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Technological Innovation in Community Housing Development: Barriers to 
Energy Efficiency 

James D. Cavallo, Economics and Law Section, Argonne National Laboratory 

Abstract 

Community housing developers produce affordable housing and jobs for many residents 
of low-income neighborhoods through the rehabilitation of existing single and multi-family 
buildings. Typically operating as small, not-for-profits or community-based organizations, the 
vast numbers of community housing developers creates high coordinating costs of operating jointly 
to acquire the shared learning needed to implement new techniques, such as those involving 
energy efficiency. This paper presents a model of technology adoption that suggests that new 
profitable technologies will be adopted only with low probability and that strategic interaction 
between potential adopters M e r  reduces the likelihood of adoption. These features result from 
the ability of potential adopters to postpone the bearing the costs of adoption of new technologies 
and their ability to share the knowledge of others who have adopted new technologies. These 
features are particularly characteristic of community housing developers. 
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Technological Innovation in Community Housing 
Development: Barriers to Energy Efficiency 

1. Introduction 

The U.S. Department of Housing and Urban Development (HUD) defines affordable 
housing as housing that costs no more than 30 percent of an occupant’s income. Included in the 
HUD definition of the cost of housing is the cost of the energy used to operate the housing. In 
one recent year (1989) over 5 million households (approximately 80 % of poor householders) spent 
at least 30 percent of their annual income on rent and utilities, and approximately 3.5 million 
households (56% of poor householders) spent more than 50 percent of their income on rent and 
utilities. To place these observations in perspective, an average family with an annual income of 
$50,000 spent approximately 15 percent of its income on rent and utilities (Katrakis, Knight, and 
Cavallo: 1994). 

The absence of housing that fits into HUD’s definition of affordability arises both f’rom 
high rents and high utility costs. Responding to the high rents as normal market signals, 
developers of housing have found numerous ways to expand the housing stock in urban areas. 
One approach that is particularly important to urban neighborhoods is the rehabilitation (rehab) 
of existing residential buildings. Rehab can be a low cost method of housing development. Often 
the cost of a substantial rehab in a city like Chicago is between $55,000 and $70,000 per unit for 
a multifamily building. Substantial rehab involves demolition of the existing interior of the 
buildings and starting reconstruction from the remaining outer shell. The cost of moderate rehab 
in a city like Chicago is often between $20,000 and $35,000 per unit in a multifamily building. 
Moderate rehab generally is able to be performed if the interior walls of the building are in 
serviceable condition. With the cost of new construction ranging from $95,000 and up, the rehab 
of structurally sound building is an economical way to expand a community’s housing stock in 
response to high rents. 

One of the prime sectors that has responded to the need for affordable housing in urban 
communities has been the non-profit sector. Often motivated by goals other than financial gain, 
the non-profit housing developers tend to be small and community-oriented. With tax-exemptions 
and a smaller profit requirement, the community housing developer is frequently able to produce 
housing units through the rehab of existing buildings at costs that permit affordable rents. By 
providing rental units at low cost, the community housing developers also go a long way in saving 
buildings from abandonment and preserving the character of urban neighborhoods. 

Though community housing developers are frequently able to produce housing a relatively 
low cost, they are generally less able to produce housing that has a low operating cost. By 
depending on development managers that are often lack professional experience and by using less 
skilled workers, the housing units produced by community housing developers are frequently 
expensive to operate due to building envelope insufficiencies in insulation and air sealing, poor 
choice of component systems, and mismatching of building systems. Particularly by not 
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incorporating current concepts of energy efficiency, community housing developers 'can create 
housing that is affordable to rent but not affordable to operate because of high utility bills. 

It is a well-known that the housing market can be plagued with a problem of inability to 
directly observe the future operating costs of a housing unit. After walls are up and windows are 
in, an energy efficient apartment can look identical to an energy hog. This barrier to energy 
efficiency, however, does not explain why signaling devices that have been developing in the new 
construction market have not carried over to the urban rehab market where the benefits of energy 
efficiency can be much greater. Possibly a more important barrier to the adoption by community 
housing developers of techniques that would lower energy costs in the strategic interaction 
associated with shared learning. 

In this paper a model of technology adoption is developed that is based on optimizing 
behavior by potential adopters. The model considers technologies that require sunk costs in 
switching from an older technology. One likely source of such sunk costs are the training or other 
human capital costs associated with planning, managing, and successfully executing a new 
technology or technique. Any training costs directly connected to a new technique will almost 
certainly be sunk and unrecoverable if the project is not productive. The optimizing individual 
will generally react to the presence of sunk costs by requiring a higher profit margin to motivate 
investment in situations where the investment can be postponed (Dixit and Pindyck: 1994). 

The possibility of postponement - waiting to bear costs for at least one additional period - 
becomes a more important factor in the decision process if shared learning is possible. Shared 
learning would occur whenever the training and other human capital costs of production are less 
for an individual who waits for another to bear those costs and thus lessen his own. Community 
housing developers may well be characterized as a group that learns best in a social setting by 
watching others accomplish some task rather than learning privately through research and 
introspection. The model developed here emphasizes share learning as a source of a barrier to 
the adoption of innovations. 

In the next section, the basic optimization model is created and several characteristics 
In the third section of the paper, the shared learning and strategic interaction is derived. 

examined. 
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2. Technology Adoption under Monopoly I 
The basic problem of technological innovation for a decision-maker is to chose between 

continuing to use the technology that has been used in the past or to start using an alternative 
technology. This problem may be represented as the choice between two stochastic processes with 
the processes being alternative profit streams over future periods. Two essential differences 
between the two processes are that (1) there is less uncertainty associated with the profit stream 
of the old technology, and (2) that there is an unrecoverable cost of change - a sunk cost - 
associated with switching to the new technology. Here we focus on the second. 

In this section, a model of technology choice is developed in which a profit-maximizing, 
risk neutral monopolist must choose between one technology that is currently being used and a 
new technology. It is assumed that annual profits from each technology are uncertain. Included 
in the costs of the new technology are the sunk costs of switching to that technology. An 
important part of the sunk costs in technology adoption is acquiring the human capital to 
implement the new technology, and the costs of acquiring this human capital will vary from period 
to period. Thus the sunk costs of switching to the new technology is itself a stochastic process. 
Because a potential adopter has the ability to delay the adoption of the new technology, the 
presence of the stochastic sunk costs becomes an important factor. We will see that the stochastic 
sunk costs create a hurdle that the new technology must surmount before the monopolist will 
switch away from the old technology. The hurdle is a required profit margin above mere equality 
between the new technology's discounted expected profit stream and that of the discounted 
expected profits of the old technology. 

The model of the monopolist's choice between the two technologies is based on a model 
of choice under uncertainty. To concentrate our attention on the essential issues, we will assume 
that sunk switching costs for a period (xJ are revealed at the start of the period and know to the 
decision-maker at the time of choice. The profits from the old technology for the current period 
(&J and all future period will be assumed to be revealed after the current period's choice is made. 
Similarly, the profits from the new technology minus switching costs will be assumed to be 
revealed after the current period's choice is made. We will assume that the random variables qt 
and TI, are bounded and time-invariant.' The expected profits for any one future period from the 
old technology are Ern,], and the expected profits minus any switching costs from the new 
technology are Em,]. We assume that the random variable,x is bounded and has the time- 
invariant probability distribution function F(xJ. Given the revelation of the the switching costs 
at the beginning of period t, the expected current period profits from the new technology are 
E N - x t .  Since switching costs are a one-time event and assuming that the monopolist continues 
to use the new technology throughout the future, the discounted expected profit stream from the 
new technology may be defined as a function @(xJ =CTETp"'E[U,J-x,, T= (t,t + 1 , t+2,. . .}. p is 
the discount factor and is between zero and one. We assume II,, II,, and x, are independent. 

Because I&t and 9, are assumed to be time-invariant, we will exclude the time subscript hereafter. 



Page 4 

We formulate the optimization problem of the individual as a choice between terminating 
the use of the older technology by accepting the current value of the cost or continuing the use of 
the older technology for at least one more period while awaiting the next realization, x ~ + ~ ,  of the 
stochastic process. This maximization problem can be given as the dynamic programming 
functional equation, Eq. 1. 

The choice represented in the optimization problem depends on the current realization of 
the switching costs of the new technology. We observe that since @(xJ=EW-%, @(xJ is linearly 
decreasing in xt. Also v(xJ is continuous in T .  In addition, it is apparent that the optimization 
problem in Eq. 1 is recursive until the choice is made to switch to the new technology and, thus, 
the problem can be represented by the functional2 equation Eq. la. 

Figure 1 illustrates Eq. la under the assumption that x can taken on values as low as zero and an 
upper bound, B, above some value x* where @(x*)=E[I]BI+PJv(t)dF(t). We notice that 
E@J +Plv(t)dF(S) does not vary with x and is the expected value of the current period’s profit 

Figure 1 

The functional equation v(x) in Eq. la  is often used in search models - see, for instance, Telser 
(1978, pp, 302-307) or Sargent (1987, pp. 57-70). 
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from the old technology plus the discounted expect value of the next period’s optimization 
problem. That is, E[nbl+pJv(&IF(€J is the value of continuing to use the old technology for at 
least one more period. Since @(x) is linearly decreasing, it can intersect EIIIo] +PJv(f)dF(() at 
only one point. Assuming +(O) >E[IIJ+PJv(()dF(Q > O  > @(B), there will exist a value of 
the switching costs, x*, at which the function @(x) equals the value of continuing to use the old 
technology for at least one more period. For current period switching costs, x,, below x*, the 
functional v(x) is maximized by chosing to switch forever to the new technology. For current 
period switching costs, x,, above x*, v(x) is maximized by continuing to use the old technology 
for the current period and revisiting the optimization problem again next period. The point x* 
divides the domain of v(x) into areas of termination and continuation. 

We investigate the switching point x* by restating Eq. l a  as follows: 

From Eq. 2, we can recursively divide the continuation portion of v(x) into termination and 
continuation regions for period t + 1 and associate the probabilities of each event as in Eq 3.  

Adding and subtracting Pld*@(x*)dF on the right-hand side of Eq. 3 and rearranging terms gives 

or since ~ ( x J  = Xp”‘E[IIJ-x, =E[It,J/(l-P) - x, 

The left-hand side of Eq. 4 can be identified as the difference between the discounted expected 
future profits from the adoption of the new technology and the discounted expected future profits 
from remaining with the currently-used technology. 

Eq. 4 can be given a useful graphical interpretation. First we define the right hand side 
of Eq. 4 as the function cP(x)=[p/(l-P)]~<*(x*-~)]dF and note that @(x) is non-negative and 
monotonically increasing in x. It is obvious from the definition that @(O)=O Defining the 
function T(x)=(E~J-EIIIo])/(l-P)-x as the left hand side of Eq. 4, we see Y(x) is linearly 
decreasing in x with slope -1. Assuming the new technology would have a higher expected profit 
if switching costs are zero3, T(0) will be positive. By continuity there will exist some cost, a, 

If E@I,JsE&], there would be no interest in switching to the new technology. 
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beyond which the expected discounted profits from the older technology will be greater than that 
of the innovation - Le., Y(x) < O  for all x>2. Since @(x) increases in x from zero and Y(x) 
decreases in x from a positive value to zero, by continuity a value x* will exist where T(x) and 
@(x) are equal. Eq. 4 is this equality. The graphs of the functions T(x) and @(x) can be used to 
determine the value of x*, as shown in Figure 2. 

Figure 2 

Profit 
Differential 

X 

From Eq. 4 we derive Proposition 1. 

Proposition 1: With uncertainty in switching costs, a positive profit differential between the 
new and old technologies can exist under which a profit-maximhhg monopolist will continue 
to use the older technology. 

Without uncertainty in the cost of the new technology, the older technology will be 
continued only if C ~ - ' ( E ~ - E W ) I ; O .  With uncertainly the innovative technology would only 
be used if the current period's switching costs are less than or equal to x* > 0. At x*, the profit 
differential between the two technologies is T(x*), which is necessarily positive since it equals 
@(x*)>O. But since T(?)=O, x*<2, and T'(x)=-1, the profit differential between the two 
technologies will be positive between x* and 2 yet the profit-maximizer will not switch from the 
old technology. QED. 

A simple numerical example of the model can be found in a uniform distribution of the 
adoption costs over the range [2,12]. Let EmJ = 18, E m ]  = 16, and Q = .9 in this example. 
Then T(x)=[(18-16)/(1-.9)]-~=20-x and @(x)=9[(x2/20)-(x/5)+ 1/51. The value of the switching 
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costs that separates the termination and continuation regions, x*, is 7.31. That is to say, if the 
realized value of the cost were any amount less than 7.31 the optimal response would be to 
terminate the use of the old technology and adopt the innovation. Any larger value for the cost 
would lead the profit-maximizing, risk neutral monopolist to continue using the old technology. 

We can also compute the hurdle created in this example by the stochastic switching costs. 
If there were no uncertainty, the innovation would be adopted as long as the cost is less than 20. 
This follows because the difference between the discounted expected profit streams of the two 
technologies is T(x) =20-x and T(x) > 0 for all x < 20. In contrast, for the uniform distribution 
x~[2,12] the old technology would only be abandoned if the xsx*=7.31. At a cost of 7.31, the 
difference between the discounted expected profit streams of the two technologies, T(x*), is 
12.69. We know that the present value of the expected future profits from the old technology is 
160 (=16/1-.9). Therefore, the discounted total profits from the innovative technology, 
@(x*)=Em]+Plv({)dF, needs to be at least 172.69 to stimulate adoption. 

The amount @(x*) is the hurdle that the discounted expected profits of the innovation must 
exceed beyond mere equality with the discounted expected profits of the current technology in 
order to stimulate adoption. The hurdle arises because the opportunity cost of waiting for another 
realization from the stochastic process x can be less than the benefit of waiting. That is 

(E~J-E[n,])/(l-p) - x = Y(x) < @(x) for any x>x*. 

The function Y(x) readily can be seen as the cost of waiting since the individual gives up this 
difference in the discounted expected profit streams by passing up the current period realization 
of the switching costs. We recognize that @(x) is the benefit of waiting by refering to the 
cumulative probability distribution of Figure 3. By not accepting some x > x*, the individual 

Figure 3 

0 X 
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maintains the option of discovering a cost lower than x* in any future period. He closes off that 
option by accepting x. Since (x - ()dF(() is the current period surplus resulting from incurring 
switching costs instead of x multiplied by the probability of realizing E, the integral Jd(x3)dF(() 
gives the cumulative expected current period benefit of being able to pay each cost (5x. The area 
below the cumulative distribution function and above the abscissa in the range [O,x] is the value 
of the integral J'd(x-t)dF((). Because the option of paying some lower cost Esx remains open for 
all future periods starting in the next period if x is not paid in the current period, the cumulative 
expected benefit of paying a lower cost represents a perpetual annuity beginning in the next period 
- hence the modifier P/(l-P) in @(x) When the individual exercises the option by accepting the 
current realization of x, the option is lost for all future periods and the benefits of lower 
realizations of the stochastic process are sacrificed. 

Knowing the relationship between the cumulative probability distribution function and the 
function @(x) in Figure 2 enables us to develop an additional proposition on the workings of the 
model. 

Proposition 2: A shift in the distribution of the current period switching costs that decreases 
the expected value but leaves the distribution otherwise unchanged will increase the 
innovation's profit hurdle. 

To represent a shift in the mean of the state variable's distribution while holding all other 
aspects of the distribution constant, we will create a new random variable and relate it to the 
previous variable x. Let us assume that the revealed switching costs, x,, is a realization of a 
random variable X(o) with o having a probability space (&4,p). Furthermore we assume that 
a new random variable Z(o) is defined from X(o) by the equation Z(o) = X(o)-c, where c > 0. 
Assuming the initial random variable X has a range of [c,-), the range of the new random variable 
will be [O,-). Equivalently, one could assume a zero probability for the event x~[O,c). We 
represent the cumulative distribution function for X with Fx(() and the cumulative distribution 
function for Z with F,((). Similarly we define the functions Cpx(x) and @,(z) for the right hand 
side of Eq. 4. 

Because we have shifted the random variable without otherwise altering the distribution, 
we immediately recognize that the probability of an event (E[O,Z] for the random variable Z will 
equal the probability of the event (E[c,z+c] for the random variable X. The relationship between 
the QZ(z) and QX(x) can be seen using the standard transformation of variables technique. We 
have 

And since x-c = z 
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Therefore O,,(~)=O~(x-c)=@~(z). That is, shifting the distribution of the switching costs to the 
left causes a parallel shift in the right hand side of Eq. 4. 

Though the right hand side of Eq. 4 shifts with the distribution, the left hand side of Eq. 
4 does not shift. The function T(z) is identical to T(x). As a result, since QX(x) < Oz(x), it is 
evident that if x* is such that T(x*) =aX(x*) then T(x*) < az(x*). But since dT(x)/dx=-1 and 
d<P,(x)/dxrO the value of x that separates the continuation and termination regions for the random 
variable X will be greater than the value of z that separates the continuation and termination 
regions for the random variable 2. That is, for T(z*)=(D,(z*), z* <x*. This implies that 

T(z*) > T(x*) 

or that the profit hurdle for 2 will be greater than the profit hurdle for X. QED. 

It is important to recognize that the profit hurdle for the distribution with the higher 
expected value is reduced only because the optimal policy for the monopolist is to wait for a 
realization of switching costs that is lower. This can result from an increase in the benefit of 
waiting for lower switching costs 

Considering again the numerical example of the model, one can illustrate Proposition 2 
by assuming the random variable 2 has a uniform distribution of the transaction cost over the 
range [0,10]. AgainletEm=l8,  E@J=16, and p=.9. ThenT(z)=2O-zand @ &z)=,9(z2/20). 
The value of the switching costs that separates the termination and continuation regions, z*, is 
5.6475. At this value the difference between the discounted expected profit streams of the two 
technologies, T(z*), is 14.35, and the discounted total profits from the innovative technology, 
~(z*)=EIIIo]+~Jv(~)dFZ,  needs to be at least 174.35 to stimulate adoption. The hurdle in the 
earlier example was a lower amount, 12.69. 

In this example, we see that there is an increase in the benefits of waiting. Comparing the 
solution z* to the solution for the random variable X, it is seen that z* leaves 43.525 percent of 
the distribution within the continuation region and 56.475 percent in the termination region while 
x* assigns only 46.89696 percent of the distribution to the continuation region and 53.10304 
percent to the termination region. Thus with the decrease in the expected value of the random 
variable while holding the distribution around the mean unchanged, the termination region has 
been increased in size. 

Finally, one should notice that the benefits of waiting for an additional realization of the 
switching costs is entirely connected to the future distribution of switching costs. If the 
monopolist knew that the distribution of switching costs would change from the current period’s 
distribution to a new distribution with a lower expected value (all other aspects constant), then the 
switching point in the current period would be determined by the future distribution. For 
instance, suppose that the monopolist knew that some research, training, or discovery would lower 
uniformly lower the cost of switching for the next and all future periods. This would be as though 
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the current period’s distribution of switching costs was drawn from the distribution of the random 
variable X and all future periods’ switching costs would be drawn from the distribution of the 
random variable 2. The value of the point dividing the continuation and the termination regions 
would be equal to z* since this is the value equating the two sides of Eq. 4. The likelihood of a 
current period realization from the distribution of X that is less than z* is, of course, less than the 
likelihood of a future period realization below z* from the distribution of Z. In the numerical 
example above, for instance, the chance of getting a switching cost below 5.6475 from a uniform 
distribution on [2,12] is just 36.475 percent. 

This final point which is obvious from Eq. 4 is formalized in the following: 

Proposition 3: A shift in the distribution of the next and all future period expected switching 
costs will increase the current period’s profit hurdle. 
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3. Shared Learning and the Interdependence of Adoption 

We can now consider a non-monopoly situation. In this case we will also assume that the 
learning of one individual will also educate others in the market. The shared learning will be 
represented by a reduction in the expected switching costs of all participants choosing to adopt the 
new technology in later periods. 

We build on the previous section by continuing to view the adoption of a new technology 
as switching from one stochastic process to another as in the model of Eq. 1. With more than one 
potential adopter and shared learning, the optimization problem for the individual becomes a game 
in which each play can continue to use the old technology or switch to the new technology. The 
complication that is added is that the benefits of waiting can include receiving a lower expected 
cost of switching if another player chooses to adopt the technology. 

The problem can be set out as a two-person game in which nature makes the first move. 
Nature, in a sense, selects the current period’s cost of switching via the random variable X. Next 
the two players choose whether to switch now (adopt the new technology in the current period) 
or wait at least one more period. The two players are assumed to choose at the same time and 
have identical expected profits and costs. The payoff matrix is given below in Table 1 with Player 
A’s payoff as the frrst element in each matrix cell and Player B’s payoff listed second. 

Table 1 
Player B 

Switch Now Wait 

Player Switch Now 

A Wait 

Though it may be difficult to see immediately, there will often be a dominant strategy for 
each player. If Player A waits and Player B adopts, the expected costs of adoption will be lower 
for Player A in the next period. This is represented by the distribution 2 in Player A’s payoff in 
the lower left-hand cell. Since the distribution Z has a lower expected value than distribution X, 
the payoff to Player A will be greater if Player B switches now than if Player B also waited. That 
is, E[IIJ + PJv(r)dF, > E@IJ +PJv(C)dF,. Similar payoffs exists for Player €3. Whenever Nature 
chooses switching costs such that EIIIJ/(l-P)-xt C E[QJ +QJ-v(t)dFx, the dominant strategy for 
each player is to wait. Also there is a dominant strategy in switching now for both players if 
Nature chooses switching costs in which E[IIJ/(l-P)-x,>EPJ +PJv(()dF,. For switching costs 
that place the payoff of switching now between these two values, the Nash equilibrium is a mixed 
strategy over the two pure strategies. 
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Player Switch Now 

A Wait 

These results can be easily seen using the numerical examples above. In Table 2, we 
suppose that Nature has chosen switching costs of 11, the expected value of the distribution X. 
The value of switching now is therefore 169. Waiting is the obvious dominant stategy for each 
player. Player A would prefer to wait if Player B chooses to switch now, since he would receive 
174.35 rather than 169; and he would prefer to wait if Player B chooses to wait, since he would 
receive 172.69 by waiting rather than 169. The logic of Player B’s optimum choice to wait is 
S i m i l a r .  

(169, 169) (169, 174.35) 

(174.35 , 169) (172.69 , 172.69) 

Table 2 

Player Switch Now 

A Wait 

Player B 

(175 , 175) 

(174.35 , 175) 

(175 , 174.35) 

(172.69 , 172.69) 

Switch Now Wait 

A dominant stategy for the two players also exists if Nature chooses switching costs equal 
to 5. Table 3 illustrates this situation. Player B would prefer to switch now regardless of Player 
A’s choice. By switching now, Player B receives 175 rather than 174.35 if Player A also chooses 
to switch now. Also Player B receives 175 by switching now rather than 172.69 if Player A 
chooses to wait. A similar strategy incentive exists for Player A. 

Table 3 
Player B 

No dominant strategy exists if Nature chooses switching costs between 5.65 and 7.32. 
Table 4 shows this situation. If Player A is certain that Player B will choose to wait, Player A’s 
best choice is to switch now since he can receive an expected payoff of 174 rather than an 172.69. 
However, if Player A is certain that Player B will choose to switch now, the best strategy for 
Player A is to wait, since by waiting Player A can receive a payoff of 174.35 rather than 174. 
The strategy incentives are similar for Player B. One solution concept for this game mtrix is the 
mixed strategy Nash equilibrium where each player chooses a probability with which he will play 
each strategy. The probability with which Player A will chose to wait will increase from zero to 
one as the costs of switching decreases from 7.32 to 5.65. 
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Table 4 
Player B 

Switch Now Wait 

Player Switch Now I (174, 174) I (174, 174.35) I 
A Wait I (174.35 , 174) I (172.69 , 172.69) I 

The important point the this exercise is to observe that the presence of shared learning 
pushes the hurdle rate above what it would be if each individual acted and learned independently. 
This is interdependence acts as a barrier to the adoption of the new technology. This additional 
hurdle that the profits of the new technology must surmount is all the more important because it 
comes on top of the hurdle created by individuals independent motivation to wait. 
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4. Conclusions 

This paper has presented a model of technology adoption that may be particularly 
applicable to community housing developers. The model is based on the existence of sunk costs, 
the ability of actors to wait before adopting a new technology or technique, and the presence of 
shared learning. In a market characterized by these factors, one might expect the evolution of 
some separate organization that would facilitate the joint learning. In other markets such 
organization have evolved. For instance, the Electric Power Research Institute serves many of 
the research, developement, and training needs of the electric utility industry. Community 
housing developers, however, are generally small and numerous organizations. The costs of 
coordinating the joint actions of such organizations would tend to be extremely costly. As a result 
the research, development, and training needs of community housing developers are largely left 
to the public sector. 
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