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Comparison of Simplified and Standard Spherical Harmonics 
in the Variational Nodal Method 

E. E. Lewis & G. Palmiotti 

Recently, the variational nodal method has been extended through the use of the 
Rumyantsev interface conditions1 to solve the spherical harmonics (PN) equations of arbitrary 
odd order.:! Here, we generalize earlier x-y geometry work3 to fit the corresponding simplified 
spherical harmonics (SPN ) equations into the variational nodal framework. Both PN and SPN 
approximations are implemented in the multigroup VARIANT code at Argonne National 
Laboratory in two- and three- dimensional Cartesian and hexagonal geometries. The availability 
of angular approximations through P5 and SP5, and of flat, linear and quadratic spatial interface 
approximations allows investigation of both spatial truncation and angular approximation errors. 
Moreover, the SP3 approximation offers a cost-effective method for reducing transport errors. 

The even-parity SPN approximations are derived by first writing the slab geometry PN 
approximation for odd order N. Let y and x be vectors of length (N+1)/2 of the even and odd 
parity flux moments. Then 

. 

and 
a 
ax 0-y + B x = 0 ,  

where bi= 6,i and E and 0 are two-striped lower and upper triangular matrices, respectively. 
The even parity equation obtained by eliminating x is then 

where H = E 0, and y and x are related by 

--H-v=Ex. l a  
ax 

a -  The SPN equations are obtained simply by letting - -> V and allowing y and x to become 
functions of the x, y and z. Thus 

ax 

- -1 V$JY - W + w= b[o,@ + S] 

and 

The following functional may be shown to have Eq. 1 as its Euler Lagrange equations 
within the node and Eq. 2 as an interface condition 



From here on, the procedure is the same as published prvieously.4 Spatial polynomial 
approximations are used for \v and x ; a Ritz procedure is applied, and the resulting equations are 
cast in response matrix form. 

Studies have been undertaken to compare the relative performance of SPN and PN 
approximations in two and three dimensions. In model fmed-source problems SPN closely 
mimic the corresponding PN solutions where large numbers of interfaces are not present. In 
criticality roblems, the results shown in Fig 1 for the “rods-in” Takada Benchmark 11 in x-y-z 

truncation errors - which may be isolated by comparing fiat, linear and quadratic interface 
conditions with the same angular approximation - are .found to be positive. Errors attributable to 
the angular approximations - which may be isolated by comparing the spatially converged 
quadratic approximations - are negative. Thus, in some configurations, going from a lower to a 
higher order space or angular approximation may produce an accuracy loss as a result of the 
decreased error cancellations. 

geometry P are indicative of the eigenvalue errors which are found. In all  cases studied the spatial 

Other general observations are that space and angular approximations interact more 
strongly in PN approximations, necessitating the refinement of the spatial approximation in 
tandem with increased PN order. Conversely the accuracy of the SPN approximations saturate as 
a result of the angular moments which are not included. The SP3 approximation frequently offers 
substantial increases in accuracy at roughly double the cost of a corresponding nodal diffusion 
calculation, while full PN calculations are substantially more expensive. On an IBM rs6000 the 
CPU times for the results in Fig. 1 were 78,148 and 916 sec. for the PI, SP3 and P3 calculations 
with linear interface conditions. 
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Figure 1. Eigenvalue EKOE for the “Rods In” Takada Benchmark II 
(reference k = 0.95954) 


