' end - 

v 
* repeat 

G:=G+I 
generation-parity 

generate- 1 d-fractures 
display the fractures 

R:=2*R 

v 
END 

- until  G=One-d-Generations 

Fig. 9 Flowchart for the 
generate - initial f racture-set 

procedure. 
variables in L[2,i]). To accomplish this task the procedure begins the repeut. ..zintil loop 

shown in Fig.9 and increments the counting variable G (initially = 0 )  to the value of 1. 

The GENER4TION-PARITy procedure then determines if G is odd or even and assigns 

the variables e andfthe values (1 and 2) or (2 and 1) respectively, depending on whether 

G is odd or even. 
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Next, the procedure randomly chooses one of the 2 new rulers in L[2,k] for each 

of the rulers in L[  l , ~ ]  and assigns this ruler a value of 1 - while giving the other ruler a 

value of 0. In this way, the covered fractures of the initial level are brought down to the 

nest level of 2 y R, rulers. The remaining rulers are then assigned fractures according to 

the distribution: 

(2) 
w.here N is the number of fractures, I is the lacunanty, DI  is the fractal dimension, and 

D, - 1 . V = l A  , 

( rornl lengrh of fracture set = 1 ) 
number of rulers 

A =  . The progress of the algorithm is checked by displaying 

the fracture locations graphically as the 

program is running. M e r  a single pass through 

the loop the number 6f rulers, R, is doubled and 

the whole process begins again. At the next 

5 

iteration the 

values of e 

assignment. 

C 8  

I = \  I d ~ a m ~ b r o s o n r ~  

parity of G will change, as will the 

and f according to the previous 
; 
: - 

= /  
3= Using the mapping: 1 4  

1 
0 - - - 

- - n L  - - - 
U e , i I +  L [ f  ,A, 

- 
the values of 4 2 ,  j ]  provide input for the next I) - I __ -1 .. ; 4  ;, - 3  - -  .. 

_ L  
.. .. 

iteration and the values of L[  1 ,  i] are replaced h o m x n ~ p s i r i m  *adimu) Y.U. f 

program is shown in Fig. 10 and is analogous to direction. 

Fig.2a. Using Df = 1.5, I = 2.12, with an initial covering of 4, we obtain 24 fractures 

with 4 x 25  = 128 rulers after 5 generations. For the Robert Pietsch data (c.f. Fig.7); the 

I-d fracture output is shown in Fig.11 using Df = 1.4, I = 76.5, with an initial covering of 

800. 
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Continuing i i t h  the generation of the horizontal Fracture set the program enters 
the repeat ... trntil loop shown directly above the 

dotted line in Fig.8 and increments the counting 

variable G2 (initially = 0) to the value of 1. The 

loop executes the: 

GENERA TE-HORIZONTAL-FRACTURES 

procedure to produce a vertical Fracture set for 

each value of the grid step in the x direction. 

Fig. 12 shon-s the procedure flowchart: 

In the first iteration 

(G2=1) the procedure 

assigns a length 

Fig. 11. l d  fracture generation output (extension in the x- 
using Robert Pietsch data. 

direction) to each 

To obtain the Fracture length we assume a Fracture site. 

probability density fbnction given by 

(3 1 I - Dl 
p ( L ) = A L  ? 

where L is the Fracture length and A is a constant. The 

probability that a given Fracture will have a length 2 L' 

(greater than 2 arbitrary units) is then given by the distribution . 
hnction: 

BEGIX 
7 

if G2= 1 then 
begin 

, Asstgn-Fracture-Lmgths - end 
7 

duplay the fracwes 'on screen 
7 

if GZ.1 then 

Count-Ended-Fractures 
display the fractures on screzn 

7 
if n d c d  > 0 then 

* begin 

- begin 
: Add-needed-fradura 
; .~sign_New._Fracture_tengths 

end 
7 

end 
7 

END 

(according to the distribution), the constant A is determined fiom 

so that 
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Substituting (6) into (4) then gives 

(7) 

Generating a random number sj between o -+ I (labeled as s3 in the 

ASSIGN - FRACWRE-LENGTHS procedure) and then setting this equal to (7), we can 

solve for the length L' to obtain: 
I .,( 1 - ( & - ) ( 2 - D f )  

Next, we generate a second random number s, between o -+ I and calculate the final 

fracture length from 
L = s4 L ' .  (9) 

In this way, the fracture sites are assigned lengths in the horizontal direction. Using the 

parameters D, = 1.5, I = 2.7, and R, = 16 we obtain 29 fractures with 6 ~2~ = 128 rulers 

after 3 generations giving the output shown in Fig. 13. 

Referring to Fig. 6 we notice that to the left of L z 14 (linear regime) the length 

assignments may be made using the procedure outlined above. To the right of L r 14 

(exponential ctitoffi we have a non-linear distribution and so we must use: 

(10) 0 oJ7L P , ( L )  = 129e- 

To incorporate the data from region 11 into our fracture generation program (while 
avoiding having to solve a non-linear hnction for L') we are modifLing the program by 

reading in the values fiom (3) and (10) into an array for each fracture length L' between 2 
and 100. Generating a random number between 2 and 100, we can then determine the 

corresponding fracture length fiom the array. 

At the next iteration, G2 is greater than 1 and the program will step forward by a 

specified amount in the x-direction ( = (G2 - 1) x step) to determine (using the previous 

length assignments) how many fractures extend past this point. If fractures have ended, 
new fracture assignments must be made to maintain the distribution in (2). The number of 

fractures that have not crossed the grid point are counted by the procedure 



COUNT - ENDED - FRACTURES and stored in the variable needed. If fractures have 

ended, the procedure ADD - NEEDED-FR4CTUR.L-S is called as shown in Fig.12. To 

guarantee that the new Fracture 
- _- - assignments produce a Fractal 4J2 ,p------- __-- 1 
s li: c I----.--- distribution, we must reverse the ' t 

ruler doubling process and reassign 
250 

fractures that have crossed the ' 290 

specified grid point to half as many 

rulers used in the final step of the 

, 393 

a 

P 

f : 3 5  

:: 4 :  6: 1 3  ::i ::: .d: 
; 
I - initial 1-d fracture generation -dpoana .dtc l irr  NUJ - 

process. The unoccupied fracture Fig. 13. Lengths are assigned to the initial fracture 

sites are then assigned new fractures set. 

following the same procedure described for the initial fracture generation. 

After new fractures have been added (beginning from x = (G2 - 1) x step) the 

ASSIGN NEW FRACTURE LENGTHS procedure uses ( 8 )  and then (9) to determine their 

length. The x, and x, coordinates (endpoints) for each of the fiactures are stored in the 

arrays LfxI[i] and Lfx2[jJ and the whole process continues until the distribution is 

generated for the specified number of 

horizontal site locations. The 

endpoints of the fiactures along with 

their vertical position are written to 

the file FRACT-l.DAT for each 

value of the gridstep x given above 

by the 

DISPIA Y-FRAC-mENSIONS 
procedure. The output is shown in 

Fig.14 . The parameters used were 
Fig. 14 Horizontal fracture outcrop 

Df = 1.5, I = 2.7, and R ,  = 16 which were determined from the MWX outcrop using the 

box counting procedures described in a previous section. 
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To generate the vertical fracture set \ve first generate a fracture distribution along 

each of the horizontal fractures by applying our I-d generation algorithm to each fracture 

in the datafile FRACT - I.DAT. Since the horizontal fracture positions were previously 

stored at each value of the gridstep, a fracture crossing N gridpoints is stored ii times by 

the D1SPf.A Y-FRIC-LYTEVSIONS procedure. Therefore, before we can assign vertical 

fractures along each of the horizontal fractures we 

must first eliminate ail duplicate fractures from the 

data set. This is accomplished by the 

EIJitIIXA TE-RED U'DA N T-FRA C TC /RES 
procedure listed below the dotted line in Fig.8. The 

result of this operation is stored in a new file: 

FRACT-2.DAT. M e r  obtaining a unique set of 

horizontal fractures we reinitialize our variables by 

reading in the FRACT-2.DAT values with the 

READ - FRAC _ _  2 DATA procedure as shown in Fig.8. 

Starting in the upper left hand comer of Fig. 14 

and proceeding downward vertically, the program 

produces a fractal distribution (using a parameter set 

determined from the vertical fracture data) along the 

first fracture in the data set. In our-model we assume 

that vertical fractures can only begin or end along a 

horizontal fracture. In this case, we need only find the 

BEGIN 
T 

for i:O to R2-1 do 

1 
if (;lfrocrwe sire IS ocmped) then 

'I =tf>l[l'I 
XI1 -1.h I [I21 -Lu*c- 1% 2 

- begin 

____- begin 

sort-fractures 
! choosc_thc_nc~_frcture_below 
! rernrrrake rhe array varwbles 

1 it(nor ar/racmre boundar)) then 

i r k ~ m  2;:acrure 
1 'wire rr lofiac-3 darfi!e 

A v 
, 

end 

: -----end 

- -4- end 
1 

T 
END 

Fig. 15 Procedure flowchan for 
.~SSIG.~_LE.~GTH.S-TO-FR~ CTC: 

RES-A LO.1'G-FR-1 CTi*RES. 

next horizontal fracture below each vertical fracture site to determine the fracture 

endpoint and therefore its' length. To begin the process the program enters the for loop 

below the READ-FMC-2-DATA procedure in Fig.8. If the it-th horizontal fracture has 

a length greater than a certain number of units, the program executes the 

GENERA TE - FRACTURES_ALONG-FMCTURES procedure to generate a fracture set 

along the i2-th fracture. The flowchart for this procedure is completely analogous to the 

flowchart given in Fig.9 except that in this case we use a slightly different I-d fracture 
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generation procedure (GENERA TE-ID-FMC~TUES2) to incorporate the vertical 

fracture parameters and new fractal distribution fbnction. 

M e r  producing a fracture distribution along the i2-th horizontal fracture, the 

program executes the 

.-I SSIGV-L E.VG THS-TO-FR-I CTC ‘RE.5-A LO.\.%-FR-I CTCR E.$ procedure whose flowchart is given 

in Fig.15. The outer for loop in the procedure scans through all rulers of the fracture 

distribution just produced by the GENERATE FRACTURES ALONG FRACTURES 
procedure. If a fracture 

site is occupied then the 

vertical position of the 

horizontal fracture is 

stored in the variable 

y l .  The location of the 

fracture along the i2-th 

horizontal fiactures’ 

length is then stored as 

.ql. Now that we have 

the x and y values of 

the vertical fractures’ starting point - we scan the fracture set (using the SORT 

FRACTURES and CHOOSE-THE-Nm- FRACTUE-BELOW procedures) to find the 

vertical position of the next horizontal fracture beneath our given fracture. This position 

is then stored as y2. I f  the value ofy2  corresponds to a fracture within the boundaries of 

the network (and not at an adjacent grid site starting at the top of the screen) then the 

vertical fiacture is displayed and its’ position stored in the file: FMC-3.DAT. The 

program terminates when the horizontal fiactures have been scanned and vertical fractures 

are generated along their lengths. Using the identical parameters that were used for 

Fig.14 along with the parameters Df,,wmcd = 1.2, fwbcd = 1,  and R,.wrircd = 4; we obtain the 

output shown in Fig. 16 which may be compared with the MWX data in Fig. 1. 
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Conclusions & Future Work 
To model the fracture outcrop networks occurring in naturally fractured tight-gas 

reservoirs we have taken an approach that incorporates: 

A) Fractal .4nalvsis of Available Data: 
We characterize the h W X  fracture data using four parameters (for the distribution of 
both horizontal and vertical fractures): i) Lacunarity, ii) Fractal Dimension, iii) Initial 

Covering Scale, and iv) Cutoff - determined from the distribution of fracture lengths. 

B) Fracture Generation: 
We generate self-similar fracture networks using data from I.) with an algorithm that 

incorporates fractal geostatistics. 

From our work we have found that there are several advantages in an approach that uses 

fractal statistics: 

i) The networks produced by our model appear to be in agreement with actual 

fracture networks but do not require extensive apriori knowledge of the network. Using 

data from isolated borehole sites we can generate entire networks with an algorithm that 
assumes a self-similar or scale invariant geometry. 

ii) We are able to generate horizontal and vertical fractures separately (although 

not independently) using distinct parameter sets in each case. The fractures can then be 

analyzed and combined later to produce complete self-consistent networks. 

iii) Since the data is generated using a statistical approach, the algorithms require 

relatively little computer time to produce complete networks 

iv) Evidence suggests that real fiacture networks obey fiactal statistics. 

The characterization and analysis of the network data produced by our algorithms is not 

yet complete. By varying other parameters such as gridsize, fracture length, and the 

horizontaVvertical orientation of fractures, we believe that it will be possible to generate 

fracture distribution patterns that are ‘optimally similar’ in the fractaVstatistica1 sense - to 

real fracture networks occurring in nature. 

Currently we are analyzing the distribution of fractures along horizontal boreholes 

in the Austin Chalk and fracture lengths from nearby outcrops. The results fiom this 
analysis will be used to produce simulated fracture networks. 
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Appendix A: Program Listing: 2 d j  
(Pascal Sozrrce,* 670 lilies 

PROGRAM td-fiac2; {--- Progrum declaration -1 

USES crt7graph; {--- Libraries that will be used --] 

TYPE 
ruler=array[ 1. .2,1. .8 1921 of inteser; 
one-d-array=array[ 1.. 16001 of real; 

VAR {--- C'ariables are explained as rricountered --) 

Nac.pas 

compiled and developed using Borland - Turbo Pascal Version 7.0 under DOS 6.22 on a 486DX2-66 
with 16MB of memov. The fracture network figures were produced with .\fathemafica ver. 2.2.1 running 
under Windows 3.11. 
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u, 
Y-steP, 
One-d-Generations, 
One-d-Generations2. 
Two-d-Generat ions: 
L 
temp, 

xf2, 
cx, 
CY, 
SX, 

SY 3 

k 
1Y 7 

Lf, 
s3, 
s4, 

integer; 
:ruler; 

Yl 
SI, 
s2, 
Y l ,  
Y2. 
y3, 
Lacunarity, 
Lacunarity2, 
Fractal-Dim, 
Fractal-Dim2, 
f-lenth 
L f i l ,  
L f a  
LfYl 
xl ,  
x2, 
Fractures, 
Resolution, 
Gnumber, 
Covered 
datafile, 
datafile2, 
datafile3 
write1 
write 

:real; 

:one-d-array; 

: string[6]; 

:text; 

:boolean; 
:string[ 1); 
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FUNCTION N(d:integer):integer; 
horizor ial fract irres---) 

f--- This jirrtctiort gh-es the distribution of the 

BEGIN 

END; 
N:=Round( Lacunarity*Exp( (Fractal-Dim- 1 )*ln(d) ); 

FUNCTION N2td:integer):integer; /--- This firiiciiori gives the distrihiiiioii of the 
verlical fractures-) 
BEGIN 

END; 
N2:=Round( Lacunarity2*Exp( (Fractal-Did- 1 )*ln(d) ) ); 

PROCEDURE initialize; {- htitia f i x  graphics screeti aid scaling 
parameters --1 

BEGIN 
clrscr;randomize;G:=O;G2:=0; 
Magnif:=3;count_f:=O; 
c 1 :=detect;c2:=0;initgraph(c 1 ,c2,'c:\tpBGI'); 
setbkcolor(3); 
SetFillStyle(EmptyFiI1,O); 
nl:=8; write1 :='O';wnte:=false; 
cx:=l OO;cy:=100*(getmaxy/getmaxx); 
sx:=50; { g e t m d n  1 ; } sy :=O. 8*getmaxy/n 1 ; 
settextjustifjr(centertext,centertext); 
ou ttextxy(trunc(getmaxx/2), 10,'2-D Fractures'); 
delay( 1000); 

END; 

PROCEDURE display - initial - -  frac data; {-- Uisplq  rwriotrs pmamezers oti-screett ---) 
BEGIN 

k:=O; 
for i:=l to R do 

begin 

end; 
if L[f,i]=l then k:=k+l; 

setcolor(4); 
outtextxy(Trunc(0.1 *getmaxx),Trunc(0.95 *getmaxy),'Rulers ='); 
outtex-xy(Tmnc(0.14*getmaxx+22),Trunc(O.98*getmaxy),'Starting Fractures =I); 

outtextxy(Trunc(O.l4*getmaxx+ 13),Trunc(0.92*getmaxy),'Initial Covering =I); 

str(R.,Resolution); 
str(k,Fractures); 
setcolor( 15); 
outtextxy(Trunc(0.175*getmaxx),Trunc(O.95 *getmaxy),Resolution); 
outtextxy(Trunc(0.3 1 5 *getmaxx),Trunc(0.98*getmaxy+O),Fractures); 
str(Ri,Resolution); 
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ou ttek?xy( Tru nc(O.2 9 5  *getmaxu), Tru nc( 0.92 *ge tmaxy),Resolu tion); 
END; 

PROCEDURE generationqanty; {-- Delertniire if6 is odd or e w r  --) 
BEGIN 

begin 
e:= 1 ; 
f=2; 

if (Gi2-trunc(g/2)) >O then 

end; 

begin 
e: =2; 
f = l ;  

if (G/2-trunc(g/2)) =O then 

end; 
. END; 

PROCEDURE display-1 d-fractures; /--- Display Fract. alotigy at aprevioirs Gen. ---) 
BEGM 

ly :=O. 7 *get maxy/R; 
for i:=O to R-1 do 

begin 
if (i/2-trunc(i/2)) >O then setcolor(9); 
if (i/2-trunc(i/2)) =O then setcolor( 12); 
line( trunc( sx), trunc(cy+ly *i), 

trunc(sx).tn1nc(cy+ly*(i+0.95))); 
if (L[e,i+l]=l) then 

begin 

end; 
put pixel(trunc(sx),trunc(cy+ly*i+ly/2), 1 5); 

end; 
END; 

PROCEDURE display- 1 d-fiactures2; {--- Display Fract. aloirgy at thefitral Gen. ---) 
BEGIN 

ly :=O. 7 *get maxy/(2 *R); 
for i:=O to 2*R-1 do 

begin 
if (i/2-trunc(i/2)) >O then setcolor(9); 
if (i/2-trunc(i/2)) =O then setcoIor(l2); 
line(trunc(sx),trunc(cy+Iy*i), 

trunc( sx), trunc( cy+ly * (i+O. 95))); 
if (L[ci+l]=l) then 

begin 
putpixel(trunc( sx),trunc(cy+ly*i+ly/2), 1 5);  

24 



end; 
end; 

END; 

PROCEDURE display-Id-fiactures3; {-- niis hacks tip to R 2 aridshows Lfe,i/ --) 
BEGm 

ly : =O. 7*getmauy/(R/2); 
for i:=O to trunc(R/2)-l do 
begin 

if (i2-tnrnc(i2)) >O then setcolor( 13); 
if (i/2-trunc(i/2)) =O then setcolor(4); 
line(txunc( sx- I S ) ,  trunc( cy+ly *i), 

if (L[e,i+l]=l) then 
trunc(sx- 1 S),trunc(cy+ly*(i+O.95))); 

begin 

end; 
putpisel(trunc(sx- 1 S).trunc(cy+Iy*i+ly/2), 15); 

end; 
END; 

PROCEDURE display - 1 d-fiactures4; {--- Show fractures by pixel at each Gen. ---) 
BEGIN 
ly:=0.7*getmq/(R); 
forj:=O to R-1 do 
begin 

if (j/2-trunc(j/2)) >O then setcolor(9); 
if (i/2-trunc(j/2)) =O then setcolor( 12); 
line(trunc(sx+(G2- 1 )*Step *Magnif), trunc(cy+l y *j), 

if (L[fJ+l]=l) then 
trunc( sx+( G2- 1 ) * Step*Magni f),trunc(cy+l y * G+O. 95))); 

begin 

end; 
putpixel(trunc(sx+(G2- 1 )*Step* Magnif), tmnc(cy+ly*j+ly/2), 1 5); 

end; 
END; 

BEGIN 
PROCEDURE display - fracturesjl ; {--- Show fractures at a previoiis stage ---I 

Ix:=Abs(LW[i2]-Lfk 1 [i2])/(R2); 
for il:=O to R2-1 do 

begin 
if (i1/2-trunc(i1/2)) >o then setcolor( 1); 
if (i 1/2-trunc(i 1/2)) =O then setcolor( 1); 
line(trunc(sx+(Lfkl [i2]+Ix*i I)*Magnif+3) ,trunc(Lfyl[i2]), 

if L[e,il+l]=l then 
trunc(sx+(Lfk 1 [i2]+lx*(i 1 +0.95))*Magnif+3),trnc(Lfy 1 [iz])); 
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begin 

end; 
putpisel(trunc(sx+(Lf>c I [i2]+lx*i 1 +ld2)*Magnif+3), trunc(Lfj.1 [i2]), 1 5) ;  

end; 
END; 

PROCEDURE display-fracturesj2; 

Ix: =Abs(Lfk2[i2]-Lfx 1 [i2])/(2 *E); 
for il:=O to 2*R2-1 do 

BEGM 

begin 
if (i1/2-trunc(il/2)) >O then setcolor(1); 
if (il/Z-trunc(i1/2)) =O then setcolor( 1); 
line(trunc(sx+(Lfk I [i2]+lx*i l)*Magnif+3) 

if L[f,il+l]=l then 

,trunc(LfyI [i2]), 
trunc( sx+(L& 1 [i2]+1x* (i 1 +O. 9 5))* Magnif+3), trunc(L@ 1 [i2])); 

begin 

end; 
putpixel(trunc(sx+(L&l [i2]+lx*i I+lx/2)*Magnif+3), trunc(Lfy1 [i2]), 15); 

end; 
END; 

PROCEDURE display-fiac-extensions; 
BEGM 

ly:=0.7*getmaxy/R; {-- ntis gises the nder ietigths iti the y-direc. ----) 
if g2=1 then {---Create dataJiiefLact-l.dat ---) 

begin 
assign(datafile,'c:\tp\files\FRACT- 1 . D AT'); 
rewrite(datafi1e); 

end; 
B ar(tru nc( sx+490), trunc( cy), trunc(getmax..), t runc( cy+3 40)); {--- Erase old data 

from the screen --1 
for i:=O to R-1 do 

begin 
if (L[ci+l]=l) then 

begin 
count-f=count f+ 1 ; 
str((g2-1 ),Gnuiber); 
Lfy I [i+ l]:=cy+ly*i+ly/2; 

writeln(datafile,Lfxl [i+l 
fract- I .  dat ---I 

setcolor( 1); 

3:2,' ',LW[i+ ]:3:2,' ',Lfy 

line(trunc(sx+L& 1 [i+ 1 ]*Magnif+3),trunc(Lfy 1 [i+ 1 I), 

trunc(sx+Lfk2[i+ I ]  *Magnif+3), trunc(Lfi 1 [ i+ 1 I)); 
on screen --1 

[i+l :2 ); {---write to 

{-- display the fractures 
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setcolor(8); 
if (G2- 1)>0 then f--- Draw the pidliiies 011 the screen ---I 
line( trunc( sx+( G2- 1 )*Step * Magnif), trunc(cy), 

trunc( sx+( G2- 1 )* Step*Magnif),trunc(cy+ly*(R- 1 )+ly/2)); 
if Step>=lO then 

set color( 8); 
str((g2- l)*step,Gnumber); 
outtextxy( trunc( sx+( G2- 1 )* Step*Magnif+O),trunc( cy-20),Gnumber); 
str((g2- 1 ),&umber); 
outtextxy(trunc( sx+( G2- 1 )* S tep*Magnif+O),trunc(cy+345),Gnumber); 

(--- Pritit the grid values oti the screeti -1 
begin 

end; 
end; 

end; 
END; 

PROCEDURE generate-1 d-fiactures; {--- I - d  Algorithm - Generates F'ertical 
Slices alorig x--1 

BEGIN 

begin 
for i:= 1 to R do {-- Divide Measiritg Scale and Bring down Fractures --I 

if L[e,i]= 1 then {- /ffLacttires are preserit, addfiactzires belou -1 
begin 

forj:=l to 1 do 
begin 

s: =random( 2)+ 1 ; 
if s=l then 
begin 

L[f,2*i-1]:=1; 
L[f, 2 * i] : =O; 

end; 

begin 
if s=2 then 

L[f,2* i- 1 ] :=O; 
L[f,2*i] :=l;  

end; 
end; 

end 

begin 
else {-- If no fiactwes are present, add spaces --] 

L[f,2*i-l]:=0; 
L[ f ,  2 * i J :=O; 

end; 
end; 
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for i:=l to (N(2*R)-N(R)) do {------ Ad’fractitres accordiiig to distribtrtirtiori ---) 
begin 

repeat 

until (L[e,s]=l) and not ((L[E2*s-I]=1) and (L[f,2*s]=l)); 
s:=random(R)+ 1 ; 

if L[f,2*s-l]=l then L[f,?*s]:=l else L[f,2*s-l]:=l; 
end; 

END; 
PROCEDURE generate-1 d-fiactures2; 

BEGIN 

begin 
for i:=l to R2 do {-- Divide Meastrrirrg Scale mid Bring down Fractures --) 

if L[e,i]=l then {-- Iffractures are present, addfiactures below. -) 
begin 
forj:=l to 1 do 

begin 
s:=randorn(ll)+l; 
ifs=l then 
begin 

L[f,2*i- 1]:=1; 
L[f,2*i] :=O; 

end; 

begin 
if s=2 then 

L[f2*i-l]:=O; 
L[f,2*i] := 1; 

end; 
end; 

end 

begin 
else {-- /fno fractures are present, add spaces ---) 

L[f,Z*i- 1]:=0; 
L[ f,2*i] :=O; 

end; 
end; 

for i:=l to (N2(2*R2)-N2(R2)) do {--- AddfLactrrres ----I 
begin 

repeat 

until (L[e,s]=l) and not ((L[f,2*s-l]=l) and (L[f,2*s]=l)); 
s:=random(RZ)+l; 

if L[f,2*s-l]=l then L[f,2*s]:=l else L[f,2*s-1]:=1; 
end; 

END; 
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PROCEDURE Assign-Fracture-Lengths; {- Assign Ierigths to hori:o~ttalfiacrr(res---) 
BEGM 

begin 
if G2= 1 then {---- Assign initial lengths to fracttrres --] 

for i:=l  to R do 
begin 

if L[f,i]=l then 
begin 

s3 :=(random( 1 OO)+ I)/ 100; 
Lf=Exp((2/3)*Ln( (Exp( 1.5*Ln( 100))-Exp( 1.5*Ln(2)))*s3 )); 
s4:=(random( 1 OO)+ 1)/100; 
Lfi 1 [i] :=O; 
Lfx2[ i] : =s4* Le 

end; 
end; 

end; 
ESD; 

PROCEDURE Count-Ended-Fractures; 
ended-) 

BEGIN 

begin 

{-- corirtt horizorttal fiactures that have 

for i:= 1 to R do {---- If a fiactrire has ended, cozint it --- ) 
if (L[Ei]=I) and (Lfx2[i]<(G2-l)*Step) then 

begin 
needed:=needed+ 1 ; 
L[ f i] :=O; 
L f i l  [i]:=(G2- I)*Step; 
Lfx2 [ i] :=O; 

end; 
end; 

END; 

PROCEDURE Display-Grid-info; {-- display grid values oil screen---) 
BEGIN 

str(needed,Gnumber);ou ttextxy(trunc( sx+(G2-2) * S tep*Magnif+7), trunc(cy- 
40),Gnumber); 

setcolor( I 5);outtextxy(trunc(22),trunc(cy-4O),'Need:'); 
outtextxy(trunc(22), trunc(cy-20),'Grid: 7; 

, END; 

PROCEDURE Add-needed-fractures; {---add horizontalfractrrres that have ended ---) 
BEGIN 

for i:=l to needed do 
begin 
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repeat 
Bar(tmnc( sx-4 5) ,  tmnc(cy- 1 0). 

trunc(sx-20),trunc(cy+3 3 5 ) ) ;  
s: =random(round(W2))+ 1 ; 
str( s,resolution);setcolor( 1 4); 
outtextxy(trunc(sx-3O),Trunc(cy- 1 7~ly*2*s).resolution); 

until (L[e,s]=l) and not ((L[f,2*s-l]=l) and (L[f.Z*s]=l)); 
if L[f,2*s-l]=1 then 

begin 
L[f, 2 *SI : = 1 ; 
Lfk 1 [ 2*s]:=(G2- 1 )*Step; 

end 

begin 
else 

L[f,2*s- 1 I:= 1 ; 
LEV1 [2*s-l]:=(G2-1)*Step; 

end; 
display-1 d-fiactures4; {--- show the new fracture positioris CIS they are added --I 

end; 
END; 

PROCEDURE Assign-New-Fracture-Lengths; {-- Assign lengths to naufractures --I 
BEGIN 

for i:=l to R do 
begin 

if (L[f,i]=l) and (Lfxl[i]=(G2-l)*Step) then 
begin 
sj:=(random( 100)+1)/100; 
Lf=Exp((2/3)*Ln( (Exp( 1.5*Ln( 100))-Exp( 1.5*Ln(2)))*s3 )); 
s4:=(random( 100)+1 )/I 00; 
LW[i]:=(G2-l)*Step + s4*Lc 

end; 
end; 

END; 

PROCEDURE generate-horizontal-fiactures; 
fracture set ---I 

{-- procedirre for generating horiz. 

BEGIN 
needed:=Q; {--- Iiiitialize this variable for the next geiieratioii ---I 
if G2= 1 then {---Assig?r@acture Ieiigths for the initial gerieratiort --] 
Assign-Fracture-Lengths; 

display-frac-extensions; 
display-1 d-fiactures4; 
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if G2>1 then 
begin 
Count Ended-Fractures; 
Display Grid-info; 
display1 d-fractures3 ; 
display-1 d-fractures4; 
if needed>O then 
begin 

Add-needed-fiact ures; 
Assign-New-Fracture-Lengths; 

end; 
end; 

END; 

PROCEDURE generate-iitiaI-fracture-set;; 
BEGIN 

begin 

end; 
G:=O; 
repeat 

for i:= 1 to Ri do {--- Set thefirst Level Fractures --I 

L[ l,i]:=l; 

{--- start I-d fractirre generalion -------I 
{----- G Cowrts the Generations -------) 
{--- is G odd or evert ? ---------------- 1 

G:=G+l; 
generationqarity; 
generate - -  1 d fractures; {---- Algorithm ------------- 1 
display I d-fractures; 
display-1 - -  d fractures2; 
R: =2*R; {-- doirble the scde resolictioit --I 

until G=One - -  d Generations; {--- erid of Id loop --I 
END; 

BEGIN 
reset(datafi1e); 
m:=O; 
while not Eof(datafi1e) do {-- Read iri values and cotriit how manyfi.omflact-l.dat- 

PROCEDURE Eliminate-redundant-Fractures; 

-1 
begin 

m:=m+ 1 ; 
readln(datafile,Llk 1 [m ],LW[m],Lfyl [m 1); 

end; 
close(datafi1e); 
for i:=l to m do 

begin 
if Lfyl[i]O(-l) then 

begin 
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forj:=l to m do 
begin 

if ( ioj )  and ((Lfk 1 [i]=Lfk I ti]) and (Lf;t2[i]=LfXCj]) and (Le 1 [i]=L@I li])) 
then 

Lfy 1 J :=- 1 ; 
end; 

end: 
end; 
Assign(datafile,'c:\tpViles'$RACT-2.DAT'); {---Create file of tiiiiqiie fractures---) 
Rewn te(datafi1e); 
for i:=l to m do 

begin 
if Lfy I r i le(-  1) then 

begin 
writeln(datafile,Lfi l[i]:3:2,' ',Lfjrl [i]:3:2,' I. 

LW[i ]:3 2,' ',L@ 1 [i] : 3 2); 
end; 

end; 
close(datafi1e); 

END; 

PROCEDURE Generate-Fractures - Along - Fractures; {-- assign fracizires aloitg horiz. 
fraciiires-) 

BEGIN 
R2:=Ri2; 
for i:=l to R do 

G:=O; 
L[ 1 ,i]:= 1; 

{-- Sei the firsi Level Fraciures --) 

repeat 
G:=G.  1 ; 
generationqarity; 
generate-l d-fractures2; 
display-fiacturesj 1 ; 
display-fiacturesj2; 
R2 :=2 *R2; 

until G=One-d-Generations2; 
END; 
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PROCEDURE Switch(Var a,b.Real); {--- n7is is rised in the sortirig procedure ---I 
Var 
c:real; 

BEGIN 

a:=b; 
b:=c; 

END; 

c-=a. - ,  

PROCEDURE Sort - fractures; {--- sort the fractiires fo assign vertical fiacttrres to next 
otir below -1 

i3j4:integer; 

for i3:=2 to u do 

Var 

BEGIN 

begin 
for i 4 : q  DownTo i3 do 

begin 
if (Lfirl[i4-1]>Lfyl[i4]) then 

begin 
Switch( LQl[i4], Lfyl[i4-1] ); 
Switch( Lfxl[i4], Lfxl[i4-1] ); 
Switch( Lfx2[i4] , Lfk2[i4-I] ); 

end; 
end; 

end; 
END; 

PROCEDURE Choose-The-Next-Fracture-Below; {--- Go through sorted Iist --I 
VAR 
i5 :integer; 
BEGIN 

i5:=0; 
repeat 

i5:=i5+1; 
until (Lfyl[i5]>yl) and (xfl>=Lfkl[i5]) and (xfl<=LfX[iS]); 
y2:=LQl [is]; 

END; 

PROCEDURE Read-Fract-2-Data; 
VAR 

i5 :integer; 
BEGIN 
i5:=0; 
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reset(datafi1e); 
while not Eoqdatafile) do 

/--- dataflie is Frac - 2.daf ----) 

begin 
iS:=iS+I ; 
readln(datafile,Lk 1 [i5].L@l [iS],Lk2[iS],L@l [i5]); 

end; 
u:=i5; 
close(datafi1e); 
END; 

PROCEDURE Assign-Lengths-to-Fracts-Along-Fracts; 
ver f icai fractures -) 

. BEGIN 

begin 
for i:=O to R2-1 do {--Assign lengths tofractures ---I 

if L[f,i+l]=I then 
begin 

y l  :=Lfyl[i2]; 
lx:=Abs(LW[i2]-Lfi 1 [i2])/(R2); 
xfl :=L& 1 fi2]+1x*i+l.d2; 
xf2: =LW[ i2] +Ix * i+l;u/2; 
Sort-Fractures; 
C hoose-The-Next-Fracture-Below; 
setcolor( 1); 
Read-Fract-2-Dat a; 
if (y2>=0) and (y2<=500) then 

begin 
Line(Trunc(sx+(xfl ) *Magnif+3),Trunc(y 1 ), 

Append(datafile3); 
writeln(datafile3,xfl:3:2,' ',yl:3:2,' I, 

close(datafile3); 

Trunc( sx+(xfl ) *Magnif+3),Trunc(y2)); 

xfl:3:2,' ',y2:3:2); 

end 
else ~ 2 7 1 ;  

end; 
end; 

END; 

{- generate arid display 

PROCEDURE writegrogramgarameters-to-file; {--- make a akztaflle of the 
parameters used --] 

BEGIN 
Assign(datafile3 ,'c:\tpVilesVr-text .dat'); 
Rewrite(datafile3); 
writeln(datafile3,Lacunarity:3 :2,' ',Lacunarity2:3:2,' I, 
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Fractal Dim:3:2,' ',Fractal_Dim2:3:2,' '. 
Step,' ',One_d_Generations,' ',One_d_Generations2); 

close( dat afile3); 
E m ;  
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BEG IN 
initialize; 

f------- The Progranr starts here, arid executes the procediires-------- 1 

writeqrogamqarameters-to-file; 

generate - initial - fracture-set; 

display-initial-fiac-data; {--- disp1n)-s iiiitial program ii fo ----I 

G2:=0; {-- initialize G2 -1 
REPEAT {---- Start 2dpactrire geiieratiori ------I 

G3:=G2+ 1;  
generate-horizontal-ftactures; 

UNTIL G2=Two - -  d Generations; 

close(data file); (--- DataJile is I->ac - I .dit .  coirtaiiiiirg the eircjpoiiiis of the hori:oiital 
juctiires ---I 

Eliminate-redundant-ftactures; {--Remove duplicate fmcturesfrom frac-ldat and save as frac-2.dat - 
-1 

Read-FractZ-Data; {---Reiiitialize variables nith tiiiiqrie fracture rwhies ---) 

Assign(datafile3,'c:\tp\files\fract-3 .dat'); {-- Create the datafile: fmct-3.dat io store vertical 
Jractures ---I 

Rewrite( d atafile3); 
close( dat afile3); 

for i2:=1 to u do (--- ii is the totd ritiniher of horizonial fracitires ---) 
begin 

if Abs(LfX?[i2]-Lfx 1 [i2))>=20 then [- smrt verricaifiactwa onlv aiong borizon./ractrcres wrb [engtb 2 
30 units -} 

begin 
Generate-Fractures-Along-Fractures; 
Assign - Lengths-to-Fracts - Along-Fracts; 
end; 

end; 

setcolor( 14); 
outtextxy(trunc(0.8*getmaxx),20,'Done.'); 

fiiiished ---) 
readln; 
closegraph; {--- exit from graphics mode -1 

{ I------ Program ends here --------- I 

{-- Priiit a message that the program is 

{--- wait trritil a key is pressed ---I 

END. 

36 


