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Abstract 

We present a general statistical technique for characterizing x-ray sensitive 

linear diode arrays and CCD arrays. We apply this technique to characterize 

the response of a linear diode array, Princeton Instrument model X-PDA, 

and a virtual phase CCD array, TI 4849, to direct illumination by x-rays. 

We find that the response of the linear array is linearly proportional to the 

incident intensity and uniform over its length to within 2 %. Its quantum 

efficiency is 38 % for Cu K ,  x-rays. The resolution function is evaluated from 

the spatial autocorrelation function and falls to 10 X of its peak value after 

one pixel. On the other hand, the response of the CCD detecting system to 

direct x-ray exposure is non-linear. To properly quantify 

;one must correct for the non-linearity. The resolution is 
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serial transfer direction We characterize the noise of the CCD and propose a 

model that takes into account the non-linearity and the resolution fimction 

to estimate the quantum efficiency of the detector. The quantum efficiency is 

20 %. 
PACS:?????? 
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'l'he advent of 

I. INTRODUCTION 

igh intensity x-ray synchrotron sources coupled with the development 

of x-ray position sensitive detectors has allowed us to study time-resolved&&-equilibrium 

dynamics in solid-state systems. For example, linear diode arrays have been used to study 

the isothermal crystallization of metallic glasses by measuring structure factors with a time 

resolution of a few milliseconds [l] and were used to study the early stage .dynamics of 

I I  >. I 
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a continuous phase transition in Fe3AZ [2] and ordering in Cu3Au [3]. Two dimensional 

position sensitive detectors like a CCD array have been used to study the dynamics of a 

first order phase transition in Cu3Au with coherent x-rays [4-6] or to study strain kinetics 

in In,Gal-,As quantum wells (71. 

To obtain meaningful quantitative data from a position sensitive detector, one must know 

whether the response of the detector is lineax to the incident number of photons, verify that 

this response is uniform over the detector area, measure the noisy the resolution function 

of the detector and its quantum efficiency. f 
In this paper, we show how one chaacterizes the response of a position sensitive detector 

by comparing the measured noise to the noise expected fiom Poisson counting statistics. 

Similar techniques have been used in the past [8], but neglected to consider the effect of 

spatial correlation between pixels on the calibration. Significant spatial correlation exists 

between neighboring pixels for typical position sensitive detectors, and we show how one 

can extract the resolution function from the correlation function. We discuss in detail how 

this correlation affects the characterization of the detector. These effects aze important for 

coherent diffraction, when one needs a resolution of the order of the pixel size [4-6]. 

In the first section, we give a general treatment for characterizing one and two dimen- 

sional detectors and show a simplified technique for a single linear detector. The second 

section describes the characterization of a x-ray sensitive photodiode array. The third sec- 

tion describes a more general technique used for a charged coupled detector (CCD) detector, 

a Texas Initrument TI 4849 virtual phase chip. 
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11. DESCRIPTION OF THE TECHNIQUE 

Solid state position sensitive detectors are normally made of a n  array of Si photodiodes, 

which are used as integrating detectors for x-rays. A photon in the range of 5-20 keV 

will generate thousands of electron-hole pairs which are then collected on the the Si diode 

capacitance. (For Si, 3.6 eV is required to create an electron hole pair [lo].) After a preset 

exposure time, the charge collected is measured, amplified, digitized and finally cleared for 

the next integration. The detected signal S, measured in analog to digital units (ADU), is 

proportional to the accumulated charge, and depends on the gain setting of the amplifier. To 

characterize a detector, one must test the detector’s linearity, noise and uniformity, measure 

its resolution and quantum efficiency. 

To test uniformity, one normally illuminates the detector with a spatially uniform source 

of light or x-rays. To generate this uniform source, we may scatter a beam of monochromatic 

x-rays onto an amorphous sample like a piece of polyimid (kapton) 191 or polystyrene and 

place the detector far away kom the sample. To measure the detector’s uniformity, one 

verifies that S ,  the detected signal, is uniform over the detector area. For fnrther discussion, 

we have defined a few terms of interest in Table I. 

To test linearity, one varies the incident number of photons n; and the integration time 

independently to see whether or not the total integrated number of photons is the only 

relevant quantity. One must find a function that relates S to n; so that S = f(ni). In 
1, general, f p S o t  linear. Therefore to linearize the detector’s signal, one would apply the 
4 

inverse of f to S. Once the data is linearized, one also wants to know the signal to noise 

in these new units. A second relationship can be established: a? = g(n;)  where a; is the 

variance in linearized units. 

For a single linear detector, a simple technique can be used. This technique assumes 

that detected x-ray photons obey Poisson distribution. Assuming that S is proportional 

to nd, taking a time average of this uniform scattering by averaging several scans gives 

< S >t= k’< 7zd >*, where k is the proportionality constant which corresponds to the num- 
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her of ADU per detected photons. From ai and u:, the time averaged variances of S and 

7Ld, follow the relation ui = k2c:.  Taking the ratio of 0: over < S >t, recalling that 

u$ =< 7Ld > t  for it Poisson distribution, one finds that 

So by taking a ratio of the time averaged variance of the detected signal over its time 

average, one determines the ratio of ADU to detected photons for each pixel: nd will be 

smaller than the incident number of photons on the detector (ni) by a factor equal to the 

quantum efficiency. For a complete treatment, a! can be calculated by measuring n; with a 

detector with near unit efficiency. 

One can also measure the spatia3 variations in k to test the spatial uniformity of the 

detector. In order to determine if these fluctuations are meaningful, we need to know what 

is. the error on k expected from Poisson noise. The uncertainty in the determination of k 

depends on the number of measurements N. €+om standard error propagation analysis, Ok, 

the uncertainty on the ratio of two correlated random variables 0; and < S >t is given by 

, [lo1 

-- - 
where the covariance m(o& < S >) = 02 < S > - cr$< S >. Here u2, is the variance 

and 
=S 

5 
of cri. It can be shown for a Poisson distribution that + = 

. Replacing all the terms in Eq (2), we find 

+ $--, 2 = & 05 

cm(uZ,.<S>) - - 
U$<S> Nn‘i 

- 

From Eq. (3), we see that by taking large N, we can measure our calibration constant 

accurately. The error is caused by the relative error on the measured variance. Note that 

the covariance term cancels exactly the dependence on nd. (This is not true for a Gaussian 

distribution where the covariance is zero. Then = \I& + &.) 
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A note of caution for this treatment must be made. This technique assumes that each 

pixel is independent from its neighbors. If this is not true, the interpretation of K is not 

simply the number of digital units per photons. This extra correlation reduces the variance. 

It is discussed below how this affects k. 

The resolution function is normally measured by illuminating the detector with a+&& 

source, which is smaller than the pixel size. For a CCD or a linear array, often this would 

require collimating the x-ray beam through a pinhole with a diameter of only a'few microm- 

eters and scanning the pinhole over the detector's area. Because this requires an intense 

x-ray source and a translation system, this technique may be difficult to apply. 

In order to evaluate the resolution function, we &&kkqeda simple tool that can be used 

to characterize any spatially sensitive detector. We used the spatial autocorrelation of a 

random signal S(3 as a way to probe the resolution of the detector. The autocorrelation 

function is defined by: 

< S(F)S(r'+ A) >+' - < S(3  >$ 
< S(32 >F - < S(3 >; C(ii) = (4) 

where the bracket refers to a spatial average < S ( 3  >,-= z - S ( q / I ? p .  Here, Np is the total 

number of pixels in the region correlated and r'is a vector indexing the multidimensional . 

array of the detector. Two limiting cases in this problem may be calculated easily. For large 

enough &, S(3 and S(r'+ A) are independent. Using < S ( 3  >=< S(++ A) >= p for a 

uniform incident beam, < S(qS(F+ A) >;= p2 and C(A) = 0. For = 0, C(0) = 1. If 

the signal between neighbors is not independent, one finds 0 < C(A) < 1. Next we show 

how the width of the correlation function can be related to the autocorrelation function of 

the resolution function. 

A model developed for the shot noise process, described in [ll], may be used to calculate 

the resolution function and its effect on the measured noise. The model describes a stochastic 

process that is created by a random superposition over time or space of a known response 

function h ( z )  , where 3: can be a spatial or a temporal coordinate. For example, in a 

scintillator, h(z)  is the pulse shape associated with the detection of a photon. The measured 
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detector's signal, S(zo) at some coordinate 2 0 ,  is simply a sum of these disturbances centered 

at randomly spaced times or positions z; i.e. 

nd 

S(Z0) = h(z; -- z o )  ( 5 )  
i=l 

In our experiment, n d  is the number of detected photons, and is sampled from a Poisson 

distribution. The z; are chosen from a univariate distribution because the signa3 is spatially 

uniform. It can be shown that the response of the system can be written as 1111: 

r(A) E< S(O)S(&) > - < S(0)  >2= n d  J h ( ~ ) h ( ~  + A)& 

where < S > is the spat idy averaged response, cr2 is the variance of the detector signal, 

r(A) is the spatial autocorrelation function and n d  the number of random Poisson events. 

If h(z) is a delta-function, we recover Eq. (1) from Eq. (6-7). If the response bas a 

finite width, we see that the interpretation of the ratio as a calibration constant is not true 

anymore, because correlations are introduced due the correlation function of the response 

function in Eq. (8). By measuring the spatial autocorrelation function, we can invert Eq. 

(8) to evaluate the resolution function. So by simply illuminating the detector with a 

spatially uniform beam, we citn evaluate both the uniformity of the detector and its resolution 

function. 

111. CHARACTERIZATION OF A LINEAR POSITION SENSITIVE DETECTOR 

The detector characteristics are given in Table 11. The photodiode array contains 2048 
2 4 . 3  

rectangular pixels 25pm w i d e , F m m  high. Its resolution is quoted as 1.5 pixd'wide so </- 
there will be some correlation between pixels as in Eq. (8). It is operated at -4O"C, cooled 

by a Peltier stage, to reduce the dark electronic noise. The array is operated by a PI 
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STlOOO controller. The data is transferred to a IBM PC 3%-AT through a custom designed 

1/0 board from PI. Software is provided with the package to control the data acquisition 

parameters, store the data and visualize the data. Scans can be accumulated by a 32 bits 

register and pixels can be grouped to increase the scan rate while sacrificing the spatial 

resolution. 

Figure la)  shows the results of our statistical technique for the linear array. The time 

averaged signal, the time averaged variance and the: ratio of variance over mean 'are displayed 

every 20 pixels on the array for two different x-ray energies, 6.93 and 8.05 keV. The first 

data set was obtained by scattering 6.93 keV x-rays onto the (1/2,1/2,1/2) order-disorder 

peak of Fe3AZ below T,. 100 scattering patterns were averaged. Note that the mean is 

quite smooth (i.e well defined to within 0.3%) but that the fluctuations on the vmiance are 

substantial ( 14%). The relative error on the mean is while the error on the variance 

goes as a, where N is the number of measurements. The error bars on the ratio were 

calculated from Eq. (3). A leastsquare fit of the ratio to a constant yields k=0.682 and a 

x2 of 1.1. The ratio is constant over the detector within the wide error bars based on 100 

N n d  

measurements. 

Figure lb)  was obtained by placing the detector in front of a x-ray tube with a'& target. 

and a Si (111) monochromator set on Cu K,. To determine b more accurately, 8000 patterns 

were averaged. The beam covered approximately half of the array, and one can see small 

tails on the average, likely due to diffuse scattering horn the slits. Note the logarithmic mean 

and variance axes. The signal varies over 3 order of magnitude but the ratio is independent 

of signal level. On the tails, the signal level is low and the dark noise contributes to some of 

the variance observed. To account for this extra variance, a measured dark variance of 1.1 

ADU2 was subtracted to the variance before calculating the ratio. A least-square fit of the 

ratio to a constant between pixel 650 to 1400 gives k=0.792 and a x2 of 2. This residual is 

due to fluctuations on the array's response which have a rms amplitude of 2%. Note that 

only because we averaged a large number of scans we are able to see these fluctuations. If 

signal variations between pixels of the order of a few % are important, then these fluctuations 
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have to be taken into account by using different Linearization constant for each pixel. 

The number of electron-hole pairs per photon is proportional to energy. In Fig. 1, one 

can also notice that the ratio is a function of energy SO that !@-!!9 - - o.792 o.682 is equal to the 

ratio of energies. Let us now measure the spatial correlations. 

First, we define the variable s ( i )  = S(i)-  < S( i )  >t which is introduced to remove 

some systematic variations on the data due to the beam profile. Here, i is the pixel index 

which corresponds to the one dimensional vector Tin Eq. (4). Figure 2 shows the spatial 

autocorrelation function of s(i) as calculated from C(A) = <,(i)l,;-<,(i.>q L where <>; 
refers to a spatial average. The error bar on this correlation function is proportional to 

[12} where N is the number of data points averaged. Figure 2 shows C(A), with 

<a(i)s(i+A)>;-<s(i)>? 

C(1) = 0.215 f 0.001, C(2) = 0.024 f 0.001 and and C(3) = 0.000 f 0.001. 

As discussed in section 11, the resolution function is evaluated from Eq. (6-8), using the 

following model for h(z). When a photon hits a pixel, it causes a signal ho in this pixel 

and a signd h1 in its nearest neighbors. Replacing the integrals by s u m s  in Eq. (6-8), the 

averaged signal is nd(h0 + 2hl). The variance is nd(hg + 2h:) and the correlation function 

function for A = 1 is nd(Zbh1). 

From this model, we see that: 

We can see that k is not just the number of ADU per photon, but depends on the actual 

shape of the response function. Solving for ho and hl, one finds ho = 0.956, hl = 0.108. 

Since we are interested in the number of photons detected nd, the number of interest for our 

calibration will be (ho + 2hl) = 1.17. From Eq. (6), one gets nd by dividing the signal by 

this number. Since we can now measure nd, we can estimate the quantum efficiency. 

This measurement was performed by collimating the incident x-rays with a 1.3 mm hole 

centered on the middle of a pixel. We first measured the integrated signal by the detector. 
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We then measured the signal with a scintillator placed behind the pinhole. We find that 

cy = 38 f 2 % for 8.05 keV x-rays. 

T h e  quantum efficiency should go as the the transmission through a 250 p m  Be window 

times the transmission through a 1 p m  S O 2  overcoat times the fraction of absorbed x-rays 

by Si in the electron diffusion length ts;. 

where the mass absorption coefficients p are 1.1,36.4, 64.7cm2/g for Be, Si and S O 2  respec- 

tively [13) at 8.05 keV, and the densities are 1.85,2.32,2.21g/m3 respectively. The 50 pm 

diffusion length is given by the manufacturer [14]. This yields a quantum efficiency of 50 

%. The measured quantum efficiency and this simple calculation agrees relatively well given 

the simplicity of the model. 

IV. CHAUCTERIZATION OF A CCD ARRAY 

The CCD detecting system has been described in detail previously [15-181. In brief, a . 

CCD is an array of photodiodes converting the energy of su1 incident photon into a large 

number of electron-hole pairs, proportional to the incident number of photons. This charge 

is stored in a potential well during a k e d  exposure time, and then read by a series of parallel 

row transfers and serial pixel-to-pixel transfers and finally is amplified and digitized. 

Two modes of operation of solid-state detector (like a CCD array) have been used pre- 

viously: direct x-ray illumination incident on the detector or a CCD optically coupled to 

a x-ray phosphorescent material. We chose direct illumination of the CCD array because 

we needed the finest spatial resolution achievable with the CCD determined by the pixel 

dimension. For our coherent x-ray experiments [4,6], we chose a TI 4849 chip, with virtual 

phase architecture, containing 390 x 584 square pixels of 22.4 pm. This choice was justified 

by the large depletion depth of the TI 4849 (12 pm) and its sufficient resolution. This large 

depletion depth increases the efficiency under direct x-ray illumination. 
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To characterize the detector, we used an amorphous scatterer to produce a spatially 

uniform beam covering the whole detector area [9]- Figure 3 shows our experimental set 

up- We used the high brilliance wiggler beamlinc X25 at NSLS, set at 7 keV with a Si 

(111) monochromator. An ion chamber was used to monitor the incident intensity on the 

sample. The beam was scattered with a piece of polystyrene. The detector was centered at 

a scattering angle of 2 0  = 23" and placed 1.04 m from the center of rotation. 

We controlled the incident number of photons n; by detuning the monochromator and 

varied the integration time from 1 to 240 s. To measure n;, we used a scintillation detector 

placed at the CCD position and calibrated the scintillator response in term of incident 

intensity on the sample , measured by the incident beam ion chamber (Imon). A simple 

linear least-square fit of the form n; = AImon yields a good fit with A = 0.266 -f 0.001 and a 

x2 of 1.7. The data are within 1% of the fit. Because it was difficult to measure at the same 

time the CCD response and the scintillation signal, we estimated by the monitor signal. 

The detector was masked with a 4mm circular aperture. The highest count rate achieved 

was l p h o t a n l ( 2 2 . 4 ~ ~ ) 2 / s e c .  

In order to calculate < S >t and c;, the time averaged m e a  and variance for each pixel, 

we exposed the CCD for a given integration time and collected several full frame scattering. 

patterns (up to 50). To properly digitize the signal, the detector electonics applies a bi& 

voltage to the signal. A dark pattern must be taken after a set of exposures to subtract ,this 

offset voltage from the data. 
2 In figure 4 as an initial calibration, + versus n; is shown for several exposures. Con- 

trary to Fig. 1, IC depends on the incident intensity. We were quite surprised to see a 

non-linear relationship, because previous results showed a linear response to within 0.5 % 

[E-181 with visible light. Because the detector is loot linear, we cannot use the same tech- 

nique used for the linear diode array. We must generalize the treatment to include the 

non-linearity and correct it as discussed in section TI. Let us now study the non-linearity in 

more detail. 
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A. Non- linear ity 

First, we found that taking a time average or a spatial average is quantitatively equivalent 

0 , b o t l i  for the mean and the variance. This is expected for uniform Poisson noise. As a time 

saving feature, we thus took a spatial average of a single uniform scattering pattern. Figure 

5 shows the mean of the CCD response over a region of 100 x 100 pixels (S) versus the 

expected number of photons that would be detected by a single pixel with a scintillator (n;). 

In this figure, the incident number of photons is estimated by n; = , where 0*2661mon6t(22*4pm)2 
..( 2mm)* 

6t is the exposure time, I,, is the monitor count during exposure and the other numbers 

yields the total number of pixels contained in the 4mm circular aperture. Two curves are 

displayed, the first calibration before our measurements (squares) and the last calibration 

obtained 10 days later at the end of the run (circle). Except for a small difference, the curves 

are very similar. For the purpose of calibration, we used the first calibration because of its 

larger range of detector response. 

The response of the detector depends only on the incident number of photons n; o( I,,,,,&. 

This is seen in Fig. 5, since al l  the data points with an equal product I,,-& lie on the same 

curve, although they differ widely in exposure times and incident number of photons. Since 

n; is the only independent variable, we fitted the above data to several functions to get a 

smooth relation that linearizes the CCD response as discussed in section II. The solid line in 

Fig. 5 is a power law least square fit of the form n; = f-'(S) = 0.35S0-84, which was found 

to have the lowest x2. Although it is not continuous at the origin, it describes the data 

better than the other fits tried. It was used to linearize the data in our coherent scattering 

measurements. In our data treatment, we apply this function to the measured intensity S. 

In order to determine the uncertainty in the linearized signal f-'(S), we need to evaluate 

the time averaged variance per pixel under uniform scattering. Since we found that a spatial 

average was equivalent to a time average, the square of the uncertainty was obtained by 

measuring a variance over a region of the detector from a single measurement. 

Figure 6 shows the variance of n; in a region of 100 x 100 pixels versus the mean after 
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linearization of the raw data by our power law transformation. The solid line is a simple 

Poisson law (a: = n;), while the dotted line is u2 = 1.63n;. We have more variance than 

expected from a Poisson law, by about 63%. The observed extra variance will be explained 

in detail in the discussion. Let us now study the spatial uniformity of the detector. 

B. Spatial uniformity in response 

Figure 7 (a,b) show averages of a single exposure taken over columns or rows of the 

detector. Rows 110 to 480 and columns 10 to 380 were used for the averages, which cover 

most of the detector. The mean is uniform in both directions except for small overall drifts 

of typically around 1%. 

Figure 8 shows a bitmap of the time averaged variance u;, displayed using an inverted 

grey scale. The vaSiance array was calculated with 23 frames exposed for 1 second each. The 

response is relatively uniform over the whole detector area, except for a few bad columns in 

the parallel transfer direction, along the y axis, This uniformity is shown in Fig. 9, where 

the average of the variance over row 420 to 520 is displayed as a function of the horizontal 

position. In this figure, the slight monotonous decrease of about 12% is seen but is simply 

. 

due to inhomogeneities of the incident beam. For this data only, the detector was placed 

closer, at 295 mm from the sample, in order to increase the intensity on the detector and 

this created a small non-uniformity along 28. When the detector is rotated by go", the 

non-uniformity rotates also by the same angle confirming a slight non-uniformity in the 

beam. 
§ 
4 The pixels in column 26-27,72-73,181-182, 208-209, have a much lower variance than a 

typical pixel as seen in Fig. 8 and 9. In these columns the variance is lower than its typical 

value by a factor ranging between 40 and SO%, while the mean is however quite smooth. 

(see Fig. 7(a,b)) By simply looking at the time average, one would conclude erroneously 

that all pixels have the same response. To fully characterize the detector, one must also 

measure the time averaged variance. 

+ 
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We see that some of the pixels are less noisy than a typical pixel. A possible explanation 

for this lower variance may be that there is extra smearing around these pixels which reduces 

the variance. Let us now study the resolution. 

C. Resolution 

For our coherent x-ray experiment, it is important to check for any correlation between 

neighboring pixels. Our speckle pattern should be around 1-2 pixels wide [4], which may 

be difficult to resolve. Figure 10 shows a typical autocorrelation function as calculated 

from Eq. (4). Two curves are shown in the figure C(AyO) (vertical bars) and C(0,A) 

(squares) where the first index refers to the columns and the second to the rows of the 

CCD. The lag A is measured in units of pixels. C(A, 0) is distinguishable from C(0, A) by 

its characteristic slower ilkcay. After a few pixels, the correlation function decays to zero 

as discussed previously. The correlation decays in two pixels along x but decays in one 

pixel along y. This shows a lower resolution along the serial transfer direction of the CCD 

than the parallel transfer direction. One should mention that this correlation is due to the 

detector and is not beam dependent since after rotating the detector by 90 O )  one finds that 

the correlation persist more strongly along the rows. 

The correlation coefficient are non-zero for the nearest and next nearest neighbor of 

C(O,O), i.e. C(fl,O), C(fl ,f l) ,  C(O,fl), C(fl,$l). C(1,O) = 0.52 zk 0.05, C(0,l) = 

0.12 f 0.01, C(1, -1) = 0.07 f 0.02 and C(1,l) = 0.07 f 0.02. There are only 4 independent 

correlation coefficients since C ( i )  = C(-K), as seen from the definition of the correlation 

function in Eq. (4). The resolution is better in y, i.e along the columns the correlation falls 

to 12 % after one pixel. Along the rows, the correlations decays to 52 %. This is likely due 

to the readout process. No dependence of C on n; is observed. 

Our resolution function should have a range of interaction of 1-2 pixels. Using the 

simplest model possible, we choose h(r) to be symmetric and given by: 
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Then, the correlation function of this disturbance can be calculated and gives 

I 
r(0,O) = (hgo + 2hf0 + 2hil)nd, r(1,O) = (2hoohlo)nd and r(O,1) = (2hoohoi)nd- We choose 

to normalize the integral of h(r) to unity, assuming that one photon will be distributed 
I 

amongst several pixels so that 

Dividing the previous correlation by r(O,O), we find: 

Solving Eq. (12-14), we find & = 0.563,&1 = 0.042,hlo = 0.177. As expected, we 

find that a large portion of the signal goes to the nearest neighbors along the serial transfer 

direction. 

V. DISCUSSION 

The previous sections characterized the non-linearity of the detector. We did not discuss 

its source. Our main concern has been that one of the amplifiers in the detecting system 

might not be linear. During our experiment, we tried to change the gain on our diflerential 

amplifier and also replaced the amplifier but we did not obtain a linear response. We 

still suspect some electronics to cause this non-linear response since the physical process of 

creating electron-hole pairs should be proportional to the incident intensity. 

Some questions were left unanswered in the previous sections. One of these questions is 

why do we have extra variance in Fig. 6. To understand quantitatively this extra variance, 

we propose a model which combines the smearing effect due to the resolution function and 

the quantum efficiency of the detector. 



A. Smearing due to the resolution function 

If we now use the resolution function as calculated previously, and replace it in Eq. (6,7), 

one finds the contrast, defined by the variance over the square of the detected mean equal 

to 

The contrast in this case is smaller than what one expects from Poisson noisk by a factor 

0.38. This model shows that because our response function smears the signal into several 

pixels, the.variance is reduced. Since the model predicts a smaller variance than Poisson 

noise, this model is insufficient to explain our extra variance. 

B. Quantum efficiency 

Let us now show how the smearing effect discussed previously, the non-linear response of 

the detector and a quantum efficiency smder  than one explains o m  extra variance mentioned 

in Fig. 6. Recalling that na is the the number of photons detected by the CCD, one would 

expect n d  to follow a Poisson law if each pixel washdependent, but since the pixels are . .  

coupled, 

(16) 2 a d =  K < n d >  

where K = 0.38 is a smearing factor as derived in Eq. (15). From a Taylor’s expansion of 

our linearization function, one can show that: . -  

0; = ai (dn; /dS)2  (17) 

where a! is the variance of the linearized data q and 02 is the variance for the raw data. 

Since the detector has a quantum efficiency CY lower than one, expanding Eq. (16) and 

replacing n d  by an;, one gets 

2 2  uj = CY ai = K a  < n; > . 
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ltecalling that for our linearization function, $j = <s; and substituting Eq. (17) into Eq. 

(IS), one gets: 

where B=0,835. This equations includes three different contributions in the ratio: the 

smearing factor, the non-linear behavior and a quantum efficiency. It explains qualitatively 

why the measured ratio is non-linear, (see Fig. 4) since e is non-linear. This equation 

gives us &o a way to calculate the efficiency by fitting the measured CCD response to Eq. 

(19)- 

Figure 4 shows the ratio of & versus n;. The solid line is a least square fit of Eq. (19) 

with a = 0.24. At 7 keV, the calculated absorbed fraction of x-rays in the depletion region, 

is given by (1 - e-fisipsi') where psi = 92.9n2/g [19], psi = 2.32g/cm3 and t = 12 pm. 

This yields a quantum efficiency near 23 % in good agreement with the result of our model. 

Our extra variance in Fig. 6 is caused by the extra factor K/CL We ca.n see from the 

equation below that the variance has a prefactor K / a ;  i.e, a factor 1.5, which explains our 

perceived extra variance. 

VI. CONCLUSION 

To obtain quantitative information from a current state of the art position sensitive detec- 

tor, one must carefully characterize its response. We have shown that we can characterize 

a position sensitive detector by measuring means, variances, and spatid autocorrelation 

functions and compare these functions to noise expected for a Poisson distribution. The 

linear diode array is linear and uniform to 2 %. Its resolution, evaluated from the spatial 

autocorrelation function, falls to about 10 % of the peak value after one pixel. Its quantum 

efficiency is 38 % for Cu K ,  x-rays. We have shown that the response of our CCD detecting 

17 



system to a direct exposure of x-rays is non-linear and must be corrected with an appropriate 

transformation. The response is uniform except for a few bad columns where the noise is 

sinallcr than the noise of a typical pixel. One must look at a time averaged variance to no- 

tice this effect since the mean is uniform. The resolution is 2 pixels along the serial transfer 

direction and 1 pixel along the parallel transfer direction. We have estimated the quantum 

efficiency of the detector to be around 24% by using a model including the non-linearity of 

the detector and its resolution function. The linearization of our data appeared to introduce 

a variance larger than Poisson counting statistic, but this is explained by our model. 

18 
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FIGURES 

FIG. 1. a) time averaged mean, variance, - versus pixel number at 6.93 keV, N = 100. 

Tlic error bars for thc Incan, variaiicc and ratio arc calculated from formulas discussed in section 

11. 

b) 8.05 keV data, N=8000 

FIG. 2. Spatial autocorrelation ,of the signal S for the Linear diode array 

FIG. 3. Experimental set up. 

FIG. 4. $ versus versus the incident intensity on the detector ni, where ui is a spatial variance 

calculated in a regi.on of 100 by 100 pixels and S is the mean. We take a spatial average on a single 

frame since it is equivalent quantitatively to a time average. A linear detector would yield a 

constant independent of the incident intensity. The solid Line is a least square fit discussed later in 

the text. . 

FIG. 5. Spatial average of the CCD signal (S) over a region of 100 by 100 p‘k& versus the 

expected number of photons detected by a single pixel with a scintillator (q). Two data sets are 

showa: the first calibration displayed with squares and the second calibration 10 days later. The 

solid line is a least square fit to the f is t  calibration with q = 0.35S0”4. This function is applied 

to the measured data to linearize it. The detector response was within 75% of its saturation value 

€or all points. 

FIG. 6. This figure shows the spatial variance of the linearized data measured in a region of 

100 by 100 pixels versus the mean. One would expect the variance a: to go as ni in the case of a 

simple Poisson law (solid line). This is the case for a scintillator. The dotted line is 1.63n;, which 

exceeds Poisson law by 63%. We seem to have extra variance after linearization of the data when 

we compare the variance to Poisson law. 
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FIG. 7. (a) Integrating over one dimension, summing a single row. The sum is shown as a 

function of the index of the row. The s u m  is calculated using pixels in columns 10 to 380. 

(b)  Integrating over onc dimension, summing a single column. The sum is shown as a function 

of the index of the column. The s u m  is calculated using pixels in rows 20 to 520. The data are 

uniform to within 1% in both directions. 

FIG. 8. A greyscale of a time averaged variance showing pixels included in row 20 to 520 and 

column 10 to 380 is shown. 23 exposures of one seconds were averaged. An inverted grey scale is 

used to display the data. The spatial average and standard deviation of the variance are shown. 

Note that the variance is relatively uniform except for a few pixels in certain columns having a 

much lower variance than a typical pixel. The time average mean would not show any untypical 

behavior for these columns but the variance is a more sensitive test. 

FIG. 9. Here is an average of 100 pixels of the time averaged variance array along a column 

between row 420 and 520 versus the column index. The pixels in column 26-27,72-73,181-182, 

208-209, have a much lower d a n c e  than a typical pie l  by a factor ranging between 40 and 80%- 

FIG. 10. This figure shows two perpendicular slices of thespace-Sutoeoikelation function 

C(A) =< S(F)S(?+ A) >; of our uniform scattering data. C(A,O) (error bars) and C(0,A)- 

(square) are shown, which are respectively correlation functions along the serial transfer direction 

and the parralel transfer direction. The vertical bars are the standard deviations of the measure- 

ment (sd = 0.01). The correlation decays to 0 in about two pixels along x, the serial transfer 

direction and in one pixel along y, the parallel transfer direction. 

J 

22 



TABLES 

TABLE I. Definitions 

S digital signal measured by the detcctor. 

n d  

a 

< f  >t  

number of photons incident on the surface of the detector as measured 

by a reference detector having near unity quantum efficiency. 

number of photons detected by the detector. 

quantum efficiency of the detector defined as a = 2 
time average of variable f. < f >t= 3 

time averaged variance off. u; = 

I N  f ( t i )  

Czv=,(f(t;)- < f >t)2 

TABLE IT. Lmear position sensitive m a y  characteristics 

PDA 

Pixel Dimension 

Specified resolution 

Wmdow 

Amplif~er Gain 

Dynamic Range 

Readout time 

Readout noise 

Dynamic Range 

Integration Time 

EG&G Reticon 2048SAU-822,2048 pixels 

25pm wide, 2.5mm high. 

1.5 pixels wide. 

Direct exposure to x-ray trough a 250pm in Be window 

1300 e/ADIJ 

65000:l 

4p/pixel, 8ms for whole array. 

< 1.2 counts Illls 

65000:l 

8ms to two hours. 
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