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This note proposes a straightforward and simple method for the criticality safety 

analysis of fissionable materials configured into large arrays of standard containers. While 

criticality-safe storage limits have been well-established for standard containers- even under 

flooded conditions, it is also necessary to rule out the potential for criticality arising from 

neutronic interactions among multiple containers that might build up over long distances in a 

large array. Traditionally, the array problem has been approached by individual Monte Carlo 

analyses of explicit arrangements of single units and their surroundings. Here, we show how 

multiple Monte Carlo analyses can be usefully combined for wide-ranging general application. 

The technique takes advantage of low average density of fissionable material in typical storage 

arrays to separate neutron interactions that take place in the neutron’s “birth unit” from 

subsequent interactions in a highly dilute array. Effects of array size, in particular, are 

conservatively calculated by straightforward analyses which simply smear array contents 

uniformly across the extent of the array. For given unit loadings in standard containers, 

practical expressions for neutron multiplication depend only on overall array shape, size and 

reflective boundary. 

A large, low-density array is conservatively envisioned as a single fissionable medium 

segmented into single units and configured into a large array. Single units are formed by 



concentrating the maximum amount fissionable material allowed within a single storage 

container into a compact shape (typically spherical). Average density of units within the array 

is determined by container volume and spacing. To highlight array interactions, all space 

between fissionable units is assumed empty, and any intervening neutron-absorbing material is 

neglected. 

With no absorber present, neutrons either escape or are captared in fissionable 

material. In low-density arrays, a neutron which escapes its birth-unit has a low probability of 

being directly reflected back by the other units in the array. Given identical units, the 

probability, E, of a neutron escaping its birth unit is not only independent of the unit's 

particular location in the array but also may be calculated as the averaged escape probability 

from an isolated unreflected unit. Furthermore, the net probability of a neutron escaping 

storage array may be written as the product, E, x E,, where E, represents the averaged 

probability of a "loose'7 neutron's escape from the remainder of the array. The net neutron 

multiplication factor of the storage array, keff, is then: 

= k 01 (1 -EuXEa)  (Array with identical single units) 
kc, 

where k, is the multiplication factor in an infiite medium. 

Figure 1 plots E, versus array size, as calculated for numerous large low-density 

arrays. Examples conservatively assume compact cubical arrays with a practical range of 

single unit loadings. A realistic range of physical boundaries is included by assuming 

reflection on all sides by water, concrete, or vacuum. For definiteness, we assume all 

fissionable material is a well-moderated 239Pu-water mixture of density, 0.028 grams "9Pulcm3 



( H / h  ratio=947 and k=1.598). For each array, E, was calculated from Eq. 1. KENO-V 

[ 11 Monte Carlo analyses were used to calculate hff for the array and E,, for unreflected single 

units. 

Dimensional analysis and self-shielding considerations suggest array size effects be 

measured by a “shielded scaling variable”, pLE,,. Here, p is the average density (g/cm3) of 

fissionable material in the array, L (cm) is the linear dimension. of the may,  and E,, serves 2s 

an upper limit to the self-shielding factor that reduces the effective value of p in compact 

single units. (In a compact single unit, an upper limit to the probability that an incident 

neutron will find its way from the surface to an average interior location is just the probability 

that a neutron born at an average interior location will escape to the outside; i.e. E,,.) 

As expected, Fig. 1 shows calculated Ea’s closely clustered as functions of E,,pL. 

Moreover, calculations for homogeneous distributions, denoted E:, represent reasonably-close 

lower bounds. (For unreflected boundaries, the larger difference between EaH and Ea is a result 

of greater neutron streaming and a smaller self-shielding factor than E,,.) Our fundamental 

result is that kff may be conservatively estimated from Eq. 1, calculating E,, as an isolated 

unreflected unit and substituting the lower bound, EaH(E,,pL) for E,. Such estimates of kR are 

quite practical and require only the function E: and parameters: E,,, p, and L. For the 

example of 239h stored in cubic arrays of 55 gallon drums, we conservatively assume 200g 

per unit and p=8x104 g/cm3, while taking Eu=0.632 and the function EaH from Fig. 1. Using 

Eq. 1, we easily deduce minimum critical masses of 91 kg and 280 kg for arrays with concrete 

and water reflection. 
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[ 11 Monte Carlo analyses were used to calculate kff for the array and E, for unreflected single 

units. 

Dimensional analysis and self-shielding considerations suggest array size effects be 

measured by a “shielded scaling variable”, pLE,,. Here, p is the average density (g/cm3) of 

fissionable material in the may7  L (cm) is the linear dimension of the array, and E,, serves as 

an upper limit to the self-shielding factor that reduces the effective value of p in compact 

single units. (In a compact single unit, an upper limit to the probability that an incident 

neutron will find its way from the surface to an average interior location is just the probability 

that a neutron born at an average interior location will escape to the outside; i.e. E,,.) 

As expected, Fig. 1 shows calculated Ea’s closely clustered as functions of E,,pL. 

Figure 1 also shows that the Ea’s are closely-bounded below by the curves calculated for 

homogeneous distributions, denoted EaH. (Note that significant neutron streaming causes 

increased self-shielding and a somewhat larger gap between E: and E, in unreflected versus 

reflected arrays.) The practical conclusion is that &E may be conservatively estimated from 

Eq. 1, calculating E,, as an isolated unreflected unit and substituting the lower bound, 

EaH(EUpL) for E,. Only the function, EaH and “generic” parameters: E,,, p7 and L are needed 

for an analysis. For the example of 239fi stored in cubic arrays of 55 gallon drums, we 

conservatively assume 200g per unit and p=8x104 g/cm3, while taking Eu=0.632 and the 

function E: from Fig. 1. Using Eq. 1, we easily deduce minimum critical masses of 91 kg 

and 280 kg for arrays with concrete and water reflection. 
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]FIGURE CAPTION 

1. Calculated Array Escape Probabilities (E3 for Large Compact Cubic Arrays of 
Water-Moderated =’PU and Representative Array Boundaries. Results for Various 
Single Uiiit 239Pu Loadings are Showri As Symbols, and Xesults for Large 
Homogeneous Distributions (E:) are Shown as Curves. 
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