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Gauges for the  Ginzburg-Landau Equations of Superconductivity 

This note is concerned with gauge choices f o r  the time-dependent GINZBURG-LANDAU equations of superconductivity. 
The equations model the state of a superconducting sample in a magnetic field near the critical temperature. Any  
two solutions related through a zgauge transformation” describe the same state and are physically indistinguishable. 
This ugauge invariance” can be ezploited fo r  analytical and numerical purposes. A new gauge is proposed, which 
reduces the equations to a particularly attractive form. 

1. The Ginzburg-Landau Model of Superconductivity 

In the GINZBURG-LANDAU theory of phase transitions [I], the state of a superconducting material near‘ the critical 
temperature is described by a complex-valued order parameter $, a real-valued vector potential A, and, when the 
state changes with time, a real-valued scalar potential 4. The role of q5 differs from that of 7c1 and A: the latter 
are predictive variables, whose evolution is governed by dimerential equations; the former is more like a Lagrange 
multiplier. After suitable nondimensionalization, the equations and boundary conditions satisfied by + and A are 
usually presented in the form 

r )  (g + i r ) )  + = - (kv + A> ~ + (1 - I + [ ? )  $ in n x (0, m), (1) 
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( V x A - H ) x n  = 0 onaiEx(0,co). (4) 
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The domain 0 corresponds to  the region occupied by the superconducting material. We assume that S2 is bounded, 
9 C DRD with D = 2 or  D = 3, and the boundary an of R is sufficiently regular; n denotes the outer unit normal 
to ail. The parameters of the model are r ) ,  a {dimensionless) friction coefficient; 6, the (dimensionless) GINZBURG- 
LAXDAU parameter; and y, a nonnegative parameter, which is zero if the superconducting material is surrounded 
by vacuum. The vector field H is a given applied magnetic f i e ld :  in practice, H is either timeindependent or time- 
periodic. As usual, V = grad, V x  = curl, V. z div, and V2 = V . V = A. Furthermore, i is the imaginary unit, 
and a superscript denotes complex conjugation. 

The system of Eqs. (1)-(4), with appropriate initial conditions, constitutes the tine-dependent GINZBURG-LANDAU 
(TDGL) model ofsuperconductrvzty. It was first proposed by SCHMID [2] and subsequently obtained as an s p p -  
totic limit of the microscopic BARDEEN-COOPER-SCHRIEFFER (BCS) model of superconductivity by GoR’KOv AND 
ELIASHBERG [3]. Details can be found in the physics literature; standard references are ABRIKOSOV [4], DE- 
GENNES [SI, and TINKHAM [SI. 

In this article, we will work mostly with a rescaled version of the TDGL model, because the equations are somewhat 
simpler. Let u = l/(qn2). In the rescaled TDGL model, time is measured in units of 1/., the scalar potential in 
units of u/n, and the vector potential and applied magnetic field in units of l / ~ .  The model consists of the equations 

(8, + ib) r ~ ,  = - (iv + A)* 4 + n2 (I - \ $ I 2 )  in Q x (0, m), (5) 

- (’7) 
u ( & A + V + )  = -V x V x A +  J, + V  x H in SZ x (O,m), (6) 

(Vx A-H)xn = 0 onaRx(O,W) ,  (8) 

J, = (2i)-’ ($*V+ - $V+*) - 1$12A = -Re [4* (iV + A) $1. 

- ( i V + A ) $ - n  = -i-p+!~ on 8S2 x (O,OO), 

together with the appropriate initial conditions, Here, we have introduced the abbreviation at = a/%. Furthermore, 

(9) 

The quantity 3, is the so-called svpercurrent or, more correctly, supercurrent density. The supercurrent is a phe- 
s (or COOPER nomenological quantity, which is thought of as a flux of moving ‘‘superelectrons.n The s 



pairs), whose density is ns = ] $ I 2 ,  are responsible for the superconducting properties of the material. For example, 
the supercurrent prevents a magnetic field from penetrating a superconducting region. 

Note that E = -dA/dt - Vd is the electric f ield and B = V x A the magnetic induction. Therefore, Eq. ( 6 )  may 
be viewed as Faraday’s law, V x B = J,  where the total current J is the sum of the supercurrent J,, a “normal” 
current J, = aE, and the transport current Jt = V x H. The normal current obeys OHM’S law with a “normal 
conductivity’’ coefficient u. 

In the steady state, the TDGL model admits the trivial solution $ = 0, V x A = H. (Recall that the scalar potential 
vanishes in the steady state.) This solution represents the superconductor in the normal stale, where the magnetic 
field penetrates the sample uniformly and the material has lost all superconducting properties. 

2. Gauge Invariance 

Equations (5) and (6) require initial conditions for the order parameter and the vector potential. Here, the concept of 
gauge invariance enters. Because the physical state of the system at t = 0 is completely determined by the magnetic 
induction B, the superelectron density n,, and the supercurrent J,, we have a significant degree of freedom in the 
choice of initial data for $ and A. In fact, if the pair ($0, Ao) properly specifies the physical initial state, then so 
does any other pair ($&, Ah) that is related to ($0, Ao) by a transformation 

Gxo:  ($0, Ao) - ($4, Ah) = ($oe’xo, A0 + VXO) . (10) 

Here, xo can be any (sufficiently smooth) real-valued function of position. Equation (10) is the gauge transfornation 
for the stationary GINZBURG-LANDAU model. 

There is a similar, though more complicated, gauge transformation for the time-dependent GINZBURG-LANDAU 
model. In terms of the rescaled variables, it is 

G x :  ($ ,A,  4) - (#, A’, 4’) = ($eix ,  A + Vx, d - dtx) . (11) 

Here, x can be any (sufficiently smooth) real-valued function of position and time. Mathematically, gauge invariance 
reflects a lack of uniqueness. The TDGL model defines only an equivalence class of solutions, and by choosing a par- 
ticular gauge x we select a representative from this class. The physical relevance of gauge invariance is the following. 
At each instant, the macroscopic state of the superconductor is entirely specified in terms of the electromagnetic 
variables E and B, the superelectron density n,, and the supercurrent J,. These quantities are invariant under the 
gauge transformation (ll), so the states ($, A, 4) and ( $ I ,  A’, 4‘) are macroscopically indistinguishable. The choice 
of a particular gauge x does not affect the specification of the physical state of the system. 

3. Gauge Choices 

The most common gauge is the “COULOMB gauge,” where the vector potential is divergence-free at all times. If 
($0, Ao) are the initial data given with Eqs. (5) and ( 6 ) ,  one determines the initial gauge xo by solving the boundary 
value problem 

~ 

Ax0 = -V . A0 in Q, V X O .  n = -Ao. n on dQ, (12) 

and changes to the image ($;,Ah) of ($0, A*) under the gauge transformation Gx0. At any time t > 0, one takes 
the solution (111, A, 4) of the rescaled TDGL model, solves the boundary value problem 

A x = - V - A  i n R ,  V x - n = - A . n  ondR,  (13) 

u A ~ = V * J , ,  V - A = O  inRx(O,co) ,  (14) 
V $ - n  = --y$, V 4 - n  = 0, A .  n = 0, (T x A - H) x n = 0 on dQ x (0, OO), (15) 

and changes to the image (+’,A’, 9’) of ($,A, 4 )  under the gauge transformation Gx. As a result, Ab and A‘ are 
divergence-free. The procedure amounts effectively to integrating Eqs, (5) and (6), together with the equations - 

starting from initial data ($0, A*) with V . A0 = 0. 

The equations of the TDGL(C) model (“C” for COULOMB gauge) are formally similar to the NAVIER-STOKES 
equations for an incompressible fluid. This similarity was exploited in recent work by TANG and WANG [7], who 
proved the existence of strong (D = 2 , 3 )  and weak (D = 2) solutions and of a global attractor. 
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Because the COULOMB gauge requires the solution of an elliptic boundary value problem for the scalar potential 
at each time step, it is less suitable for numerical purposes. Here, one would like to eliminate the scalar potential 
altogether. This is, in fact, possible. By choosing an arbitrary gauge x o  for the initial data and determining x as 
the solution of the initial-value problem 

at# = 4 in R x (O,CQ) ,  x l t = ~  = xo in R, (16) 
one obtains the “zero-electric potential gauge.” (The scalar 4 is also known as the electric potential.) In this gauge, 
the rescaled TDGL model reduces to 

a,$ = - ( i ~  + A ) ~  4 + (1 - 1$12) + in R x (0, m), (17) 
u&A = - V x V x A + J , + V x H  i n Q x ( O , m ) ,  (18) 

(iV + A ) +  . n  = 474 on 8S2 x (O,w), (19) 
( V x A - H ) x n  = 0 onaRx(0 ,co ) .  (20) 

The TDGL(Z) model (“Z” for “zero-electric potential gauge”) was used by Du [8] to prove the existence and 
uniqueness of strong solutions. It is the kernel of the TDGL code used at ARGONNE [9, 101 for the numerical 
simulation of vortex dynamics in type-I1 superconductors. 

It is not possible to combine the COULOMB gauge and the zero-electric potential gauge. Even when the initial data 
are divergence-free, the solution obtained in the zero-electric potential gauge does not remain on the divergence-free 
manifold. To see this, take the divergence of Eq. (18): if div A is zero, it must be the case that div J, = 0. But 
from Eq. (17) we obtain the expression div J, = ( 2 i ) - 1 ( v & $  - $at$*), which is zero if and only if + = 0 or the 
phase of $ is constant in time. 

It is, however, possible to  couple div A to 4. The standard gauge is the “4 = -div A gauge,” which maintains 
the identity 4 = -div A between the (unscaled) potentials or, equivalently, u4 = -div A between the rescaled 
potentials at all times. The gauge x is the solution of the boundary value problem 

u&x - Ax = div A + a4 in R x (0, CQ), Vx n = -A . n on 8 2  x (0, m). 

The initial condition x l t = 0  = xo can be chosen arbitrarily. Usually, one takes xo so the initial data are divergence-free, 
cf. DU [SI, but this choice is in no way necessary; in fact, there is a distinct advantage in leaving x o  undetermined. 
The rescaled TDGL model reduces to the following TDGL(S) model (“S” for “standard 4 = -div A gauge”): 

(21) 

&$ = - (iV + A)2 $ + tc2 (1 - !$I2) $4- ia-’(div A)$ in f2 x (0, CQ), (22) 
u&A = AA + J, f V x H in R x (0, co), (23) 
V$-n = --y$, A . n = O ,  (V x A - H) x n = 0 on 8Q x (0, oo). (24) 

Here, the initial data ($o,Ao) must be consistent with the boundary conditions (24). The TDGL(S) model was 
analyzed by TAKAC 1111, who showed that it generates a dynamical process in a Cartesian product of fractional 
Sobolev spaces. 

There are, of course, many other ways to couple div A to 4. In fact, we claim that the TDGL model reduces to 
a more tractable form if the constraint 4 = -div A is applied to the rescaled, rather than the original, potentials. 
The gauge x which accomplishes this reduction is the solution of the boundary value problem 

(25) &x - Ax = div A + 4 in R x (0, oo), Vx . n = -A . n on aQ x (0, CQ), ~ --. 

with Xlt=o = xo arbitrary. In this gauge, the rescaled TDGL model reduces to  

at$ = - (iv + A ) ~  $ + s2 (1 - /$12)  11 
u&A = -V x V x A+aV(div  A ) +  J, + V  x H 

in R x (o,cQ), 
in 52 x (O,CQ) ,  

V $ . n  = --y$, A + n = O ,  ( V x A - H ) x n = O  onaQx(0 ,oo) .  
We refer to this model as the TDGL(R) model (“R” for “rescaled 4 = -div A gauge”). 

The TDGL(S) and TDGL(R) models are similar, but not identical. Because- -V x V x A = AA - V(div A), they 
differ in the way the divergence of A is accounted for. In the TDGL(S) model, div A appears in the equation for +, 
in the TDGL(R) model in the equation for A. The difference has an important consequence: the TDGL(R) model 
describes the gradient flow of an energy functional, the TDGL(S) model does not. In fact, the GINZBURG-LANDAU 
energy for the TDGL(R) model is I 

I 
1 

E[$, A] = / (I(iV + A)$I2 + p 2 ( 1  - 1 $ 1 2 ) 2  + 10 x A - HI2 + a(div A)2 -y1$I2 d~(z).(29) 
n 



One readily verifies that the first variations of E with respect to +* and A are 

b,pE = 
~ A E  = 

(iV + A)2 7L - tc2 (1 - 1 $ 1 2 )  $, 
2 ( V  x V x A - aV(div A) - J, - ‘7 x H). 

The natural boundary conditions associated with E are 

VZC, . n  = -74, (V x A - H) x n = 0 ,  

provided n . A = 0 on dR. Hence, the TDGL(R) model corresponds to the dynamical system 

at$ = -6*. E ,  adtA = - 3 b ~ E .  

A detailed study of this dynamical system will appear in our forthcoming article [12]. 
(33) 

In conclusion, we note that the 4 = -div A gauge, in either of the forms discussed here, appears to be the most 
natural gauge for the TDGL model, as every stationary solution ($,A) of TDGL(S) or TDGL(R) automatically 
satisfies the COULOMB gauge div A = 0. 
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