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Anisotropic Scattering in the Variational Nodal 
Simplified Spherical Harmonics Formulation 

E. E. Lewis & G. Palmiotti 

Under the assumption of isotropic scattering, the simplified 
spherical harmonics method (SPN) was recently formulated in 
variational nodal form1 and implemented successfully as an option of 
the VARIANT code.2 We here remove the isotopic scattering 
restriction. The variational nodal form of the SPN approximation is 
formulated and implemented with both within-group and group-to- 
group anisotropic scattering. Results are presented for a model 
problem previously utilized with the standard PN variational nodal 
method. 

The derivation of the SPN equations with anisotropic scattering 
We first write the slab geometry 

Let Yf and x be vectors of length 
added parallels the isotropic case.1 
PN approximation for odd-order N. 
(N+1)/2 of the even- and odd-parity moments. Then the PN 
approximation may be written as the pair of equations 

a n d  

E--X d + C,v = S+ dx 

E'hv + &X = s- , dx 

where E is a two-stripe lower triangular coefficient matrix, 

Em, = (2m-1)6,, + 2rn6mm,+l , 1 S m. m' S (Nt1)/2 

and the within-group anisotropic cross sections appear in  the 
diagonal matrices 

and  
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The even- and odd-parity group- to-group anisotropic cross sections 
appear in the group source terms. s+ and s- respectively. 
x yields the even-parity equation 

Eliminating 

along with the auxiliary relationship 

The simplified spherical harmonics approximation is obtained 
simply by making the replacement z + v ,  d letting the even-parity 
quantities become functions of three spatial dimensions: ~ ( x )  + w?) , 
s+(x) + s+(3) , and ordering the odd-parity quantities into spatial 
vectors in the three dimensions: ~ ( x )  + z(?) , s-(x) + S-(i) .The even- 
parity form of the simplified spherical harmonics equation is then 

with the auxiliary relationship 

The SPN approximation may be expressed variationally by 
writing a global functional which is a superposition of nodal 
contributions of the form 

This may be shown to yield 
equations in the nodes and at the interfaces respectively. 

Eqs. (1) and (2) as the Euler-Lagrange 
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The procedure for obtaining within-group response matrix 
equations is identical to that published previously.3 Spatial 
polynomials approximate the element of w andx; a Ritz procedure is 
applied, and the resulting equations are converted to response 
matrix form. The same spatial approximations are applied to the 
group source vectors. These have the form 

a n d  

where repeated subscripts signify summation, and the group-to- 
group anisotropic scattering cross sections are contained in the 
diagonal matrices 

a n d  
[Eegs#]-# = (4m-3)oa-2,ggt 6 mm’ 

[Coeg,J-. = (4m-1)02m-l.gg’6mm’ . 

Note that the need to store the xg is eliminated by writing the odd- 
parity source as a recursive relationship. These forms allow the SPN 
approximation with anisotropic scattering to be incorporated into the 
variational nodal code VARIANT in a relatively straight-forward 
manner.  

Eigenvalue results are shown in Table I for the two-group, two- 
composition, x-y geometry benchmark described elsewhere.3 The P3 
results with linear interface conditions may be considered to be 
reference values. All of the calculations utilize fourth-order complete 
polynomial approximations within the nodes. Even in the presence 
of anisotropic scattering, the deviations between SP3 and P3 results 
are roughly a tenth of a percent or less. In some cases the SPN 
approximation with flat interface approximation may display less 
error than the companion linear approximation. This results from 
truncation error cancellation between spatial and angular 
approximations. 
approximations is apparent; as discussed elsewhere,l P3 
approximations with flat interface conditions result in unacceptable 
truncation errors. 

The substantial CPU savings accrued from SP3 
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Table I 
Eigenvalues and CPU Times 

for Model Problem 

Scattering SP3 -flat SP3 -linear P3 - linear 

PO 1.30339 1.30618 1.30465 

1.33 sec. 2.21 sec. 4.82 sec. 

P l  1.30074 1.30219 1.30196 

1.54 sec. 3.39 sec. 6.26 sec. 

p3 1.30232 1.30438 1.30346 

1.74 sec 3.82 sec. 10.22 sec. 

4 


