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A Case Study in Automated Theorem Proving: 

A Difficult Problem about Commutators 

by 

William McCune 

Abstract 

This paper shows how the automated deduction system OTTER was used to 
prove the group theory theorem 

x3 = e 3 [[[Y, z ] ,  u ] ,  = e ,  

where e is the identity, and [z,y] is the commutator z'y'zy. This is a difficult 
problem for automated provers, and several lengthy searches were run before a 
proof was found. Problem formulation and search strategy played a key role in 
the success. I believe that ours is the first automated proof of the theorem. 

1 Introduction 

The automated theorem prover OTTER [l] is not always easy to use. Version 3.0.0 of 
OTTER (and later versions) has an autonomous mode that allows the user simply to 
assert a denial of the theorem or conjecture; the program then formulates a simple 
strategy and searches for a refutation. The autonomous mode is sufficient for many 
easy theorems and some moderately difficult theorems, but more difficult theorems 
usually require some guidance from the user. Very little has been written about the 
kinds of guidance that can be given to the program and how that guidance is specified. 
This paper shows how such guidance was provided in one case, a difficult theorem 
about commutators in group theory. 

Let GT stand for an axiomatization of group theory in terms of product, identity, 
and inverse, for example, {ex = x , d x  = e, (zy)z = ~ ( y z ) ) .  The fodus of this paper 
is the theorem 

where [x,y] is the commutator x'y'xy. (Note the similarity of this theorem to the 
benchmark theorem, usually called the commutator problem, in which the hypothe- 
ses are the same, but the conclusion is [[y, z],z] = e. That theorem, once considered a 



difficult challenge problem for automated theorem provers, is easily proved with OT- 
TER in its autonomous mode and by other theorem provers based on paramodulation 
and rewriting.) 

When I learned of the theorem, I had only it’s statement. (In fact, I wasn’t sure it 
was a theorem.) As I tried to get OTTER to prove the theorem, I supplied guidance 
toward finding a particular t ype  of proof and against paths that I thought fruitless, 
rather than directing OTTER toward finding a particular proof. 

This paper is intended for those who already have some familiarity with OTTER. 

2 The Search for a Proof 

The input file for the first OTTER search was the following. 

set (knuth-bendix) . 

clear(print ,kept) . 
clear(print,nev,demod). 
clear(print,back,demod). 

assign(pick,given,ratio, 4). 
assign(max,mem, 24000). 

list (usable) . 
x = x. 
end-of ,list 

list (sos) . 
e * x = x .  
g(x) * x = e. 

h(x,y) = g(x> * (g(y) * (x * y)).  
x * (x * XI = e. 
h(h(h(A,B) ,C) ,D) != e. 

(x * y) * 2 = x * (y * 2) .  

end-of-list. 

The flag knuth-bendix specifies a basic search strategy based on Knuth-Bendix 
completion, including the lexicographic recursive path ordering (LRPO) for orient- 
ing equalities and deciding which equalities are to be demodulators (rewrite rules). , 
The command lex( [ . . . 1 ) specifies an ordering on constant and function symbols I 
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(smallest first): * + h and g + h so that h is immediately eliminated from the de- 
nial (and from the search), and * + g so that g is eliminated from the search when 
g(x)=x*x is derived. 

The commands clear (print,*) disable some of OTTER’S output; their purpose 
here is to save disk space. The command assign(pick,given,ratio, 4) specifies a 
ratio of 4:l for selection of given clauses (clauses with which to make inferences): for 
each four clauses that are selected because they have the lowest weight, one clause is 
selected because it has been available €or the longest time (that is, best-first:breadth- 
first search). The command assign(max,mem, 24000) limits memory usage to about 
24 megabytes. 

The clauses in list (sos) are the axioms for group theory, the definition of the 
commutator function h(x,y) ,  the special hypotheses x3 = e, and the denial of the 
conclusion (A, B, C, and D, are Skolem constants, that is, elements for which the 
theorem fails to hold). 

With this input file, OTTER quickly rewrites the denial, as expected, into 

ABAABBCABAABBABAABBCCDABAABBCABAABBABAABBCCABAABBCABAABBABAABBCCDD!=e 

(the product symbol is not shown, and right association is assumed) which has weight 
133 (the default weight, which applies if no weight templates occur in the input, is a 
count of the number of constant, variable, function, and predicate symbols). 

A scan of the output file indicated at least four problems with the search. 

Focus of the Search. The high weight of the negative clauses delays their par- 
ticipation in the search. When new equalities are made into demodulators, all 
possible rewriting is performed, but more seems to be needed. In particular, an 
equality such as xxyy = yxyx cannot be an ordinary rewrite rule (with LRPO 
or with RPO), so it must be applied with paramodulation. In order to apply it 
to another clause, the other clause must have been selected as given clause; neg- 
ative clauses are rarely selected as given clauses, however, so many important 
inferences are delayed too long. 

What OTTER clearly needs to address this problem is a better control mecha- 
nism that can be tailored to bidirectional search. The output file has two types 
of clause: (1) right-associated negative ground equalities (originating from the 
rewritten denial shown above) with product and Skolem constants on the left 
and e on the right, and (2) right-associated positive equalities in product and 
variables. We wish to reason forward, applying the positive equalities to posi- 
tive equalities, and to reason backward, applying positive equalities to negative 
equalities. However, with OTTER’S limited methods for selecting the given 
clause, we must usually focus on one or the other. 
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The Term Ordering. LRPO does not make enough equalities into rewrite rules. If 
we were to use RPO instead (;.e., give * multiset status), many of the equalities 
that fail to become rewrite rules under LRPO, for example, zzyyzz = yzy 
(right association), would become useful rewrite rules. However, we wish to 
retain associativity7 (zy)z = ~ ( y z ) ~  as a rewrite rule, and it cannot be so under 
RPO. 

Useful Rewrite Rules. Since we wish to keep everything right associated, many 
equalities and rewrite rules do not apply where we wish them to. Consider, for 
example, the rewritten denial shown above and the equality xzyy = yzyx. We 
would like the equality to apply (by paramodulation) at 12 different places, but 
as things are, it applies only at the end. 

Memory Usage. The available 24 megabytes was consumed within 37 minutes 
(OB a SPARC 2), and the search stopped. At that point 11,195 clauses had 
been retained, 848 of those had become rewrite rules, and 119 clauses had been 
given (selected as the focus of attention), The vast majority of retained clauses 
were simply sitting in the sos list, wasting memory. (The only sos clauses that 
partkipate in the search are those that are also rewrite rules. Given clauses are 
selected from the sos list and moved to the usable list.) The standard solution 
is to set a maximum on the weight of retained clauses, but this becomes difficult 
because of our requirement for bidirectional search. 

The next few sections describe some experiments designed to address the preceding 
problems. 

2.1 Focus ofthe Search 

I thought that there might exist the following type of bidirectional proof. Equali- 
ties are derived from ((zy)z = x(yz),ex = z , x x x  = e). The balanced equalities 
(both sides having the same weight) paramodulate into negative clauses, and rewrite 
equalities (;.e, the left side heavier) rewrite negative equalities, eventually deriving 
e # e. 

To search for that type of proof, both positive and negative equalities must be 
selected as given clauses. The following approaches were considered. 

0 Simply use assign(pick,given,ratio, I). Since the negative clauses are 
much larger than the positive ones, half of the given clauses are the shortest 
available clauses (which are all positive) and the other half is a mixture of pos- 
itive and negative clauses (oldest first). This approach was abandoned because 
it places too much emphasis on positive clauses, and no preference is given to 
short negative clauses. 
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0 Adjust the weights of clauses, making the positive clauses heavier and the nega- 
tive clauses lighter. This can be accomplished by including the following weight 
list in the input file. 

weight,list(pick,and,purge) a 

weight(x,4). 
weight(A,O) e 

weight (B, 0) - 
weight(C,O) e 

weight (D 0) . 
end-of-list: 

X applies  t o  a l l  variables 

Several weights for variables were tried before deciding to use 4. With weight 
4 for variables, along with assign(pick,given,ratio, 4), the search starts 
out mostly positive, but as the retained positive clauses become larger, the 
focus changes to negative clauses (which become shorter), with positive clauses 
entering occasionally because of a ratio of 4. This approach seemed promising. 

e Separate the search into positive and negative parts. This involves making two 
OTTER runs. In the first run, the focus is exclusively on positive clauses; after 
some time, the run is stopped, and the positive clauses that had been given are 
collected and used as input for the second run. The second run is a search for a 
proof, in which the focus is exclusively on negative clauses, using the (fixed) set 
of positive clauses from the first run for paramodulation and rewriting. This 
approach was abandoned after several failures. I 

~ 2.2 Term Ordering 

To address this problem, we use OTTER’S ad hoc term ordering to orient equalities 
and to decide which equalities are to be rewrite rules. The default ad hoc ordering 
says simply that for terms, tl > t 2  if t l  has more symbols than t 2 .  Equalities are 
oriented, when possible, as heavy=&& and positive equalities whose left sides are 
heavier are made into rewrite rules. With this method, when associativity is a rewrite 
rule, and when the terms being rewritten are built from the binary function symbol, 
constants, and variables, rewriting will always terminate. This method was used 
for the rest of the experiments in this study; we can specify it with the command 
clear(lrpo), placed after the command set  (knuth-bendix). 

This solution does cause a secondary problem, however. The definition of commu- 
tator, g(x)*g(y)*x*y = h(x,y), and equality x*x = g(x), which is derived at the 
beginning of the search, will be oriented as shown; both are the wrong way for the 
type of proof we are seeking. The solution is simply to input the following list. 
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list (demodulators) . 
h(x,y) = g(x)*g(y)*x*y. 
g(x> = x*x. 
end,of,list* 

(With the ad hoc ordering, input demodulators are not flipped.) This input list causes 
the denial to be rewritten on input into the form shown above; neither h nor g will 
appear thereafter in the search. 

2;3 Useful Rewrite Rules 

Recall that the equality xxyy = yxyx applies only at the end of the rewritten de- 
nial. However, the trivial consequence xzyyz = yxyxz applies at the other places 
of concern, Also, if we reformulate the rewritten denial from t # e into t * E # E ,  
where E is a new constant, the original equality zxyy = yxyx is no longer needed. 
(The reformulated denial corresponds to the conclusion [[[yg zI7 u], v] * w = w, which 
clearly leads to an equivalent theorem.) This approach applies to both rewrite and 
nonrewrite (paramodulation) equalities. 

Let us borrow from associative-commutative terminology and call xxyyz = yxyxz 
the extension of xxyy = yxyx. Paramodulating an equality into associativity, then 
rewriting with associativity, produces the extension; hence, many of the extensions 
appear automatically. However, we don’t need any nonextended equalities, and we can 
avoid them by simply starting with extended equalities only, because paramodulation 
of two extended equalities always produces an extended equality. In this case, we start 
with xxxy = y instead of xxx = e. In addition, this approach eliminates the identity 
e from the search. 

2.4 Memory Usage 

The easiest way, and one of the most useful, to address the memory problem is to 
limit the size of kept clauses with the parameter max-weight. At this point, the 
weighting scheme of assigning variables weight 4 and Skolem constants weight 0 was 
being used. The rewritten denial has weight 67, and I was aiming for a proof in 
which the negative clauses “become smaller”. I had no idea how big positive clauses 
would have to be; after several preliminary runs, I made a guess of weight 104, which 
allows positive clauses with up to 21 occurrences of variables. Assigning a weight limit 
obviously makes the search less complete, but it is frequently necessary in practice. 
If the search fails, one can easily raise the limit and try again. 

Another way a lot of memory was saved was to adjust the indexing parameters. 
This requires considerable knowledge of the indexing method, and I’ll present it in 
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some detail, so that it might be more accessible to others. Indexing is used in five 
ways for this type of search. 

0 Paramodulation. This uses FPA/path indexing to find unifiable terms. 

0 Forward demodulation. This uses discrimination indexing to find demodulators. 

0 Forward subsumption. This uses discrimination indexing to find subsuming 
clauses. 

0 Back demodulation. This uses FPA/path indexing to find terms to demodulate. 

0 Back subsumption. This uses FPA/path indexing to find clauses to subsume. 

OTTER’S discrimination indexing is not adjustable, but we can limit the indexing 
depth for FPA/path indexing. In fact, because of the structure of the terms in these 
searches, FPA/path indexing filters out little or nothing, so disabling it saves vast 
amounts of memory (because terms are so deep) and a little bit of time. FPA/path 
indexing works by filtering out terms that fail to unify because of direct term structure 
(i.e., symbol clash). But our equalities are built from nothing more than variables 
and product, and our negative equalities are built from constants and product and 
are right associated. Consider paramodulation between two extended equalities; it 
cannot fail, so indexing can filter out nothing. Consider paramodulation between an 
extended equality and a right-associated ground equality; the only way it can fail is by 
indirect symbol clash, which cannot be filtered out by FPA/path indexing. Therefore, 
OTTER’S indexing is useless for paramodulation. 

A similar analysis shows that OTTER’S indexing is useless for back demodulation 
and for back subsumption on positive clauses. But back subsumption on negative 
clauses does benefit from FPA/path indexing; in fact it is a perfect filter, because 
all of our negative clauses are ground. However, memory was judged to be a serious 
problem, and back subsumption is not called often because we keep relatively few 
clauses, so we simply disabled all FPA/path indexing (by setting the parameters 
fpa-terms and fpa-literals to 0). 

~ 3 A Proof 

The following input file led to the first proof. 

set(knuth,bendix). 

lex( [e ,A,B,C,D ,E,*(, Dg(-) ,h(- #-)I)  - 



clear(lrpo) a 

clear(print,kept), 
cPear(print,new,demod). 
clear(print-back,demod). 
clear(detailed,history), 

assign(pick,given-ratio, 4) 
assign(max,weight, 105). 
assign(max,mem, 24000). 

assign(fga,literals, 01, 
assign(fpa,terms, 0). 

list (usable) e 

end-of-list. 
x = x. 

list(sos). 
x*x*x*y = y. 
(x*y)*z = x*y*z. 
h(h(h(A,B),C),D)*E != E. 
end-of ,list. 

list(demodulators), 
h(x,y) = g(x)*g(y)*x*y, 
g(x) = x*x. 
(x*y=x*z) = (y=z). 
end-of-list. 

weight,list(pick,and,purge). 
weight (x, 4) . 
weight(A, 0). 
weight(B, 0). 
weight(C, 0). 
weight(D, 0). 
weight (E, 0) . 
end-of-list. 

The third clause in l is t  (demodulators) applies left cancellation as a rewrite 
rule. It is used once (clause 129) in the proof below, but it is not necessary; other 
proofs have been found without it . 
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The following proof was produced with the preceding input file; OTTER took 
about 12 hours and used about 12 megabytes of memory on a SPARC 2 to find it. 

Proof (found by Otter 3.0.3+ on altair.mcs.anl.gov at  43268.49 seconds). 

1 
2 
3 
4 
675 
8,7 
9 
10 

11 
17,16 
18 
21 
23,22 
25 
26 
29 
31,30 
32 
34 
35 
40 

41 
42 
44 
55 
56 
58 
63,62 
81 
82 
83 
89 
92 
111 
119 
121,120 
122 
124,123 
129 
131 

h(x, Y) = 9(X)S(Y)XY 
g(x) = xx 
(xy = xz) = (y = z )  

(xy)t  = xyz 
h(h(h(A9 B ) ,  C), DIE # E 

z = x  
xxxy = y 

AABBABAABBABCCAABBABCAABBABAABBABCCAABBABCD 
DAABBABAABBABCCAABBABCDEfiE 
8,8,2,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,l,2,8,8,8,8,8,8,8,S,898,8l8,878l8,S,8,8,8,8, 
2,8,8,8,8,8,8,8,8,8,8,8,8,898~8,8,8,8,8,8,8,8,8,8,8,8,8,898,8,818,8,8,8,8,8,8,8,8,8, 
898,8,8,8,8,8,8,8,898,898,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,898,8,8,8,818,898,898,8, 
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8~8,8,8l 

[COPY,9 : 1,27218 ,8,1,2 78,s ,8 , 

xyxyxyz = z [5 - 7 :8,8, flip] 
xyxyxz = yyz 
xyxyzzu = yyzxzxu [16 - 161 
xyzyr = yyeer [5 - 163 
x yzx yrxu = yz yzu 17 + 16 :8,8,8] 
xxyyt = yxyxz [flip 211 
xyxzzyyu = yyxxzyzu [21 - 211 
xyzxyzu = yzyzxxu [7 -+ 21 :8,8,8] 
xxyyxxz = yxya [5 + 21, flip] 
xyzxyzu = zzxyxyu [7 - 21 :8,8,8] 
xyxyzzu = zxyzxyu [flip 291 
xxyzyzu = yzxyrxu [flip 321 
AABABBCCAABBABCAABBABAABBABCCAABBABCDDA4ABBA 

B A A B B A B C C A A B B A B C D E Z E  [21 - 10 :23,17] 
xxyzz yyu = yx yxz yzu [21 - 251 
xyxyzxzxu = yyxzzu [16 -+ 25, flip] 
xyxyzxzu = yyxzzxxu [flip 411 
xcyxzyzyu = yyxxyzzu [25 - 211 
xxyyxzzu = yxyzxzxu [flip 551 
xxyyxztxxu = yxyzxzu [21 - 301 
xxyzyrxxu = yrxyzu [7 - 30 :8,8,8] 
zyxyzuzuv = yyuxuxzzv [25 - 181 
xyzxyzuuv = yzyruxuxv [7 - 18 :8,8,8] 
xyzxyzuuv = zzuxyuxyv [7 -+ 18 :8,8,8] 
xxyzuyzuv = zuxzuxyyv [flip 831 
xyxyzzuxuxv = yyzxzuuv [18 - 161 
xyxxyzxzu = yxyxzzxxu [30 + 221 
xyzxyxxu = yzyzzxzu [16 - 221 
x yzux yzuxv = yzu yzuv [7 -+ 22 :8,8,8] 
xyxxyz = yxyxxz 
xyyxxyxz = yxyyr [30 +- 22 :6] 

xyxyyz = yxyyxz [16 + 22 :3] 
xyxyzzyyu = yxyyxzyzu [flip 1111 

[5 - 111 

[5 - 221 
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134 

135 
139 
154,153 
194 

214 
216,215 
226 
238,237 
25 1 
266 
28 1 
311,310 
319 
320 
321 
324 
328 
339 
340 
348 

352,351 
409 

418 
520 
534,533 
576,575 
578,577 
596,595 
644,643 
746 
747 
806 
810,809 
813 
918,917 
1121 

AABABBCCAABBABCBABBCACBBABCDDBABBCACBBABC 
D E # E  [40 :124,31,31,124,31,31] 

xyxyyzyu = rxyzxrzu [flip 1191 
zyxxyyxz = yyxyz [22 -+ 30 :6, flip] 
xxyyzuxzuxv = yxyzuzuv [22 -+ 21, flip] 
ABBAABCCAABBABCBABBCACBBABCDDBABBCACBBABC 

D E # E  [2l + 1341 
x yzux yzuv = yzuyzuxxv [7 +. 29 :8,8,8] 
xyxyzzyyu = zzyzxu [5 -+ 29, flip] 
xyyxz = yxxyz [5 -+ 29 :6] 
xyxxyzxzu = zyxzyu [131 :216, flip] 
xxyxyyz = yxyyxxz [29 -+ 30 :6] 
xyxxyyz = yyxyxxz [flip 2511 
xyzuxyzuv = uuxyzxyzv [7 +. 32 :8,8,8] 
xyyxyzzyyu = yxxzyzu [30 -+ 226, flip] 
xytzxyu = zxyxyzu [7 4 226 :8,8,8] 
xyxyyxz = yxxyxyz [a26 3 2261 
xyzzyxyxu = yxxyryxzu [32 4 2261 
xyyxzxyzxu = yxyzyzu [22 -+ 226, flip] 
xyzyzzu = yzxxyzu [7 -+ 226 :8,8,8] 
xyyxyxz = yxyxxyz [flip 3201 
xyyxzzyzu = yxzzxyxyu [flip 3211 
ABBAABCCABAABBCBABBCACBBABCDDBABBCACBBABC 

D E # E  [226 -$ 1941 
xyxxyxz = yxyz [226 + 301 
ABBAABCCABBABACBABBCACBBABCDDBABBCACBBABC 

D E # E  [25 -+ 3481 
xyzxyzyyu = tzxyxu [26 -+ 34 :6, flip] 
xzyxxz = yyxyyz [226 -+ 42 :31] 
xyxyyxzzxxu = yxyyzxzu [44 4 32 :6] 
xxyyxyzxzu = yzyxzyu 158 +- 32 :6,216] 
xyxxyyzxzu = yzyxzyu [58 4 29 :576,311, flip] 
xx yzu yzuxxv = yzuxyruv [7 -+ 62 :8,8,8] 
xyxzxyzxu = yxzyzu [81 -+ 82 :63,17,6] 
xxyyxzxuuv = ryxzyuzuzv [92 -+ 621 
xyzxyuxuxv = rryyzxzuuv [flip 7461 
xyzxzuyuyv = yxyzyxzuuv [83 -+ 351 :154] 
xyzxxyzxu = yzxyzu [7 -+ 351 :8,8,8] 
xyxzxyzuuv = yxzyzuxuxv [flip 8061 
xyxyzyzzyu = zxyzxzu [129 4 129 :238] 
xyzuyxzuyv = yyxyruxzuv [89 -+ 139 :596] 

1277,1276 xyzyzxyzyu = yzxxzzu . [16 ---$ 319, flip] 
1308 ABBACBABACABABCDDBABBCACBBABCDE#E 

[319 -+ 409 :1277,534,121,352] 
1372 ABBACBABACBBAACDDBABBCACBBABCDEfE [21 + 13081 
1378 ABBACAABBCBBAACDDBABBCACBBABCDE#E [21 -+ 13721 

[520 -+ 13781 1404 ABBACAACCBCCAACDDBABBCACBBABCDEfE 
1416 ABBACAACCBACADCDCBABBCACBBABCDE#E [56 -P 14041 
1453 ABBCACAACBACADCDCBABBCACBBABCDE#E [122 + 14161 
1551,1550 xyzuvxyzuvxw = yzuvyzuvw [7 -+ 120 :8,8,8] 

[l 'LO +. 161 1645 xyxxzuxzuv = yyzuyxzuyv 
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1691 ACABCABACBACADCDCBABBCACBBABCDEZE [35 + 14531 
1910 ACABCACCBABAADCDCBABBCACBBABCDEfE [32 + 16911 
2159,2158 xyyzzxxyzu = yyzyzxu [214 4 226 :23, flip] 
3080 ACABCACCABAABDCDCBABBCACBBABCDEZE 6129 -+ 19101 
3655,3654 xyxzxzzyxu = yzxzzyu [328 -+ 324 :17,31, flip] 
3880,3879 xyrzyxyzzu = yyzxyxu E339 + 340 :918,6,17, flip] 
4469,4468 xyzxzzxyxu = yzxzzyu 6418 -+ 281 :17,6] 
4483 ACBCACCBABDCDCBABBCACBBABCDEZE [3080 :4469] 
4642 ACBCACCBADCBBDCABBCACBBABCDEZE [328 + 44831 
4669 ACBCACCBADCBBDBCACABCBBABCDEfE [319 -+ 46423 
4727 ACBCACCBADCBBDBAACCBCBBABCDEfE [21 -+ 46691 
4349 ~ ACBCACCBADCBBDBAACACBACAACDE # E E135 + 47271 
4772 ACBCACCBADCBBDBAACACBAACCADEfE [226 4 47491 
4795 ACBCACCBADCBBDBACCAABAACCADE#E [21 -+ 47721 
4830 ACBCACCBADCBBDBACCBBABBCCADEfE [520 + 47951 
4850 ACBCACCBADCBBDBABCBCABBCCADEZE [25 -+ 48301 
4857 ACBCACCBADCBBDBBCAABCBBCCADEfE [328 -+ 48501 
4867 ACBCACCBADCBBDBBCAACCBCBBADEfE E266 -+ 48571 
4879 ACBCACCBADCBBDCBCBACABCBBADEfE [41 -+ 48671 
4894 ACBCACCBABDCDCBBCBACABCBBADEfE [319 + 48791 
4912 ACBCACCBABBDCBDCCBACABCBBADE#E [34 + 48941 
9687,9686 xyxtyxyzxzu = yzzyryxu [1121 + 813 :644,3655,2159] 
15798 ACBCACCAADCABDABBABACBADE f E [I645 4 4912 :9687] 
15805 E # E [747 -+ 15798 :578,3880,6,1551,810,23,17,6] 
15806 0 [15805,4] 

4 Relation to a Conjecture of Padrnanabhan 

CONJECTURE (R. Padmanabhan [2]). Let A = { a l ,  a2, - - ,a,} and { a }  be identities 
in the language of one binary operation. If A e- a in group theory, then A + a in 
cancellative semigroups (CS) as well. 

groups, the statement corresponding to the focal theorem of this paper is 
The proof in the preceding section supports the conjecture. For cancellative semi- 

{CS, 2' = xx, 5x2 = yyy} * { [[[x, y], z ] ,  w] = uuu}. (1) 

What OTTER actually proved is 

{CS, x' = xx, xxxy = y} + { [[[x, y ] ,  21, w]u = u}. (2) 

Statement 1 follows easily from 2, because {CS, xxx = yyy} {xxxy = y}. 



5 Concluding Remarks 

For these experiments, I ran about 20 OTTER searches, modifying the formulation 
and search strategy for each based on results of the previous searches. In providing 
the guidance, I used only fairly well-understood and fairly well-defined knowledge 
about OTTER and search strategies, rather than knowledge about a particular proof 
or general knowledge of mathematics; therefore there is hope that some of the methods 
described in this paper can be automated. Such automation would be an advance 
toward the goal of self-analytical theorem provers, advocated by Larry Wos [3]. 

OTTER clearly needs better features for control of bidirectional search. We were 
able to achieve an effective bidirectional search for this problem by adjusting the 
weights: the first part of the search focused on positive clauses, then shorter negative 
clauses were derived, then the second part of the search focused on negative clauses. 
But few bidirectional searches have such a smooth and natural transition. In general, 
we need a true dual-focus (or more-part focus) search. 

Finally, perhaps the strategies used for this problem can be shown to be complete 
for a useful class of problems. 

References 

[I] W. McCune. OTTER 3.0 Reference Manual and Guide. Tech. Report ANL-94/6, 
Argonne National Laboratory, Argonne, Ill. ~ 1994. 

[2] R. Padmanabhan, Electronic mail to W. McCune, May 7, 1993. 

131 L, Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: Introduction 
and Applications, revised edition. McGraw-Hill, New York, 1992. 

12 


