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Abstract 

A novel first-principles-based expert system is proposed for on-line detection and 
identification of faulty component candidates during incipient off-normal process 
operations. The system pe forms function-oriented diagnostics and can be reused for 
diagnosing single-component failures in different processes and different plants through 
the provision of the appropriate process schematics information. The function-oriented 
and process-independent diagnostic features of the proposed expert system are achieved by 
constructing a knowledge base containing three distinct types of information, qualitative 
balance equation rules, functional classifcation of process coinponents, and the process 
piping and instrumentation diagram The various types of qualitative balance equation 
rules for processes utilizing single-phase liquids are derived and their usage is illustrated 
through simulation results of a realistic process in a nuclear power plant. 

1.0 Introduction 

For over a decade researchers and engineers have been developing expert systems 
(ESs) for process fault diagnostics. In the early systems, the knowledge base (KB) 
was constructed through pre-analysis of the failure of each process component based 
on an event-oriented approach. Once the symptoms or process signal trends associated 
with each component fault were identified, diagnostic rules were constructed that 
directly mapped symptoms into specific component fau1ts.l In the later systems, the 
KB was constructed by modeling the process through graph s t r ~ c t u r e s ~ ~ ~  where a 
function-oriented approach was generally used for diagnostics. Once the functions of 
each process component were known and the process model developed, diagnostics 
were accomplished by comparing the process functions that were disrupted with the 
components responsible for performing the disrupted functions. The advantage of this 
approach over event-oriented is that there is a limited number of functions that a 
component is designed to provide, while there are numerous possible combinations of 
component failures. 

In spite of the progress made over the last decade, process diagnostics ESs are 
still limited in one fundamental aspect. They are designed to diagnose component 
faults for one specific process. New ESs need to be designed for different processes, 
unless the processes are identical, even if the processes share common properties such 
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as similar thermal-hydraulic (T-H) geometrical configurations, operating conditions, 
and fluid material and phase. 

Here, we propose a novel function-oriented fust-principles-based concept for 
developing process diagnostic Ess that overcomes this limitation. Except for the self- 
contained process schematics representation, the KB of the proposed system is 
process-independent, which allows for usage of the same diagnostic system with 
different processes and plants. This possibility not only decreases the effort involved 
in developing a new system, but it also eliminates the time-consuming process of KB 
verification and validation, which needs to be performed only once in the proposed 
approach. The process-independent diagnostic capability of the proposed ES is 
attained through the use of qualitative reasoning where a small number of values are 
taken to represent the values of continuous real-valued variables. 

Figure 1 illustrates the three types of knowledge of the proposed diagnostic ES 
and their corresponding usage, in a three-step mapping, that relates process symptoms 
into component faults.4J when a process component fails, it causes the process T-H 
variables, e.g., pressure P, flow W, temperature T, and level L, to vary or trend from 
their expected values. The physical rules database (PRD) is used to map the trend in 
the T-H variables into imbalance trends in the three conservation types of mass, 
energy, and momentum, e.g., mass increase, momentum decrease. Then, the 
component classification dictionary (CCD) is applied to map the identified imbalance 
type and trend into generic faulty component types, e.g., pump, valve, heat exchanger, 
whose failure could have been responsible for the identified imbalance, Le., the 
inadequate performance of one of the three T-H functions, mass transfer, energy 
transfer, or momentum transfer. Finally, the piping and instrumentation diagram 
(PID) containing the process schematics information, the only system-dependent 
portion of the KB, is applied to identify specific faulty components, e&, pump A, 
valve CV-121, regenerative heat exchanger Cy as the possible faulty component 
candidates. 
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Fig. 1. Three Distinct Types of Knowledge in the Knowledge Base Perform Three 
Mappings Required for Process-Independent Function-Oriented Diagnostics 



In previous work reporting the proposed concepf4s5 the first-principles 
qualitative rules of the PRD used to map trends in the T-H variables into imbalances 
of mass, energy, and momentum, were solely derived through the equations of state 
@OS) and the definition of momentum. Furthermore, each process component was 
associated with one control volume that required complete instrumentation, i.e., each 
control volume was characterized by lumped values of P, W, T, and L, which are 
rarely available for each process component in real-world applications. Here, in 
addition to the EOS and definition of momentum, we apply the basic mathematical 
description of the macroscopic conservation equations to construct qualitative rules6 
that characterize imbalances in mass, energy, and momentum. The locations of the 
existing process instruments that measure the T-H variables define the boundaries of 
the control volume for each rule, which may now involve one or more connected 
components. That, in addition to the provision of different types of rules with 
different instrumentation requirements and rules capable of inferring the trend of 
nonmeasured variables, reduce the need for complete instrumentation. In the 
following sections, we derive the various types of qualitative rules of the PRD and 
illustrate their usage through simulation results of a process in a nuclear power plant. 
In this paper, the derived rules are l i i t e d  to single-component failures in generic T-H 
processes consisting of single-phase liquid, i.e., subcooled water. However, the rules 
in the PRD of the developed ES also account for separated volume components 
containing noncondensable gas over single-phase liquid. 

2.0 Qualitative Physics-Based Rules 

The qualitative physics rules that we derive in this section are generic rules in 
the sense that the same set of rules can be applied to different component types and 
different T-H processes without any need for customization. This approach differs 
from the qualitative physics reasoning methods based on De Kleer and Brown's work,6 
where a set of balance equations or confluences that model the process are customized 
for each device (process) based on the device topology. However, to permit the 
generalization of the rules, the geometrical configuration of the T-H system is 
decomposed into T-H loops, which are classified as being of two types, open and 
closed. A loop is defined as a continuous circuit of fluid flowing monotonically in 
one direction. A closed loop starts and ends at the same location, while an open loop 
starts at two different pressure boundaries. This decomposition of the T-H system 
into decoupled T-H loops allows the physical rules representing the mathematical 
conservation equations to be applied to any control volume configuration, Le., one 
specific component or a group of connected components, within a T-H loop. The 
rules can not be applied to control volume configurations composed of components 
belonging to different T-H loops. This is due to our approach which follows a 
monotonically varying pressure distribution with account taken for the step 
discontinuity at the pump. 

The qualitative physics rules of the PRD are of two classes: Q rules and CV 
rules. A Q rule indicates the type and trend of the imbalance in a control volume 



inferred from the trends in the T-H variables. Corresponding to the three balance 
equations of mass, energy, and momentum, we have three types of Q rules, Qmass, 
Qeng, and &om, respectively, which can have one of three trends or qualitative 
values, increasing(T), decreasing (41, and unchanging (-). Thus, if a control volume is 
experiencing a loss of mass, a Q rule identifying such imbalance would characterize 

1 the Q status of the control volume as Q,,,. A CV rule infers the trend status of 
nonmeasured T-H variables, pressure P, flow W, temperature T, and level L, in a 
process component, from the other T-H variables and the Q status of the component. 
In the following paragraphs, we illustrate the derivations of the Q rules and CV rules. 

2.1 Derivation of Q Rules 
Different classes of Q rules, with varying degree of diagnostic precision, can be 

derived as a function of the type, trend, and number of T-H variables. Specific groups 
of three-signal variables with specific trends are required to form the minimum set for 
unique identification of an increasing r decreasing Q status in a control volume. For 
instance, the three-signal variables [P Win W,,,], can uniquely identify Q,,, in 
the control volume defined by the two flow measurements in both open and closed T- 
H loop configurations. In the above notation, P indicates a pressure decrease 
measurement anywhere in the T-H loop, Win represents an increase in the control 
volume inlet flow and W,,, represents a decrease in the control volume outlet flow. 
Unique Q status identification can also be obtained for horn and Qeng if the specific 
variable trends are available for the sets IY' Pin Poud and pN Tin Toud, respectively. 
However, in many practical situations, the instrumentation set is insufficient to 
provide this minimum set. There are cases where only two- or one-signal variables 
are available in a loop. In such cases, Q rules can also be constructed to provide some 
malfunction Q diagnostics. But as can be expected, the precision of the diaznostics 
decreases with a larger number of possible Q malfunctions being inferred. For 
instance, if only the two-signal variable set [P w] is available in the loop, then a Q 
rule would indicate both Qmass and Qmom problems. 
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In the following paragraphs, we derive Q rules with both three- and two- 
variable sets. Also, we show that three-variable rules can be systematically 
constructed through the logical intersection of two two-variable rules, and that two- 
variable rules can be constructed through the logical union of two three-variable rules. 

Three-Variable Rules 
We start the derivation of three-variable rules for Q rules that infer imbalances 

in the conservation of mass inventory. For the control volume shown in Fig. 2, 
associated with one or a group of connected components, the static mass conservation 
equation is given by 

Qmass = Wout - Win , 

where Win and Wout are the control volume inlet and outlet mass flow rates, 
respectively, and Qlass is the mass source/sink term in the mass balance. Reference 
7 discusses how we separate the dynamic effects of a process component malfunction 



from the analysis of the static conservation equations. Transforming Eq. (1) into 
qualitative differential expressions using De Kleer and Brown's6 methodology and 
notation, gives the following confluence: 

where the square brackets [;1 represent the qualitative value or trend (t, I, -), of the 
argument basic quantity, i.e., Win, Wout, and &ass. Equation (2) represents the 
general confluence, from which Q rules characterizing imbalances in anass can be 
derived by applying the different trend combinations of Wm and Wout, and using the 
operations of qualitative algebra.6 For the case where inlet flow into the control 
volume is increasing and outlet flow is decreasing, the confluence in Eq. (2) infers that 

mass, represented through the rule: 
Qmass is decreasing (Qmass), 1 or, equivalently, that the control volume is loosing 

While Qlass in the actual balance equation is the source/sink term, in the qualitative 
analysis rule in Eq. (31, it should be thought of as a conservation imbalance indicator, 
viz. a malfunction status indicator characterizing the fact that one of the components 
within the control volume is malfunctioning and causing the mass inventory to 
decrease. 

%ass Control Volume 

Fig. 2. Control Volume with Moveable Boundaries Defined by the Location of the Flow 
Measurements Win and Wout 

Similarly, we can also derive a rule from the general confluence in Eq. (2) 
corresponding to rule (A), for the case where Qmass is increasing, 

Trend combinations that cause ambiguous inference in Eq. (21, e.g., both Win and 
Wout increasing, are not represented in the PRD. These two rules, (A) and (B), 
formed with two variables of the same type, Le., W, in the condition part of the rule, 
uniquely identify Qmass imbalances in open loops. However, in closed loops, where 
the definition of "in" (upstream) and "out" (downstream) has two possible 
combinations, both rules would be simultaneously activated regardless of the fault 
location and type of mass problem. 



This undesirable situation can be eliminated, by the addition of information, if 
a P instrument measurement is available. Through perturbation analysis of the 
single-phase liquid equation of state P = P(p,T), where p is the liquid density, we 
obtain 

ap ap 
ap aT 

dP=-dp+-dT. 

By initiating the fault diagnosis when dT is small and using the fact that the bulk 
modulus (paP/ap), for liquid water is positive, the qualitative differential equation for 
Eq. (5) becomes 

where M is the liquid water mass inventory in a control volume V with density p. 
Instantiating the confluence in Eq. (6) with a decreasing pressure trend, translates into 
the rule 

rule (C) If P', Then M'. 

If a P meter is available in a closed (or open) loop, an indication of P1, and hence 
MA, would contradict an inference made by rule (B). Thus, the logical combination 
of rule (C) with rules (A) and (B) eliminates the possibility of applying rule (B) and 
uniquely identifies the Wt instrument as being upstream of the malfunction and W1 
instrument as being downstream of the malfunction. The logic intersection of rules 
(A) and (C) is therefore 

1 t 1 1 If P and W~andW,,,, ThenQ,,,. 

Analogously, there is a corresponding rule for horn when three-signal variables, 
Pin Po,& are available, 

t where Q,,, is downstream of Pin and upstream of Pout, and W is measured anywhere 
in the loop. Rules (D) and (E) are examples which illustrate that only three-signal 
variables, P Win Wo J or [w Pin PouJ, are required to form the minimum set for 
unique Q,,, t f and Q,,, tP identification for the complete set of loops. 

Two-Variable Rules 
When only two- or one-signal Variables are available in a loop, rules can also 

be constructed to provide some malfunction Q diagnostics. But as can be expected, 
the precision of the diagnostics decreases with a larger number of possible Q 
malfunctions being inferred. We provide an illustration of one such rule, for the case 



when only two-signal variables [P W], are available and show how the rule is 
constructed. 

For the case where [P1 Wt], rule @) could be activated, if another flow meter 
downstream of W was present with a decreasing trend, or rule (E) could be activated, if 
another pressure meter downstream of P was present with an increasing trend. Since 
either rule could be activated in this [P1 Wt] combination, then the logic union of 
rules @) and (E), could be applied 

(10) 

where Q,,, is located downstream of the W instrument and Q,,, is located 
downstream of the P instrument. Thus, when two-variable rules with different T-H 
variables are activated, the location of one of the variables (W for Qmass and P for 
Qmom) is used to define one boundary of the control volume with the other boundary 
defmed by either end of the loop. 

rule (F) 

1 t 

If P'l and Wt, Then Q,,, 1 or Q,,,, t 

The construction of rule 0 shows that there is a systematic procedure using 
Boolean logic, logic union in the case of two-signal variables, to derive Q rules with 
two- or one-signal variables from the set of rules which uses the minimum three- 
variable sets [p Win Woud and Pin PouJ. However, the two-variable rules can 
also be used to reconstruct the three-variable rules, if the signal variables can be 
grouped in blocks of two. For instance, if we consider a two-variable rule analogous 
to rule 0, i.e., 

(1 1) 

and a signal set [P* Win WOut] is available, it can be grouped as two two-variable 
sets [P* WT] and [P* W1]. This would mean the activation of both rules (F) and 
(G), where the logical intersection of these rules is QmZS, which is the identical 
conclusion of the activation of rule @). This shows the logical consistency between 
the derivation of the sets of the different-variable-number rules. We apply logical 
union when we construct two-variable rules from two three-variable rules and logical 
intersection when we construct three-variable rules from two two-variable rules. 

* 1 rule (G) If P'l and W1, Then Q,,, or Q,,,, 

t 1  

3. 

2.2 Derivation of CV Rules 
CV rules infer the trend status of nonmeasured variables of a process 

component based on the trends of other T-H variables and the Q status of the 
component. We illustrate the derivation of a CV rule that infers the trend of the flow 
Wa, through the cold side of a counter current heat exchanger. For the control volume 
shown in Fig. 3, the static energy conservation equation is given by 

Qeng = Wa ( b u t  - bin) = Wa cp (Tout - Tin), (12) 



where hin and bout are the control volume inlet and outlet enthalpy, respectively, cp is 
the specific heat and Qeng is the energy source/sink term in the energy balance. 
Transforming EQ. (12) into a qualitative differential expression and solving for Wa 
yields the confluence 

Fig. 3. Control Volume Representation of the Cold side of a Counter Current Heat 
Exchanger where the Energy Balance Equation Allows for the Inference of the Trend of the 

Flow Wa Through the Heat Exchanger 

For the case where the energy source into the control volume is not increasing, the 
inlet temperature is not increasing, and the outlet temperature is increasing, the 
confluence infers that the flow rate is decreasing, represented through the rule: 

rule (H> If L Then W, , 

where the symbol "/,, indicates negation. Other CV rules for inference of W, can be 
obtained by instantiating the quantities in the left hand side of the confluence in Eq. 
(13) with different trend combinations. A similar procedure is used to derive CV rules 
for other types of T-H variables and components. 

The synthetic signal trends obtained through the CV rules extract the most 
information possible from the process and increase the total number of instruments 
(virtual and real) available for diagnostics. Once inferred, synthetic signals are 
combined with actual signals and used to determine the Q status of components 
through the Q rules. In the following section, we illustrate the usage of CV and Q 
rules in the diagnostics of a component failure in a nuclear power plant process. 

3.0  Simulation Results 

The concepts discussed in the previous section have been incorporated into the 
process diagnostic system PRODIAG. The current version of PRODIAG is written in 
Quintus Prologs and has been designed to identify single-component failures in 
generic T-H processes consisting of single-phase liquid, i.e., subcooled water, and 
single-phase liquid plus noncondensable gas. In the following, we show simulation 
results of one, out of many fault events, in the Chemical and Volume Control System 



(CVCS) of a pressurized water nuclear reilctor for which PRODIAG hns been used to 
perform  diagnostic^.^.*^ A blind test with thirty-nine evetits simulated with a full- 
scale operator training simukitor has been used to validate PRODIAG. Out of the 39 
events, 37 were correctly identified within the frrst 40 seconds with graded degree of 
accuracy, i.e., uniquely idenuied, identified as one of two candidates, etc. 

Figure 4 illustrates a portion of the letdown line and charging line of a CVCS 
for a pressurized water reactor. Letdown water leaves the Reactor Coolant System 
(RCS), indicated in the upper left portion of the figure, and flows through the shell- 
side or hot-side of the regenerative heat exchanger 0 where it gives up its heat to 
makeup water being returned to the RCS. From there, letdown water proceeds 
through a series of components (not represented in Fig. 4) until it reaches the Volume 
Control Tank (VCT). Then, the charging pump (pump A in the figure) takes the 
coolant from the VCT through the tube-side or cold-side of the RHX and back to the 
RCS. This simplified piping and instrumentation diagram configuration of the 
CVCS is decomposed into two open T-H loops, loop 1 representing the letdown line 
from the RCS to the VCT and loop 2 representing the charging line from the VCT to 
the RCS. Other flow lines, i.e., T-H loops, are represented in the PID database of 
PRODLAG but have been removed from the figure for simplification. 

RELCTOR c w w  Y Y  v cv-121 
REGENERATIE HEAT 
M W G E R  (RHX) 

Fig. 4. Simplified Letdown Line and Charging Line of a Chemical and Volume Control 
System for a Pressurized Water Reactor 

Let us consider the fault event where the pipe in the charsing line (loop 2) 
connecting valve HCV-182 and the RHX starts leaking. The charging line leak causes 
an instantaneous decrease in loop 2 pressure, except for the separated volume VCT, 
measured by PI-120, increase in mass flow rate from the VCT up to the leak location 
measured by FT-121, and decrease in mass flow rate from the leak location to the 
RCS. The absence of a flow meter downstream of the leak precludes the detection of 
the decrease in makeup water through the tube-side (cold-side) of the RHX. A decrease 
in the RHX cold-side flow causes an increase in the heat exchanger outlet temperatures 
measured by TE-126 in loop 2 and E - 1 2 7  in loop 1. However, due to the heat 
exchanger thermal inertia, there is a time delay before the RHX outlet temperatures 
increase to reflect the pipe let& in loop 2. 



When the fault event starts, PI-120 indicates a pressure decrease and FI'-121 
indicates a flow increase. With only these two [P1 Wt] measurements, the two- 
variable rule in the PRD, rule (F), is activated by PRODIAG to hypothesize that there 
is either a mass decrease in loop 2 downstream of FT-121 or a momentum increase in 
loop 2 downstream of PI-120. The lack of an additional flow meter downstream of the 
leak location, precludes the differentiation between the two hypotheses. However, a 
few seconds into the transient, the RHX outlet temperature measured by TE-126 starts 
to increase, allowing PRODIAG to rule out the momentum problem and narrow down 
the diagnostics to a mass decrease problem. 

The ES diagnostic rules of the PRD arrive at the correct diagnosis by 
sequentially applying CV rule 0, and then Q rule (D). First, CV rule 0 is applied 
to infer that flow Wa through the cold-side of the RHX is decreasing. With this 
information, Q rule (D) is applied by creating a control volume from valve CV-121 to 
the RHX, by matching Win with FT-121 and Wout with Wa, to infer that mass is 
decreasing. 

PRODIAG applies a few other rules, not described in this paper, before CV rule 
(H) can be activated. First, the enthalpy (or temperature) transport rules are applied in 
both loops to transport the constant temperature trend measured by TICV-026 and TE- 
125 to the inlet of the RHX for the cold- and hot-sides, respectively, of the heat 
exchanger. This procedure allows for the inference of a cons t inlet temperature Tin 

of rule 6. The third term in the expression Tout, is directly accounted through the 
measured value of TE-126. Finally, the first term Q&, is accounted for by solving 
an energy balance equation similar to Eq. (13) for dQeng in loop 1 and reversing the 

if TE-127 is 
increasing. Either case satisfies Qeng. 

in both sides of the RHX and accounts for the second term Ti, x , in the condition part 

obtained trend to infer Qeng if TE-127 is unchanging and Qeng 1 

t 

I t  

Once the diagnostics of the charging line leak is narrowed down to a mass 
decrease problem between flow meter FT-121 and the estimated flow Wa inside the 
RHX, the ES proceeds to hypothesize the faulty component. Faulty components are 
hypothesized through the last two mappings illustrated in Fig. 1. First, the CCD 
database is searched to identify generic component types whose failure could have 
caused the detected mass imbalance. For mass decrease, closed valve or component 
break are identified. In out abstract classification of generic components, a break is 
classified as a sink of mass since when a component breaks or leaks it affects the mass 
balance causing a loss of mass. Next, the PID database is searched to determine if 
there are closed valves or component break between the two flow measurements. 
Since there are no closed valves, PRODIAG correctly hypothesizes that the faulty 
component is a break between FT-121 and the RHX. 

4.0 Conclusions 

In this paper we present a novel function-oriented first-principles-based ES for 
on-line diagnosis of incipient process component failure. Diagnostics are performed 



through a three-step mapping process, where trends in T-H variables are mapped into 
trends in imbalances of mass, energy, and momentum, which are then mapped into 
generic faulty components and next mapped into specific faulty components. The 
mapping from T-H variables to imbalances in the conservation equations is performed 
through qualitative physics-based rules that are systematically derived in the paper. 
Both three- and two-variable rules are constructed, which can be used to identify 
imbalances in control volumes with varying diagnostics precision, depending on the 
type, trend, and number of instruments available. Unlike prior work describing the 
use of qualitative physics-based rules, here the approach is generic, with no need to 
customize the rules as a function of the process to be diagnosed. The proposed 
approach is system-independent and can be applied to different processes and plants, 
with the provision of the appropriate process-specific piping and instrumentation 
diagram. 

Initial simulation results for the CVCS of a nuclear power plant indicate that 
the proposed ES can correctly diagnose single component failures in T-H processes 
consisting of single-phase liquid plus noncondensable gas. Future work will include 
the testing of the ES to diagnose malfunctions in different T-H systems consisting of 
similar fluid properties, and extension of the current work to include T-H processes 
utilizing two-phase flow and multiple-component failures. Future work will also 
include the implementation of signal processing techniques such as low frequency 
bandpass filters to account for noisy signals in the determination of signal trends. 
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