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Abstract. In order to achieve a maximum space charge limit in the IPNS-II 
synchrotron it is desirable to inject a Kapchindcij-Vladimjrskij (KV) distribution (1). 
We rederive the KV distribution, fmt starting from a smoothed Hamiltonian and then 
for the full alternating gradient case. The microcanonid distribution can be 
generalized slightly so as to allow one to alter the aspect ratio of the beam ellipse. 

The KV distribution requires that the injected particles al l  have the same total 
transverse oscWon energy, and also that they are distributed uniformly throughout 
the entire energy shell, This requires painting the injected beam unifody in the three 
independent dimensions of the energy shelI. We have devised two scenarios for doing 
this, one involving a suitable vafiation of the x and y injected amplitudes during the 
injection process, and the second involving introducing a small coupling between the x 
andy motions. 

We have written a program to simulate the injection process which incMes the 
tum-to-turn forces between the (500) injected turns. If we omit the turn-to-turn forces 
then the resulting space charge density distributions are indeed very nearly nniform 
within a circuhr beam cross section for either KV injection scenatio, but are neither 
uniform nor circular for otha plausible scenarios. With turn-to-turn forces included 
the intertun! scattering can be fairly important and the resulting density distributions 
tend to develop lower density halos. 

If we add a gradient bump to simulate magnetic quadrupole emrs in the lattice, 
then the effects of half-integral resonances can be clearly seen. When the space charge 
forces between turns depress the tune to a resonan=, beam growth keeps the tunes 
constant at the edge of the stop band, unless the resonance is crossed quickly. The 
resultant growth of the beam can be seen in the density distribution if resonant effects 
are dominant, i.e. starting with tunes near the resonance. If we start farther from the 
reson-, in which case we inject higher intensity beams, the turn-to-turn forces 
dominate tbe final density distribution. In that case the hnal distribution is nearly the 
same whether the zesonatlce is present or not, though the effect of the tesonance on the 
final tune can still be clearly seen. 
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I. INTRODUCTION 
The Kapchinskij-Vladimirskij (KV) distribution (1) was originally of 

mathematical interest as a many particle problem which could be solved analytically. 
It gave an idea of the effects of space charge forces in high intensity accelerators, 
but it was not expected that any real accelerator would contain a microcanonical 
distribution. 

Recently it has been suggested that the KV distribution may be of practical 
interest for high intensity machines in that it may provide the maximum space 
charge limit for such a machine. One can make a plausible argument that the 
maximum beam intensity is obtained for a distribution for which all particles have 
the same tune, at least when the resonance is approached. One should therefore 
first reduce the chromaticity of the accelerator ring as much as possible, and 
second, make the betatron frequencies independent of amplitude, i.e., make the 
focussing forces linear. One way to make the focussing forces linear is to start with 
external focussing forces which are linear, and then make the space charge forces 
also linear by using a KV distribution. 

Chapter II reviews the theory of the KV distribution, generalizing it slightly to 
include an elliptical beam cross section. We give first a simplified treatment based 
on treating the betatron oscillations as simple harmonic motions. We then treat the 
alternating gradient case. Finally two injection scenarios are described which 
produce a KV distribution (if beam-beam interactions are neglected during the 
injection process). In the first the injected x and y amplitudes follow a prescribed 
schedule. In the second there is a coupling between the x and y motions. 

We have written a simulation code for the injection process which includes the 
space charge interactions between the injected turns. It also provides a gradient 
bump to simulate the effect of quadrupole errors which can drive a half-integral 
resonance. The code was used to study the injection process for the proposed 
PNS upgrade (2), a 2 GeV rapidly cycling synchrotron designed to deliver a 
1 M W  proton beam. During the injection process 500 turns are injected. Chapter 
III presents the results of simulating the injection process, without turn-to-turn 
space charge forces, for a KV scenario and for a typical injection scenario which is 
not specifically designed to produce a KV distribution. The KV scenario indeed 
produces a circular beam cross section of uniform density. Non-KV scenarios 
produce a beam cross section which is neither circular nor of uniform density. 

In describing the injection process we will use the following terminology. We 
will specify a time by the number of turns (revolutions of the beam around the 
accelerator) since injection started. The beam at any time consists of a number of 
beamlets. By a beamlet we mean that part of the beam which was injected during a 
particular previous turn. A beamlet will be specified by the number of the turn 
during which it was injected. By a turn-to-turn force we mean the electric force 
exerted by one beamlet on another. 

The turn-to-turn forces are included in Chapter IV. They have a substantial 
effect on the resulting distribution. The cross section still has a rough circular 
symmetry, but the beam has a low density halo. The program provides a means of 
calculating the betatron oscillation frequencies of any beamlet during any turn. 
Plots of horizontal and vertical tunes versus time for selected beamlets, as well as 
the average tunes for all beamlets present in the machine clearly show the 
depression of tune due to the increasing space charge forces as injection proceeds. 
The proposed KV scenario produces a more uniform beam density and smaller tune 
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shifts than the other injection scenario. When the gradient bump is added the effect 
of the half-integral resonance is clearly seen in the tune plots. In cases where the 
tunes would otherwise cross the resonance at v = 5.5 during injection, the gradient 
bump causes the beam to expand when the resonance is reached and the tune levels 
off at a value corresponding to the edge of the stop band. The optimum parameters 
correspond to arranging that horizontal and vertical tunes both just reach the edge of 
the stop band at the end of injection. This gives the maximum injected beam for a 
given beam cross section without an expanded halo. 

There appear to be two regimes when beams exceeding the space charge limit 
are injected. If one or both tunes start at a value not too far from the resonance stop 
band, then the resonance dominates the process and the beam has a halo which 
expands to keep the tune at the edge of the stop band. If we start with tunes far 
enough from the resonance, which requires injecting a more intense beam in order 
to reach the stop band, then the fluctuating turn-to-turn forces dominate the process 
and cause the beam to expand because of the resulting diffusion in betatron 
amplitudes. The resulting beam density profiles do not depend very much on 
whether the monance driving bump is present or not, although even in this case the 
effect of the bump can clearly be seen in the plots of tunes versus time. 

11. THEORY 
In Section 1 we will derive the KV distribution for the smooth case when the 

betatron motion is a simple harmonic oscillator and the parameters are arranged to 
produce a circular beam cross section. Section 2 treats the full alternating gradient 
case and allows the beam cross section to be elliptical. Section 3 presents an 
injection scenario in which the x and y amplitudes during injection are programmed 
to paint the energy shell uniformly and so produce a KV distribution. Section 4 
discusses an alternative way of producing a KV distribution using a small xy 
coupling. 

1. A Simple KV Distribution. 
We start from the simple Hamiltonian 

where the independent variable is the azimuthal distance s. The moments are 

We are assuming that the focussing forces are linear. The space charge forces for 
the KV distribution wilI also be linear, and are included in the constants kx, k,.. 
The solution of the equations of motion is a simple harmonic oscillation in both 
dimensions of frequencies 

3 



V,  = Rk, 142 , vY = R%'12 , (1.3) 

in oscillations per revolution, where 27cR is the circumference. 
Introduce angle-action variables: 

1/2 x = ( 2 M ,  / vx)'I2 sin 'y, , p ,  = (2 v,J, R )  cos 'yx , 

cosy,, . 
112 (1 -4) 

y = ( 2 R J y / v y )  142 shyy  , p Y = ( 2 v y l y / R )  

The Hamiltonian becomes 

The action variables 

Rpx 2 +- VxX2 --+- RPy2 VYY2 J, =- 
2% 2R ' J y -  2 v y  2R  

are constants of the motion and are each equal to the area of the corresponding 
phase ellipse divided by 2 7 ~  The angle variables are 

where z9x,z9y are arbitrary constants. If we substitute from Eqs.(1.7) into 
Eqs.( 1.4), we get the general solution of the equations of motion. 

Now write the distribution function for the beam in the form 

This is a slight generalization of the standard microcanonical distribution, in that it 
allows Jx and Jy to appear with arbitrary factors in the total action Jo. It becomes a 
standard microcanonical distribution if we set 6 = 7d4. The advantage of 
introducing the parameter is that it allows us to adjust the shape of the beam in x,y 
space; for example, we can change an ellipse into a circle, even when kx # ky 

The particle density in physical space is 
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= A J ~ , J S ( ~ J , C O S ~ ~ + ~ - J ~ )  hu 
2sin 2 C y  dJY 

2R1’2sin< 1 

R 
-Pxl 

1 

R 

- - 

- n( v, v,,)l”A - 
Rsin25 9 (1.9) 

where we have put 

w=2Jysin2C , 

p ,  =pXlsin6 . 
The density is constant (within the beam), which implies that the space charge force 
is linear, as we will see below. In evaluating the second line of Eq.(1.9), we have 
assumed that there are values of px, py  for which the argument of the &function in 
Eq.(1.8) vanishes. This will be true provided the point x,y lies within the ellipse 

= J ,  . v,x2 cos2 c VyY2 sin2 5 + 
R R 

Outside this ellipse, the particle density is zero. The area of this ellipse is 

2dJO A?= [ vxvy]112sin2c * 

(1.11) 

(1.12) 

Since the density (1.9) inside the ellipse is uniform, it is just the number N of 
particles per unit length divided by the area of the ellipse: 

5 



< 

6 

(1.13) 

The electric field due to this particle density can be written 

E=-V# , (1.14) 

where the electric potential satisfies, inside the ellipse (1.1 l), the equation 

(1.15) 

and variations in the azimuthal direction are neglected. A solution of Eq(l.15) is 

where the constants K~ and K~ must satisfy 

(1.16) 

(1.17) 

This condition can be satisfied by setting 

K,=KCOS$ , K ~ = K s ~ ~ $  , (1.18) 

where 5 is arbitrary and 

(1.19) 

The general solution of Q.(1.15) is obtained by adding to the solution (1.16) 
the general solution of the homogeneous equation 

(1.20) 

which is well-behaved at the origin. This must then be matched to a solution of 
Eq(1.20) between the beam and the vacuum chamber. Since we are only looking 
for some sekonsistent solution of the problem, we simplify the problem by taldtig 
a round beam: 



which makes Eq.( 1.11) the equation for a circle: 

(1.21) 

(1.22) 

where u is the radius of the beam. Note that we have ma& the beam round without 
assuming that vx = vy. If they are equal then = 7d4. In any case, we set 
5 = n/4, so that the potential has circular symmetry. Inside the beam, the 
potential (1.16) is then 

1 1 
4 4 

#(x, y) = @(r) = #o - - K2(x2 + yZ) = #o - - 22 - (1.23) 

Outside, the potential is 

g(r)=Cln; , (1.24) 

where the additive constant is chosen to make the potential vanish at the vacuum 
chamber radius b. The potential and its radial derivative have to be continuous 
m s s  the boundary. The potential is then 

Where 

(1.26) 

The space charge forces in the non-relativistic limit (i.e., neglecting magnetic 
self-forces) are 

(1.27) 
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The constants kxt ky in Eq.(l.l) can now be written in terms of the external 
focussing force constants kx, key: 

(1.28) 

where f3 and y are the relativistic parameters, whose variation with s are neglected, 
m is the mass, and an extra factor y is added to the denominators to include the 
effects of the magnetic forces. 

We now have a complete, self-consistent solution of the equations of motion for 
a round beam, including the effects of space charge forces. 

2. The KV Solution for an AG Ring. 
We will derive the general f(apchinskij-vladimiaskij solution for an elliptical 

beam in an alternating gradient ring following the same steps as in the treatment of 
the simpler problem above. Our treatment is a generalization of the KV paper (l), 
since they eventually assume a round beam. We start with the Hamiltonian (1. l), 
but we allow the force coefficients to depend (periodically) on s: 

We will assume that the wavelengths for the variations of the functions kds),  kds )  
are much longer than the cross sectional dimensions of the beam, so that the fields 
can be calculated treating the beam as a uniform elliptical cylinder at each azimuth s. 
The action variables are the Courant-Snyder invariants: 

where the parameters a(s) and P(s) are periodic functions of s . 
We again write the generalized microcanonical distribution in the form (1.8). 

The calculation of the spatial density proceeds just as in the preceding section, and 
we get 
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within the ellipse 

and zero outside. The density is again uniform within the ellipse, but varies 
periodically in s, as does the area of the ellipse which is 

We will neglect any variation in the azimuthal velocity so that the linear density N 
(particles per unit length along s) is a constant of the motion. For a bunched beam, 
N may vary along the bunch, but remains constant at the location of any given 
particle at least for many revolutions, so its variation may be neglected in studying 
the betatron oscillations. The spatial density is then 

We have to solve Eq.(l.15) which will be written in the form 

a2+ -r?(s) insidethebeam , - aX2 +-={ dy2 0 outside , (2.7) 

where K ~ ( S )  is given by Eq.(l.17), with po(s) given by Eq.(2.6), and the beam 
boundary is given by Eq.(2.4). We are assuming that the dependence on s is slow, 
so we neglect derivatives with respect to s. 

In order to solve Eq.(2.7), one could write a solution in the form (1.16) or 
(1.23) inside the beam and try to fit the boundary condition at the wall and at the 
beam boundary by adding suitable solutions of the homogeneous equation inside 
and outside. Instead, since the beam boundary is an ellipse, we will use confocal 
elliptic coordinates (3, p. 1195): 

x =hcoshpcosil , 
y=hs inhpinA , 
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which gives ellipses of constant p and hyperbolas of constant X with foci at 
x = fh(s), y = 0. The coordinate p runs from 0 to 00. The coordinate X is an 
angle from 0 to 2 x  and is roughly equal to the polar angle 8. The (positive, 
negative) x-axis is given (outside the foci) by 1 = 0,a; the y-axis is given by 
X = fx/2. We choose as coordinate foci the foci of the ellipse (2.4): 

so that the ellipse (2.4) is an ellipse of constant p = pb: 

- = I  , (2.10) x2 cos2 < y2 sin2 < + - + Y2 X2 

h2 Cosh2 j.f b h2 sinh2 /.f b pxJo &JO 

from which Eq.(2.9) follows. The elliptic coordinate of the beam ellipse is given by 

W n h p a ( s ) = [ E f c o t <  . (2.1 1) 

We will usually omit explicit dependences on s, except when introducing a new 
quantity. Note that the ellipse of constant p approaches a circle as p. becomes large 
(so that sinhp coshp), and that the eccentricity approaches 1 for small p. For 
p = 0 the ellipse shrinks to the line segment connecting the foci. The major axis of 
the beam ellipse is taken to be horizontal. 
We wiIl assume that the conducting vacuum chamber wall is also elliptical and 

confocal with the beam. The potential vanishes at the wall. In elliptic coordinates 
Eq(2.7) becomes (3, p.504) 

a’# az# -2 insidethebeam , 
(2.12) 1 

h2 (cosh’ p - cos’ A )  (7+%]={0 dp outside . 
This equation is to be solved keeping + and its normal derivative continuous across 
the beam boundary, and with # = 0 at the wall which we take to be the ellipse 
p = pw. A particular solution inside can be found either by solving Eq42.12) by 
separation of variables or by taking the solution (1.23) and substituting from 
Eq(2.8)- The result is 

(cosh2p + cos2A) . 2 h 2  $=-- 
4 

(2.13) 
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To this we add a solution of the homogeneous equation inside, and another outside. 
A set of solutions of the homogeneous equation periodic in h is 

@ = I ,  @=p1 
@ = c o s h m p c o s d  , 
@ = sinhmpsind , 
#=sinhmpcosmd , 
Q, = c o s h m p s i n d  , 

(2.14) 

where m is any positive integer. The second and the last two solutions are not well 
behaved at the origin, due in part to the peculiar behavior of the coordinate system 
near p = 0. The rest are polynomials of order rn in x and y .  It is clear from 
Eq.(2.13) that we need the solutions for m = 0 (the first two) and rn = 2. We 
therefore write 

= 

l T [ c o s h 2 p  + c0s2A -A + Bcosh2p cos2ilI inside, (2.15) I T [ C ( p w  -pb) -D(cosh2psinh2pw -sinh2pcosh2p,)cos2il] outside, 

where the coefficients are already adjusted to satisfy the boundary condition at the 
wall. We have to require that 9 and be continuous at the beam ellipse; the 
result is 

sinh2pu, D =  
cosh2pw 

(2.16) 

For comparison with the development in the previous section we would need the 
circular limit of the above equations where h-+O and p >> 1 almost everywhere. 
In that limit cosh p and sinh p approach (eP)/2, the ellipses become circles, and h 
becomes the polar angle 8. In that limit, p+ln 2rh. 

The solution (2.15) inside the beam can be written 

B 2 2- (2.17) 1 (A+ B)+-&x~ + y 2 ) + - x  (X y2)  , ?h2 
@=-4 2 2 
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from which the electric space charge forces follow: 

F, =-eK’(l+B)x , 
Fy = -e9(1- B)y . 

I 
(2.18) 

The coefficients in EQ(2.l) can now be written in terms of the external focussing 
coefficients and the space charge forces: 

(2.19) 

We now have a complete, self-consistent solution of the general KV problem. 

boundary then matching boundary conditions becomes more difficult. It may be 
necessary to add terms with rn > 2 to the solution, in which case terms in x and y 
of order higher than two will appear in the solution (2.17). There will then be 
nonlinear terns in the forces (2.18) and our solution is no longer self-consistent. 
However for a reasonable wall shape one would expect such terns to be small, 
especially inside the beam. In any case, if beam and vacuum chamber are circular, 
the distribution (2.4) will result in linear space charge forces. For a circular beam 
in a concentric circular vacuum chamber, the KV distribution (2.4) always leads to 
linear focussing forces. 

I If the vacuum chamber wall is not an ellipse or is not confocal with the beam 

3. The Painting Scenario. 
The KV distribution is essentially a microcanonical distribution with the beam 

distributed uniformly over a three-dimensional energy shell corresponding to a 
fixed total energy in the four-dimensional phase space of the x and y betatron 
oscillations. We need to construct a scenario which allows us to paint the energy 
shell uniformly. To simplify the treatment, our discussion will be based on the 
m t m e n t  in Section 1 which starts from the smoothed Hamiltonian (1.1). 

If we inject at a fmed point in the phase space, the betatron oscillations will 
spread the beam over the yx,yy phase plane. In order to spread it over the three- 
dimensional surface defined by Eq.(1.8), we need to vary the action variables in an 
appropriate way. To this end introduce the variables 

J, = 2 ~ 0 s ~  C J, + 2Sin2 C J,, , 
J, = ~ c o s ~ C J , - ~ S ~ ~ C J ,  . (3.1) 

The Jacobian of this transformation is constant. Therefore if area is conserved in 
the J, Jy phase plane then it is also conserved in the J0,J,,, phase plane. 

The total action Jo is to be held constant and J, is to be varied slowly. If the 
variation of J, is slow compared with the betatron frequencies, then near each value 
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of J, the betatron motion will distribute the injected beam uniformly over the yx,y,, 
phase plane, provided there is no rational relation with small denominator between 
v, and v,. The JosheiI must be painted uniformly, so we require that u!.TJdt be 
constant: 

J, =-Jo(l-$) , (3.2) 

where T is the total injection time. Note that we want to paint both positive and 
negative values of J,. Equation (3.2) is adjusted for the case in which J, = -Jo 
initially, Le., the y amplitude is maximum and the x amplitude is zero. The injected 
x,y actions are given by 

1 t 
Jx = 

2c0s2 6 JOT * 
(3.3) 

The painting scenario can be achieved in the IPNS upgrade by using H(-) 
injection with a stripping foil, an internal horizontal orbit bump, and an external 
vertical deflection of the injected beam. 

4. The Coupling Scenario, 

Yanglai Cho (4) has pointed out that coupling the x and y betatron motions may 
allow us to achieve a KV distribution. He proposes to make the x and y betatron 
tunes equal and provide a small coupling between them. Then inject with zero y 
amplitude and a large fixed x amplitude. The coupling causes the y oscillation 
energy to increase at the expense of the x energy. This has two effects. First, it 
causes the previously injected beamlet to move away from the inflector and remain 
away for one beat period, thus facilitating multi-turn injection Second, it results in 
a distribution in which all particles have the same total oscillation energy. 

Unfortunately this procedure does not result in a microcanonical distribution, 
since i t  does not fill the energy shell uniformly. It fills only a two-dimensional 
torus scanned by the phases of the two coupled normal modes. Filling the three- 
dimensional energy shell requires also sweeping a suitably chosen variable 
analogous to Jm in Fq(3.1). We have canied out the analysis [(5), Section 41 and 
have carried out corresponding simulations for this scenario. The results are similar 
to those presented later for the painting scenario. Since the coupling scenario seems 
to have no advantages over the painting scenario, we omit further discussion in this 
Paper- 
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111. DOES IT WORK? - SIMULATION 

5. Injecting with Painting Scenario. 
We have written a program to simulate the scenario (3.3) as applied to the IPNS 

Upgrade (2). The injection time T corresponds to 500 injected turns. The 
maximum injected x-amplitude is 50 mm Figure (5.1) shows the x and y 
amplitudes of each beamlet as it is injected. The points lie on a circle beginning 
with zero x amplitude and maximum y amplitude at turn 1 and ending with zero y 
amplitude and maximum x amplitude at turn 500. 

Figure (5.2) shows the resulting density in xy space at the end of injection. 
Each of the small circles represents one injected beamlet, The spatial density is 
fairly uniform within a circle. Figure (5.3) shows the final space charge shifted 
horizontal tunes of the 500 beamlets. The vertical tunes are similar. In these 
calculations, the space charge forces between beamlets are omitted, except at the 
end of the injection process when we turn on the interaction forces for one turn in 
order to calculate the space charge shifted tunes resulting from the density shown in 
Fig(5.2). 

6. Injecting with Non-KV Scenarios. 
Figure (6.1) shows the injected amplitudes for a non-KV scenario. It differs 

from that shown in Fig(5.1) in that the sum of the amplitudes is held constant 
instead of the sum of the actions (proportional to amplitudes squared). Although 
Figs.(5.1) and (6.1) are not much different, the resulting density distribution 
shown in Fig.(6.2), in contrast to that in Fig.(5.2), is neither circular nor uniform. 
Likewise the space-charge shifted tunes after injection, shown in Fig.(6.3) are not 
all equal as in Fig(5.3). 

IV. DOES IT REALLY WORK? - SIMULATION WITH 
SPACE CHARGE FORCES. 

7. Simulation and Tune Measurement. 

In order to include the effect of space charge forces, we calculate at each 
integration step the total force on each beamlet due to each of the other beamlets. In 
this way we include not just the Vlasov term, containing the smoothed out space 
charge force, but also the fluctuating beamlet-beamlet forces. In addition the 
equations of motion include for each beamlet terms like that on the right side of 
Eq.(7.2) below, to drive the resonance v = 5.5 for both x and y motions. The 
force between two beamlets is inversely proportional to the distance between them 
unless they overlap, in which case, the force drops linearly to zero as their centers 
approach one another. 

In order to find the tune of a simulated beamlet, we find the average space 
charge force over onetum in the followingway. We assume that we may 
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FIGURE 5.1 Painting scenario - 
Injection amplitudes. 

FIGURE 5.3 Painting scenario - 
Final x tunes. 
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flGURE 6.2 Non-KV Scenario - 
Final density. 

FIGURE 5.2 Painting scenario - 
Final density. 
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FIGURE 6.1 PJ0n-W scenario - 
Injection amplitudes. 

FIGURE 6.3 N0n-W scenario - 
Final x tunes. 
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FIGURE 7.1 Force vs position for a 
beamlet during one turn. 

FIGURE 7.2 Tune vs. tune parameter. 

approximate the average space charge force on any beamlet by a linear function of 
the displacement x (horizontal or vertical). The integration time step is As. At each 
integration step, we calculate the total momentum increment A p  of any given 
beamlet due to the forces from all other kamlets. Figure (7.1) shows a plot of 
R dpx vs x for a typical beamlet at each integration step during one turn. The least 
squares linear fit to the data is also shown in the figure and is written in the form 

- = A x + B .  AP 
As (7.1) 

We then assume we may approximate the equation of motion by the linear equation 

x"+ K 2 V O 2 ~  -Ax = B + axS(~ - ~ 8 )  , (7.2) 

where R - 2 ~ 0 2 ~  is the mean focussing from the lattice structure and the last term 
represents a quadrupole error term which is introduced to drive a possible half- 
integral resonance. The delta function is periodic with period 27cR. The quadrupole 
bump is placed half way around the ring so that the reference point s = 0 is a 
symmetry point for the bumped lattice. Since the equilibrium orbit X=Xe must 
satisfy Eq.(7.2), the deviation from the equilibrium orbit satisfies the homogeneous 
linear equation 

( x  - x,)" + R-'( V: - S)(x - x,) = a(x - xe)6(s - ICR) , (7.3) 

Where 
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S = A R 2  (7.4) 

is the space charge defocussing coefficient. For algebraic convenience we will 
henceforth take x to be the deviation from the bumped equilibrium orbit and replace 

The phase vector is carried from s=O to m R ,  (from the reference point to just 
before the bump), via a matrix A: 

X-Xe by X. 

The matrix A is given by 

sin- =1 cos- .=[ -Sin- cos$) * 

where 

a, = 2 4  v,2 - sy2  

(7.6) 

(7.7) 

is the phase advance for the normal lattice plus space charge but without the 
gradient bump. We will call the quantity ( vo2 - S)1’2 the (horizontal or vertical) 
trureprameter. It is the space charge shifted tune in the absence of any resonance 
driving term. The matrix which carries the phase vector across the bump at d is 

. = ( I  -a 0) 1 . 

The matrix which carries the phase vector once around the ring is then 

* (7.9) 

a sin a, - -(1 a -cos 0,) 

2 2 
cos a, - -sin a, 

-sinal --(1+cos61) U cos01 --sinal a 
2 2 

M=ABA= 

The trace of M gives the phase advance d around the ring: 

asin 0 

2 
c o s a = c o s ~ ~  -- . (7.10) 

If we consider 0 as a function of 6 1  (or of the tune parameter) there will be 
unstable stop bands at integer and half integer resonances, Le. at sbz, where rz is 
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an integer or half-integer. Let us assume that a is small and neglect all but the 
lowest order terms in a. If a d ,  a solution of Eq(7.10) is a=q. For small a 
Eq47.10) may be written in the form 

a s i n q  
2 , (7.11) 

where we have kept terms of order (a-o1)2 since near the stop bands sin 01 is 
small of order a and all terms in Eq(7.11) are second order. The solution of 
Eq(7.11) is 

(7.12) 

Away from the resonance (Le., tan 0px.z) the solution (7.12) is, to lowest order 
in a, 

a 
2 

o=a,+- . (7.13) 

This solution is valid away from the integer and half-integer resonances. There is a 
second solution but it is not valid since it corresponds to o-p>a. The edges of 
the stop bands occur where the solution of Eq(7.10) is cos o =fl .  One edge 
will be at a1 = 2nn. The other edge, to first order in a, occurs where the square 
root in Eq.(7.12) vanishes, at 

01=2nlc-a  . (7.14) 

In the stop band the solution of the equation of motion has the form 

9 (7.15) fT f2xins lR x = e  e 

with a growth rate approximately 

where the last member is the growth rate at the center of the stop band. Since the 
growth rate has a vertical slope as a function of 01 at the edges of the stop band, it 
is roughly equal to d 2  throughout most of the stop band. 

In Fig.(7.2) v=a/2n is plotted as a function of the tune parameter 
vl=q/h=(v&S)1/2. Note that according to Eq(7.10) Q is a periodic function of 
01. Figure (7.3) is a typical plot of the calculated shifted tune v of a beamlet as a 
function of time. In this case a number of the calculated values i e  in the stop band 
and are plotted at the top of the figure. In order to include values which lie in the 
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5.8 

FIGURE 7.3 Tune vs. time for a typ'kal FIGURE 7.4 Tune parameter vs. time for 
beamlet. the beamlet of Fig47.3). 

stop band, we will generally plot the tune parameter vi = (vo2-S)1/2 as in 
Fig.(7.4), which also shows the edges of the stop band. Outside the stop band the 
tune parameter is nearly equal to the actual tune. Inside the stop band the motion is 
unstable with a growth rate given by Eq.(7.16). Note that there are substantial 
fluctuations of the calculated tunes. These are due to the fluctuating character of the 
turn-to-turn space charge forces. In the tune calculation the actual space charge 
forces are replaced with mean linear approximations which are also subject to 
fluctuations from turn to tum. 

8. Effect of Beamlet-Beamlet Forces. 
The beam density for the KV scenario Pig.(S.l)] with the space charge forces 

included is shown in Fig.(8.1). The beam is still roughly circular7 but is not as 

0 50 100 
nn 

-1w 
-100 -50 

FIGURE 8.1 Final density for KV scenario 
with space charge. 

BEAWT NUNBER 

FIGURE 8.2 Final x tunes for KV scenario 
with space charge. 
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FIGURE 8.3 x coordinate during 
KV injection with space charge. 

0 200 400 800 
NRNS 

FIGURE 8.4 y coordinate during 
KV injection with space charge. 

uniform as in Fig.(5.2). As a result, the final tunes shown in Fig.(8.2) are not 
as constant as in Fig.(5.3). During injection, the beam does not yet have a KV 
distribution, so there are nonlinear space charge forces. There are also coupling 
forces between beamlets whose effects can be seen in Figs.(8.3) and (8.4) which 
show the x and y coordinates of the first injected beamlet as it passes the reference 
point during injection. Either the nonlinear space charge forces or diffusion due to 
beamlet-beamlet forces may be responsible for the non-uniformity of the beam in 
Fig.(& 1). 

Figures (8.5) and (8.6) show the average x and y tunes, averaged over all 
injected beamlets, vs. turn number during the injection process. The two outer 
curves in these figures are the rms deviations from the average tunes. The 
increasing depression of the tunes due to the increasing space charge forces is 
evident. The tunes are depressed below the resonance at v = 5.5 because there is 
as yet no term in the simulation to drive the resonance. 

-t 

FIGURE 8.5 x tune during 
KV injection with space charge. 

FIGURE 8.6 y tune during 
KV injection with space charge. 
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FIGURE 9.1 Fml density far KV injection 
with resonance included. 

FIGURE 9.2 x tune parameters during 
KV injection with resonance included. 

9. Effect of an Imperfection Resonance. 
Using the same injection scenario with a gradient bump included to drive the 

resonance v=5.5, the final density distribution is shown in Fig.(9.1) The x tunes 
during injection are shown in Fig.(9.2). The effect of the resonance on the tune 
history can be clearly seen. The resonance causes the beam density to expand to 
keep the tunes out of the stop band. The total injected current for this case is 27 A, 
with a bunching factor of 0.75. This is greater than required to depress the tune to 
the resonance and hence exceeds the conventionally defined space charge limit. We 
have also seen cases with large injected beam currents where the tune changes so 
rapidly that it can cross the monance before the beam has time to expand. 

10. The Space Charge Limited Case. 
In a realistic case where we wish to inject the maximurn possible beam without 

seriously increasing the beam size, we would choose an initial tune as far from the 
half-integral resonance as possible, and inject just enough beam to reduce the tunes 
to the edges of the stop bands. This corresponds to the conventional definition of 
the space charge limit. Figures (lO.l), (10.2) and (10.3) show the final density 
and the tune history for this case, following the KV scenario (5.1). The total 
injected current is 54 A. The simulated tune shifts in Figs.(lO.2) and (10.3) are 
equal to those calculated from the Laslett formula, as they should be if the 
simulation is done COKW~~Y. 

Figures (10.4) and (10.5) show the same case for injection with the non-KV 
scenario. The final density is not much different, although the approach to 
resonance is more rapid in this case. For this case which starts far from the 
resonance and with a large injected beam, it would appear that the fmal density 
distribution is not dominated by the resonance, but instead is dominated by either 
the beamlet-beamlet collisions or the nonlinearities in the space charge forces or 
both. To illustrate this, we show in Fig.( 10.6) the final density for the same case 
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FIGURE 10.1 Final density , KV injection, 
space charge limited case. 
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FIGURE 10.3 y tune parameter during 
KV inject-bn, space charge limited case. 
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FIGURE 10.5 x tune parameter during 
non-KV injection . 
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FtGURE 10.2 x tune parameter during 
KV injection, space charge limited case. 
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FIGURE 10.4 Final density, non-W 
injection, space charge limited case. 
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FIGURE 10.6 Fml density, same case as 
Fig.(lO.4), without resonance. 
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but with the bump that drives the resonance turned off. There is little difference in 
the final density in Figs.( 10.4) and (10.6). 

V. CONCLUSIONS. 

We have presented the theory of the KV distribution, including alternating 
gradient effects, and including the case of an elliptical beam. We have presented 
practical injection scenarios which lead to KV distributions if space charge forces 
are neglected during injection. The resulting distributions are uniform and circular 
(or elliptical), and result in uniform space charge shifted tunes for a l l  particles. 

When the effects of space charge and of beamlet-beamlet forces are included, 
injection with a KV scenario may have some advantage, but the resulting 
distribution is not exactly a KV distribution and the density is not exactly uniform. 
Two regimes may be distinguished. If the initial tunes are close to the resonance, 
the fmal density distribution is dominated by the amplitude growth of particles in 
the resonance stop band. This growth limits the space charge detuning so that the 
fmal tunes lie just above the stop band. If the initial tunes are far from resonance, 
and the injected beam intensity is large, the final density distribution is dominated 
by space charge effects - nonlinear forces andor beamlet-beamlet collisions. This 
may mean that the effective space charge limit may sometimes occur at a beam 
intensity where the beam blow-up reaches the maximum acceptable value before the 
maximum acceptable tune shift is reached. 
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