
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL/MCS-TM-202

A Case Study in Automated Theorem Proving:
A Difficult Problem about Commutators

by

William Mc Cune

T L

e-mail: mccune@mcs.anl.gov

Mathematics and Computer Science Division

Technical Memorandum No. 202

I ILL work was suppol -2d by

Contract W-31-109-Eng-38.

February 1995

he Office of Scientific Computi U.S. Department of Energy, under

mailto:mccune@mcs.anl.gov

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Contents

Abstract

1 Introduction

2 The Search for a Proof

2.1 Focus of the Search

2.2 Term Ordering e a

2.3 Useful Rewrite Rules .
2.4 Memory Usage . . . e

3 A Proof

4 Relation

. * . . . e

. e * . . .

.

. e

. . . D e . D

. e r

. -

. e

to a Conjecture of Padmanabhan

5 Concluding Remarks

. e

. .

. .

. .

1

1

7

11

12

References

...
111

12

A Case Study in Automated Theorem Proving:

A Difficult Problem about Commutators

by

William McCune

Abstract

This paper shows how the automated deduction system OTTER was used to
prove the group theory theorem

x3 = e 3 [[[Y, z] , u] , = e ,

where e is the identity, and [z,y] is the commutator z'y'zy. This is a difficult
problem for automated provers, and several lengthy searches were run before a
proof was found. Problem formulation and search strategy played a key role in
the success. I believe that ours is the first automated proof of the theorem.

1 Introduction

The automated theorem prover OTTER [l] is not always easy to use. Version 3.0.0 of
OTTER (and later versions) has an autonomous mode that allows the user simply to
assert a denial of the theorem or conjecture; the program then formulates a simple
strategy and searches for a refutation. The autonomous mode is sufficient for many
easy theorems and some moderately difficult theorems, but more difficult theorems
usually require some guidance from the user. Very little has been written about the
kinds of guidance that can be given to the program and how that guidance is specified.
This paper shows how such guidance was provided in one case, a difficult theorem
about commutators in group theory.

Let GT stand for an axiomatization of group theory in terms of product, identity,
and inverse, for example, {ex = x , d x = e, (zy)z = ~ (y z)) . The fodus of this paper
is the theorem

where [x,y] is the commutator x'y'xy. (Note the similarity of this theorem to the
benchmark theorem, usually called the commutator problem, in which the hypothe-
ses are the same, but the conclusion is [[y, z],z] = e. That theorem, once considered a

difficult challenge problem for automated theorem provers, is easily proved with OT-
TER in its autonomous mode and by other theorem provers based on paramodulation
and rewriting.)

When I learned of the theorem, I had only it’s statement. (In fact, I wasn’t sure it
was a theorem.) As I tried to get OTTER to prove the theorem, I supplied guidance
toward finding a particular t ype of proof and against paths that I thought fruitless,
rather than directing OTTER toward finding a particular proof.

This paper is intended for those who already have some familiarity with OTTER.

2 The Search for a Proof

The input file for the first OTTER search was the following.

set (knuth-bendix) .

clear(print ,kept) .
clear(print,nev,demod).
clear(print,back,demod).

assign(pick,given,ratio, 4).
assign(max,mem, 24000).

list (usable) .
x = x.
end-of ,list

list (sos) .
e * x = x .
g(x) * x = e.

h(x,y) = g(x> * (g(y) * (x * y)).
x * (x * XI = e.
h(h(h(A,B) ,C) ,D) != e.

(x * y) * 2 = x * (y * 2) .

end-of-list.

The flag knuth-bendix specifies a basic search strategy based on Knuth-Bendix
completion, including the lexicographic recursive path ordering (LRPO) for orient-
ing equalities and deciding which equalities are to be demodulators (rewrite rules). ,
The command lex([. . . 1) specifies an ordering on constant and function symbols I

2

(smallest first): * + h and g + h so that h is immediately eliminated from the de-
nial (and from the search), and * + g so that g is eliminated from the search when
g(x)=x*x is derived.

The commands clear (print,*) disable some of OTTER’S output; their purpose
here is to save disk space. The command assign(pick,given,ratio, 4) specifies a
ratio of 4:l for selection of given clauses (clauses with which to make inferences): for
each four clauses that are selected because they have the lowest weight, one clause is
selected because it has been available €or the longest time (that is, best-first:breadth-
first search). The command assign(max,mem, 24000) limits memory usage to about
24 megabytes.

The clauses in list (sos) are the axioms for group theory, the definition of the
commutator function h(x,y) , the special hypotheses x3 = e, and the denial of the
conclusion (A, B, C, and D, are Skolem constants, that is, elements for which the
theorem fails to hold).

With this input file, OTTER quickly rewrites the denial, as expected, into

ABAABBCABAABBABAABBCCDABAABBCABAABBABAABBCCABAABBCABAABBABAABBCCDD!=e

(the product symbol is not shown, and right association is assumed) which has weight
133 (the default weight, which applies if no weight templates occur in the input, is a
count of the number of constant, variable, function, and predicate symbols).

A scan of the output file indicated at least four problems with the search.

Focus of the Search. The high weight of the negative clauses delays their par-
ticipation in the search. When new equalities are made into demodulators, all
possible rewriting is performed, but more seems to be needed. In particular, an
equality such as xxyy = yxyx cannot be an ordinary rewrite rule (with LRPO
or with RPO), so it must be applied with paramodulation. In order to apply it
to another clause, the other clause must have been selected as given clause; neg-
ative clauses are rarely selected as given clauses, however, so many important
inferences are delayed too long.

What OTTER clearly needs to address this problem is a better control mecha-
nism that can be tailored to bidirectional search. The output file has two types
of clause: (1) right-associated negative ground equalities (originating from the
rewritten denial shown above) with product and Skolem constants on the left
and e on the right, and (2) right-associated positive equalities in product and
variables. We wish to reason forward, applying the positive equalities to posi-
tive equalities, and to reason backward, applying positive equalities to negative
equalities. However, with OTTER’S limited methods for selecting the given
clause, we must usually focus on one or the other.

3

The Term Ordering. LRPO does not make enough equalities into rewrite rules. If
we were to use RPO instead (;.e., give * multiset status), many of the equalities
that fail to become rewrite rules under LRPO, for example, zzyyzz = yzy
(right association), would become useful rewrite rules. However, we wish to
retain associativity7 (zy)z = ~ (y z) ~ as a rewrite rule, and it cannot be so under
RPO.

Useful Rewrite Rules. Since we wish to keep everything right associated, many
equalities and rewrite rules do not apply where we wish them to. Consider, for
example, the rewritten denial shown above and the equality xzyy = yzyx. We
would like the equality to apply (by paramodulation) at 12 different places, but
as things are, it applies only at the end.

Memory Usage. The available 24 megabytes was consumed within 37 minutes
(OB a SPARC 2), and the search stopped. At that point 11,195 clauses had
been retained, 848 of those had become rewrite rules, and 119 clauses had been
given (selected as the focus of attention), The vast majority of retained clauses
were simply sitting in the sos list, wasting memory. (The only sos clauses that
partkipate in the search are those that are also rewrite rules. Given clauses are
selected from the sos list and moved to the usable list.) The standard solution
is to set a maximum on the weight of retained clauses, but this becomes difficult
because of our requirement for bidirectional search.

The next few sections describe some experiments designed to address the preceding
problems.

2.1 Focus ofthe Search

I thought that there might exist the following type of bidirectional proof. Equali-
ties are derived from ((zy)z = x(yz),ex = z , x x x = e). The balanced equalities
(both sides having the same weight) paramodulate into negative clauses, and rewrite
equalities (;.e, the left side heavier) rewrite negative equalities, eventually deriving
e # e.

To search for that type of proof, both positive and negative equalities must be
selected as given clauses. The following approaches were considered.

0 Simply use assign(pick,given,ratio, I). Since the negative clauses are
much larger than the positive ones, half of the given clauses are the shortest
available clauses (which are all positive) and the other half is a mixture of pos-
itive and negative clauses (oldest first). This approach was abandoned because
it places too much emphasis on positive clauses, and no preference is given to
short negative clauses.

4

0 Adjust the weights of clauses, making the positive clauses heavier and the nega-
tive clauses lighter. This can be accomplished by including the following weight
list in the input file.

weight,list(pick,and,purge) a

weight(x,4).
weight(A,O) e

weight (B, 0) -
weight(C,O) e

weight (D 0) .
end-of-list:

X applies t o a l l variables

Several weights for variables were tried before deciding to use 4. With weight
4 for variables, along with assign(pick,given,ratio, 4), the search starts
out mostly positive, but as the retained positive clauses become larger, the
focus changes to negative clauses (which become shorter), with positive clauses
entering occasionally because of a ratio of 4. This approach seemed promising.

e Separate the search into positive and negative parts. This involves making two
OTTER runs. In the first run, the focus is exclusively on positive clauses; after
some time, the run is stopped, and the positive clauses that had been given are
collected and used as input for the second run. The second run is a search for a
proof, in which the focus is exclusively on negative clauses, using the (fixed) set
of positive clauses from the first run for paramodulation and rewriting. This
approach was abandoned after several failures. I

~ 2.2 Term Ordering

To address this problem, we use OTTER’S ad hoc term ordering to orient equalities
and to decide which equalities are to be rewrite rules. The default ad hoc ordering
says simply that for terms, tl > t 2 if t l has more symbols than t 2 . Equalities are
oriented, when possible, as heavy=&& and positive equalities whose left sides are
heavier are made into rewrite rules. With this method, when associativity is a rewrite
rule, and when the terms being rewritten are built from the binary function symbol,
constants, and variables, rewriting will always terminate. This method was used
for the rest of the experiments in this study; we can specify it with the command
clear(lrpo), placed after the command set (knuth-bendix).

This solution does cause a secondary problem, however. The definition of commu-
tator, g(x)*g(y)*x*y = h(x,y), and equality x*x = g(x), which is derived at the
beginning of the search, will be oriented as shown; both are the wrong way for the
type of proof we are seeking. The solution is simply to input the following list.

5

list (demodulators) .
h(x,y) = g(x)*g(y)*x*y.
g(x> = x*x.
end,of,list*

(With the ad hoc ordering, input demodulators are not flipped.) This input list causes
the denial to be rewritten on input into the form shown above; neither h nor g will
appear thereafter in the search.

2;3 Useful Rewrite Rules

Recall that the equality xxyy = yxyx applies only at the end of the rewritten de-
nial. However, the trivial consequence xzyyz = yxyxz applies at the other places
of concern, Also, if we reformulate the rewritten denial from t # e into t * E # E ,
where E is a new constant, the original equality zxyy = yxyx is no longer needed.
(The reformulated denial corresponds to the conclusion [[[yg zI7 u], v] * w = w, which
clearly leads to an equivalent theorem.) This approach applies to both rewrite and
nonrewrite (paramodulation) equalities.

Let us borrow from associative-commutative terminology and call xxyyz = yxyxz
the extension of xxyy = yxyx. Paramodulating an equality into associativity, then
rewriting with associativity, produces the extension; hence, many of the extensions
appear automatically. However, we don’t need any nonextended equalities, and we can
avoid them by simply starting with extended equalities only, because paramodulation
of two extended equalities always produces an extended equality. In this case, we start
with xxxy = y instead of xxx = e. In addition, this approach eliminates the identity
e from the search.

2.4 Memory Usage

The easiest way, and one of the most useful, to address the memory problem is to
limit the size of kept clauses with the parameter max-weight. At this point, the
weighting scheme of assigning variables weight 4 and Skolem constants weight 0 was
being used. The rewritten denial has weight 67, and I was aiming for a proof in
which the negative clauses “become smaller”. I had no idea how big positive clauses
would have to be; after several preliminary runs, I made a guess of weight 104, which
allows positive clauses with up to 21 occurrences of variables. Assigning a weight limit
obviously makes the search less complete, but it is frequently necessary in practice.
If the search fails, one can easily raise the limit and try again.

Another way a lot of memory was saved was to adjust the indexing parameters.
This requires considerable knowledge of the indexing method, and I’ll present it in

6

some detail, so that it might be more accessible to others. Indexing is used in five
ways for this type of search.

0 Paramodulation. This uses FPA/path indexing to find unifiable terms.

0 Forward demodulation. This uses discrimination indexing to find demodulators.

0 Forward subsumption. This uses discrimination indexing to find subsuming
clauses.

0 Back demodulation. This uses FPA/path indexing to find terms to demodulate.

0 Back subsumption. This uses FPA/path indexing to find clauses to subsume.

OTTER’S discrimination indexing is not adjustable, but we can limit the indexing
depth for FPA/path indexing. In fact, because of the structure of the terms in these
searches, FPA/path indexing filters out little or nothing, so disabling it saves vast
amounts of memory (because terms are so deep) and a little bit of time. FPA/path
indexing works by filtering out terms that fail to unify because of direct term structure
(i.e., symbol clash). But our equalities are built from nothing more than variables
and product, and our negative equalities are built from constants and product and
are right associated. Consider paramodulation between two extended equalities; it
cannot fail, so indexing can filter out nothing. Consider paramodulation between an
extended equality and a right-associated ground equality; the only way it can fail is by
indirect symbol clash, which cannot be filtered out by FPA/path indexing. Therefore,
OTTER’S indexing is useless for paramodulation.

A similar analysis shows that OTTER’S indexing is useless for back demodulation
and for back subsumption on positive clauses. But back subsumption on negative
clauses does benefit from FPA/path indexing; in fact it is a perfect filter, because
all of our negative clauses are ground. However, memory was judged to be a serious
problem, and back subsumption is not called often because we keep relatively few
clauses, so we simply disabled all FPA/path indexing (by setting the parameters
fpa-terms and fpa-literals to 0).

~ 3 A Proof

The following input file led to the first proof.

set(knuth,bendix).

lex([e ,A,B,C,D ,E,*(, Dg(-) ,h(- #-)I) -

clear(lrpo) a

clear(print,kept),
cPear(print,new,demod).
clear(print-back,demod).
clear(detailed,history),

assign(pick,given-ratio, 4)
assign(max,weight, 105).
assign(max,mem, 24000).

assign(fga,literals, 01,
assign(fpa,terms, 0).

list (usable) e

end-of-list.
x = x.

list(sos).
x*x*x*y = y.
(x*y)*z = x*y*z.
h(h(h(A,B),C),D)*E != E.
end-of ,list.

list(demodulators),
h(x,y) = g(x)*g(y)*x*y,
g(x) = x*x.
(x*y=x*z) = (y=z).
end-of-list.

weight,list(pick,and,purge).
weight (x, 4) .
weight(A, 0).
weight(B, 0).
weight(C, 0).
weight(D, 0).
weight (E, 0) .
end-of-list.

The third clause in l is t (demodulators) applies left cancellation as a rewrite
rule. It is used once (clause 129) in the proof below, but it is not necessary; other
proofs have been found without it .

8

The following proof was produced with the preceding input file; OTTER took
about 12 hours and used about 12 megabytes of memory on a SPARC 2 to find it.

Proof (found by Otter 3.0.3+ on altair.mcs.anl.gov at 43268.49 seconds).

1
2
3
4
675
8,7
9
10

11
17,16
18
21
23,22
25
26
29
31,30
32
34
35
40

41
42
44
55
56
58
63,62
81
82
83
89
92
111
119
121,120
122
124,123
129
131

h(x, Y) = 9(X)S(Y)XY
g(x) = xx
(xy = xz) = (y = z)

(xy)t = xyz
h(h(h(A9 B) , C), DIE # E

z = x
xxxy = y

AABBABAABBABCCAABBABCAABBABAABBABCCAABBABCD
DAABBABAABBABCCAABBABCDEfiE
8,8,2,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,l,2,8,8,8,8,8,8,8,S,898,8l8,878l8,S,8,8,8,8,
2,8,8,8,8,8,8,8,8,8,8,8,8,898~8,8,8,8,8,8,8,8,8,8,8,8,8,898,8,818,8,8,8,8,8,8,8,8,8,
898,8,8,8,8,8,8,8,898,898,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,898,8,8,8,818,898,898,8,
8,8~8,8,8l

[COPY,9 : 1,27218 ,8,1,2 78,s ,8 ,

xyxyxyz = z [5 - 7 :8,8, flip]
xyxyxz = yyz
xyxyzzu = yyzxzxu [16 - 161
xyzyr = yyeer [5 - 163
x yzx yrxu = yz yzu 17 + 16 :8,8,8]
xxyyt = yxyxz [flip 211
xyxzzyyu = yyxxzyzu [21 - 211
xyzxyzu = yzyzxxu [7 -+ 21 :8,8,8]
xxyyxxz = yxya [5 + 21, flip]
xyzxyzu = zzxyxyu [7 - 21 :8,8,8]
xyxyzzu = zxyzxyu [flip 291
xxyzyzu = yzxyrxu [flip 321
AABABBCCAABBABCAABBABAABBABCCAABBABCDDA4ABBA

B A A B B A B C C A A B B A B C D E Z E [21 - 10 :23,17]
xxyzz yyu = yx yxz yzu [21 - 251
xyxyzxzxu = yyxzzu [16 -+ 25, flip]
xyxyzxzu = yyxzzxxu [flip 411
xcyxzyzyu = yyxxyzzu [25 - 211
xxyyxzzu = yxyzxzxu [flip 551
xxyyxztxxu = yxyzxzu [21 - 301
xxyzyrxxu = yrxyzu [7 - 30 :8,8,8]
zyxyzuzuv = yyuxuxzzv [25 - 181
xyzxyzuuv = yzyruxuxv [7 - 18 :8,8,8]
xyzxyzuuv = zzuxyuxyv [7 -+ 18 :8,8,8]
xxyzuyzuv = zuxzuxyyv [flip 831
xyxyzzuxuxv = yyzxzuuv [18 - 161
xyxxyzxzu = yxyxzzxxu [30 + 221
xyzxyxxu = yzyzzxzu [16 - 221
x yzux yzuxv = yzu yzuv [7 -+ 22 :8,8,8]
xyxxyz = yxyxxz
xyyxxyxz = yxyyr [30 +- 22 :6]

xyxyyz = yxyyxz [16 + 22 :3]
xyxyzzyyu = yxyyxzyzu [flip 1111

[5 - 111

[5 - 221

9

http://altair.mcs.anl.gov

134

135
139
154,153
194

214
216,215
226
238,237
25 1
266
28 1
311,310
319
320
321
324
328
339
340
348

352,351
409

418
520
534,533
576,575
578,577
596,595
644,643
746
747
806
810,809
813
918,917
1121

AABABBCCAABBABCBABBCACBBABCDDBABBCACBBABC
D E # E [40 :124,31,31,124,31,31]

xyxyyzyu = rxyzxrzu [flip 1191
zyxxyyxz = yyxyz [22 -+ 30 :6, flip]
xxyyzuxzuxv = yxyzuzuv [22 -+ 21, flip]
ABBAABCCAABBABCBABBCACBBABCDDBABBCACBBABC

D E # E [2l + 1341
x yzux yzuv = yzuyzuxxv [7 +. 29 :8,8,8]
xyxyzzyyu = zzyzxu [5 -+ 29, flip]
xyyxz = yxxyz [5 -+ 29 :6]
xyxxyzxzu = zyxzyu [131 :216, flip]
xxyxyyz = yxyyxxz [29 -+ 30 :6]
xyxxyyz = yyxyxxz [flip 2511
xyzuxyzuv = uuxyzxyzv [7 +. 32 :8,8,8]
xyyxyzzyyu = yxxzyzu [30 -+ 226, flip]
xytzxyu = zxyxyzu [7 4 226 :8,8,8]
xyxyyxz = yxxyxyz [a26 3 2261
xyzzyxyxu = yxxyryxzu [32 4 2261
xyyxzxyzxu = yxyzyzu [22 -+ 226, flip]
xyzyzzu = yzxxyzu [7 -+ 226 :8,8,8]
xyyxyxz = yxyxxyz [flip 3201
xyyxzzyzu = yxzzxyxyu [flip 3211
ABBAABCCABAABBCBABBCACBBABCDDBABBCACBBABC

D E # E [226 -$ 1941
xyxxyxz = yxyz [226 + 301
ABBAABCCABBABACBABBCACBBABCDDBABBCACBBABC

D E # E [25 -+ 3481
xyzxyzyyu = tzxyxu [26 -+ 34 :6, flip]
xzyxxz = yyxyyz [226 -+ 42 :31]
xyxyyxzzxxu = yxyyzxzu [44 4 32 :6]
xxyyxyzxzu = yzyxzyu 158 +- 32 :6,216]
xyxxyyzxzu = yzyxzyu [58 4 29 :576,311, flip]
xx yzu yzuxxv = yzuxyruv [7 -+ 62 :8,8,8]
xyxzxyzxu = yxzyzu [81 -+ 82 :63,17,6]
xxyyxzxuuv = ryxzyuzuzv [92 -+ 621
xyzxyuxuxv = rryyzxzuuv [flip 7461
xyzxzuyuyv = yxyzyxzuuv [83 -+ 351 :154]
xyzxxyzxu = yzxyzu [7 -+ 351 :8,8,8]
xyxzxyzuuv = yxzyzuxuxv [flip 8061
xyxyzyzzyu = zxyzxzu [129 4 129 :238]
xyzuyxzuyv = yyxyruxzuv [89 -+ 139 :596]

1277,1276 xyzyzxyzyu = yzxxzzu . [16 ---$ 319, flip]
1308 ABBACBABACABABCDDBABBCACBBABCDE#E

[319 -+ 409 :1277,534,121,352]
1372 ABBACBABACBBAACDDBABBCACBBABCDEfE [21 + 13081
1378 ABBACAABBCBBAACDDBABBCACBBABCDE#E [21 -+ 13721

[520 -+ 13781 1404 ABBACAACCBCCAACDDBABBCACBBABCDEfE
1416 ABBACAACCBACADCDCBABBCACBBABCDE#E [56 -P 14041
1453 ABBCACAACBACADCDCBABBCACBBABCDE#E [122 + 14161
1551,1550 xyzuvxyzuvxw = yzuvyzuvw [7 -+ 120 :8,8,8]

[l 'LO +. 161 1645 xyxxzuxzuv = yyzuyxzuyv

10

1691 ACABCABACBACADCDCBABBCACBBABCDEZE [35 + 14531
1910 ACABCACCBABAADCDCBABBCACBBABCDEfE [32 + 16911
2159,2158 xyyzzxxyzu = yyzyzxu [214 4 226 :23, flip]
3080 ACABCACCABAABDCDCBABBCACBBABCDEZE 6129 -+ 19101
3655,3654 xyxzxzzyxu = yzxzzyu [328 -+ 324 :17,31, flip]
3880,3879 xyrzyxyzzu = yyzxyxu E339 + 340 :918,6,17, flip]
4469,4468 xyzxzzxyxu = yzxzzyu 6418 -+ 281 :17,6]
4483 ACBCACCBABDCDCBABBCACBBABCDEZE [3080 :4469]
4642 ACBCACCBADCBBDCABBCACBBABCDEZE [328 + 44831
4669 ACBCACCBADCBBDBCACABCBBABCDEfE [319 -+ 46423
4727 ACBCACCBADCBBDBAACCBCBBABCDEfE [21 -+ 46691
4349 ~ ACBCACCBADCBBDBAACACBACAACDE # E E135 + 47271
4772 ACBCACCBADCBBDBAACACBAACCADEfE [226 4 47491
4795 ACBCACCBADCBBDBACCAABAACCADE#E [21 -+ 47721
4830 ACBCACCBADCBBDBACCBBABBCCADEfE [520 + 47951
4850 ACBCACCBADCBBDBABCBCABBCCADEZE [25 -+ 48301
4857 ACBCACCBADCBBDBBCAABCBBCCADEfE [328 -+ 48501
4867 ACBCACCBADCBBDBBCAACCBCBBADEfE E266 -+ 48571
4879 ACBCACCBADCBBDCBCBACABCBBADEfE [41 -+ 48671
4894 ACBCACCBABDCDCBBCBACABCBBADEfE [319 + 48791
4912 ACBCACCBABBDCBDCCBACABCBBADE#E [34 + 48941
9687,9686 xyxtyxyzxzu = yzzyryxu [1121 + 813 :644,3655,2159]
15798 ACBCACCAADCABDABBABACBADE f E [I645 4 4912 :9687]
15805 E # E [747 -+ 15798 :578,3880,6,1551,810,23,17,6]
15806 0 [15805,4]

4 Relation to a Conjecture of Padrnanabhan

CONJECTURE (R. Padmanabhan [2]). Let A = { a l , a2, - - ,a,} and { a } be identities
in the language of one binary operation. If A e- a in group theory, then A + a in
cancellative semigroups (CS) as well.

groups, the statement corresponding to the focal theorem of this paper is
The proof in the preceding section supports the conjecture. For cancellative semi-

{CS, 2' = xx, 5x2 = yyy} * { [[[x, y], z] , w] = uuu}. (1)

What OTTER actually proved is

{CS, x' = xx, xxxy = y} + { [[[x, y] , 21, w]u = u}. (2)

Statement 1 follows easily from 2, because {CS, xxx = yyy} {xxxy = y}.

5 Concluding Remarks

For these experiments, I ran about 20 OTTER searches, modifying the formulation
and search strategy for each based on results of the previous searches. In providing
the guidance, I used only fairly well-understood and fairly well-defined knowledge
about OTTER and search strategies, rather than knowledge about a particular proof
or general knowledge of mathematics; therefore there is hope that some of the methods
described in this paper can be automated. Such automation would be an advance
toward the goal of self-analytical theorem provers, advocated by Larry Wos [3].

OTTER clearly needs better features for control of bidirectional search. We were
able to achieve an effective bidirectional search for this problem by adjusting the
weights: the first part of the search focused on positive clauses, then shorter negative
clauses were derived, then the second part of the search focused on negative clauses.
But few bidirectional searches have such a smooth and natural transition. In general,
we need a true dual-focus (or more-part focus) search.

Finally, perhaps the strategies used for this problem can be shown to be complete
for a useful class of problems.

References

[I] W. McCune. OTTER 3.0 Reference Manual and Guide. Tech. Report ANL-94/6,
Argonne National Laboratory, Argonne, Ill. ~ 1994.

[2] R. Padmanabhan, Electronic mail to W. McCune, May 7, 1993.

131 L, Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning: Introduction
and Applications, revised edition. McGraw-Hill, New York, 1992.

12

