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Abstract 
An Autonomous Intelligent Cruise Control (AICC) 
has been designed using a feedforward artificial neu- 
ral network, as a n  example for utilizing artificial 
neural networks for nonlinear control problems aris- 
ing in intelligent transportation systems applications. 
The AICC is based on a simple nonlinear model of 
the vehicle dynamics. A Neural Ketwork Controller 
(NNC) code developed at Argonne National Labora- 
tory to  control discrete dynamical systems was used 
for this purpose. In order to test the NNC, an AICC- 
simulator containing graphical displays was devel- 
oped for a system of two vehicles driving in a single 
lane. Two simulation cases are shown, one involving 
a lead vehicle with constant velocity and the other a 
lead vehicle with varying acceleration. More realistic 
vehicle dynamic models will be considered in future 
work. cal System Configuration. 

Figure 1: Neural Network Controller /Dynami- 

1 Introduction 
Emerging Intelligent Transportation Systems (ITS) 
and Automated Highway Systems (AHS) technolo- 
gies have gi\-en rise to a myriad of nonlinear con- 
trol problems that need to be addressed. \Tithin this 
scope. much effort has been directed in recent years 
to the development of automatic longitudinal vehicle 
controls that focus on improving the safety and ef- 
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ficiency of the transportation systems. Most of this 
research has been carried out within the framework of 
nonlinear control methods and linear-quadratic opti- 
mal control theory.[l--l] In this work we use Artificial 
Neural Networks (ANKs) for this purpose because 
of the considerable attenrion they have receil-ed in 
recent years within the engineering community for 
control of nonlinear dynamical systems and for their 
ability to act as intelligent controllers. An "intelligent 
control'' system is one which generates and executes 
timely control actions in order to  satisfactorilj guide 
a giT-en system from an initial state t o  a terminal 
state without violating a prescribed set of constraints 
and objectives.[5] The strength of ANNs lies in  their 
ability to appioximate arbitrary nonlinear mappings. 



thus providing nonlinear control designs that in gen- 
eral cannot be obtained by means of more traditional 
control techniques. 

The purpose of this paper is to show how an 
AICC can be developed using Feedforward ANNs. 
An AICC is an  assisting system capable of controlling 
the relative speed and distance between two adjacent 
vehicles in the same lane.fl] In order to differentiate 
between the two vehicles, the first one will be re- 
ferred to as the leader and the second as the follower. 
The leader moves independentl5- of the follower, the 
AICC is attached to  the follower which can control its 
velocity and position with respect to the leader, i.e. 
there is no intervehicle communication. The resulting 
control system should be able to  pro\-ide the appro- 
priate rate of change of acceleration. i.e. the jerk, 
of the follower vehicle order to maintain a requested 
longitudinal distance between the two vehicles. The 
desired joint NNC-vehicle dynamics configuration is 
shown in Fig. 1. In general, this longitudinal distance 
is not a constant parameter but can be set either ax- 
bitrarily or according to a certain criterion, e.g. to 
keep a constant time headway. 

2 Simple Nonlinear Vehicle 
Dynamics Model 

For simplicity, the dynamical equations of the fol- 
lower will be written in a reference coordinate system 
which moves with the leader. In addition, the follow- 
ing set of assumptions is used to  obtain a simplified 
discrete time model for the follower in this reference 
system: 

The relative position, velocity and acceleration 
of the follower with respect to the leader are 
accessible and can be directly measured. 

0 The acceleration of the follower is assumed con- 
stant during fixed intervals of time, or time 
steps. After each time step, the value of the 
acceleration is updated based upon the d u e  of 
the jerk at the immediately preceding time step. 

The relative acceleration of the follower is 
assumed independent of the velocity of the 
leader and it is constrained to remain between 
+2m/sec2 and -5m/sec2. 
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take arbitrary iralues within the interval between 
-5m,/.sec3 and +5m,/sec3. 

With the above- assuniptions the dynamic equa- 
ions of the follower are given by, 

\i-here ? k ,  i'k and k k  are the relative position, ve- 
locity and acceleration of the follower relative to the 
leader. Together these constitute the state of the sys- 
tem denoted by Z k ,  and u k  is the control variable. 
Here, the subindex IC represents the time step, with 
k = 1,. . . , k f .  The control variable u is constrained 
to take values from the following set 

(4) 

In an actual vehicle, both constraints on the jerk and 
on the acceleration, Eqs. (3) and (4), will also depend 
on the actual velocity of the vehicles. Our purpose in 
choosing this simplified model was to  study the feasi- 
bility of using ANN for AICC; more realistic models 
including these additional constraints will be consid- 
ered in future work. 

The purpose of a properly designed cont,roller is 
to provide the appropriate control action U k ,  given 
the current state of the system, in order to obtain a 
new state of the system Z k + l  such that the successive 
application of the control law drives the dynamical 
system toward a desired final state without violating 
the constraints imposed on the system and on the 
control variables. 

The transformation equations from the relative po- 
sition ( 2 ) ,  velocity (6 )  and acceleration (6) of the fol- 
lower to the absolute position (x), velocity (c), and 
acceleration (a) are given by 

The control variable, Le. the jerk, is inde- where the subscripts F and L denote the follower and 
pendent of the speed of the leader and can lead vehicle, respectively. 
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3 Neural Network Controller 
In this paper a controller is designed using a feedfor- 
ward neural network with sigmoid activation units. 
The objective of the Neural Network Controller 
(KNC) is to provide the sequence of control actions 
that drives the follower vehicle starting from an arbi- 
trarily selected initial state z1 within a pre-specified 
region in phase space z, toward a target state zt spec- 
ified by .?k, = 21. t k f  = 0, and &, = 0. In other 
words, the final state is that in which the follower ve- 
hicle is located at  a desired distance from the leader 
and remains there, i.e. with zero relative velocity and 
acceleration. The joint NNC-dynamical system con- 
figuration is illustrated in Fig. 1 where the output 
of the NNC is the jerk and the dynamical system is 
described by the set of Eqs. (1)-(3). 

Feedforward neural networks are composed of non- 
linear computational elements or nodes that  are ar- 
ranged in L layers with L 2 3. The output is ob- 
tained by processing the values of the input variables 
from the first layer, input, to the L-th layer or out- 
put, through the L - 2 remaining hidden layers. The 
number of nodes in each layer will be denoted here by 
J(1) with 1 = 1,. . . , L. Each one of the J(1) nodes in 
the first layer are mapped through the identity func- 
tion, i.e. each of these nodes receives as input one of 
the J(l) elements of the input vector and passes them 
unaltered to serve as the input values to  the nodes of 
the second layer. The nodes in the hidden and output 
la>-ers are constituted by nodinear mappings from 
a multidimensional input received from the nodes of 
the immediately preceding layer to a one dimensional 
output, e.g., through a sigmoid function.[6] Thus, the 
activation of the j - th  node in the I-th layer, O:), is 
in general given by 

Here input:!'. the effectiye input to node j ,  is the 
weighted sum of the outputs @'-') of the immedi- 
ately preceding layer. Le., 

.I,-, 

(9) 
. .  

input,") = 1 i j l f  (0 0, ( I  - 1) 

2 = 1  

where denotes the weight connecting the output 
of node i in layer 1 - 1 to the node j in layer 1 and fJ 
is the nonlinear act int ion function of this node. 

Given a set of weights in the NNC, vie denote by 
Ep the mean square error between the desired final 

state of the d-namical system zpt  and the actual fi- 
nal state Z p k ,  obtained during the the p-th trajectory 
generated by the joint NNC-dynamical system con- 
figuration. The total error, E ,  is given by the the 
sum of these individual errors after the presentation 
of a set of P trajectories, i.e., 

P - P  

p= 1 p = l  

Thus, for a fixed topology of the Feedforward NN 
representing the controller, t-he design of the NNC en- 
tails determining the set of weights w that  minimize 
the total error E defined above. For this purpose 
a formal methodology known as Back-propagation 
Through Time (BPTT),[7,8] was used to calculate 
the gradient of the error E in weight-space, VE, and 
to reduce this error by updating the weights itera- 
tively using steepest descent, or some other optirniza- 
tion technique such as conjugate gradients. The sys- 
tematic procedure of reducing the training error E is 
known as training of the neural network, regardless 
of the mathematical technique chosen to  adjust the 
weights. 

An NNC code has been developed at Argonne Na- 
tional Laboratory to  train a Feedforward ANN with 
the purpose of providing control laws of the form 
u = u(z,w) for time discrete dynamical systems of 
the form Z k + l  = F ( Z k , U k ) ,  where z k  and u k  repre- 
sent the state and the control variables respectively, 
at  time step k (k = 1, 2, ... ). Our code is capa- 
ble of handling in a straightforward fashion the cases 
where the plant dynamics, F, are given either bF a set 
of analytical equations obtained by first principles, 
or techniques such as ANN modeling. In order to 
speed up the training process of the NNC, this code 
makes use of the method of conjugate gradients.[9] 
This technique is a quadratically convergent gradient 
method that locates an unconstrained local minimum 
of a multidimensional function. The method is guar- 
anteed to  locate the minimum of a quadratic function 
in a finite number of steps if round-off errors could 
be avoided. For non-quadratic functions, which is the 
case of the training error E(w) in Eq. (lo), this pro- 
cedure is iterative and the algorithm will lead to the 
bottom of whatever valley i t  starts in. 

The follon-ing steps summarize the iterative algo- 
rithm used by the code to train a neural network as 
a dynamic system controller : 

Step 1: -In admissible region of the extended 
phase-space (which in our case includes the de- 
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sired relative position of the follower with re- 
spect to the leader) is divided in P number of 
cells. 

Step 2: Randomly select the initial values of the 
set of weights that specify the NNC. 

Step 3: At each iteration a set of trajectories 
are generated by selecting the initial states ran- 
domly from each one of the P cells and allow- 
ing the NNC-dgamical system to evolve in time 
until a pre-specified maximum number of time 
steps is reached or until some other stopping cri- 
terion is satisfied. 

Step 4: Convergence is achieved when for the 
entire set of P trajectories the convergence crite- 
rion l z ~ - z i ~ /  5 E ,  for all E' ,  is satisfied; where E is a 
pre-specified error range and the subindex i cor- 
responds to  the components of the state-space 
vector. Otherwise proceed to the next step. 

Step 5: Using BPTT, calculate the gradient of 
the error, V E ,  produced by all the different 
crajectories and update the weights using the 
method of conjugate gradients. 

Step 6: Repeat steps three through five until the 
training of the NNC is successfully completed, 
i.e. when the entire set of P trajectories, each 
of which starts from a different cell, reaches the 
target zt specified above within the error range 
E .  

has to be pointed out that the above algorithm 
cannot be considered to  be a strict conjugate gradi- 
ent method because at  each iteration of the method 
an entire new set of initial states is chosen. Neverthe- 
less, this technique allows us to sample uniformly the 
region of interest in the phase space. Hence, the prob- 
lem of memorizing or over-training, which commonly 
appears in pattern recognition using ANN, does not 
occur here. 

4 Training Results 
The NNC considered in this work is a three-layered 
Feedforward ANN with 4-12-1 units per layer respec- 
tively, with the units being mapped through sigmoid 
functions. The four inputs in the first layer corre- 
spond to the current relative position, velocity, and 
acceleration of the follower together with the desired 
relative position with respect to the lead vehicle. The 

activation level of the output node gives the appropri- 
at,e control action, i.e, the jerk, to be applied during 
the next time step. The number of hidden nodes t i r a  

empirically determined. 

-0.4-0.2 0 0.2 0 . 4  0.6 0 . 8  1 
Relative Position 

Figure 2: Typical trajectories in the normalized 
2 - 4 plane. 
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For consistency purposes we define the extended 
phase space to be composed of four elements, the rel- 
ative position, velocity and acceleration, and the de- 
sired position of the follower with respect to the lead 
vehicle. During the training process, the initial states 
in the extended phase space were all chosen with zero 
acceleration. The rest of the values were chosen ran- 
domly by dividing the reduced space of initial states 
in 27 cells. Thus, the number of trajectories gener- 
ated at each iteration of the algorithm was P = 27. 

The NNC was successfully trained after the pre- 
sentation of 51,867 trajectories using an error con- 
vergence parameter E = 0.01. Figure 2 shows typical 
trajectories in the relative position - relative velocity 
plane, for initial states with zero relative acceleration. 
All trajectories terminate at the arbitrarily selected 
distance of 37.5 meters behind the lead car. For sim- 
plicity, in this figure, and throughout the rest of the 
paper, the coordinates in the relative reference sys- 
tem are normalized such that 1 unit of length equals 
100 meters. In addition, the position of the lead ye- 
hicle is always assumed to be at  d = 1, i. = 0, and 
6 = 0 in the normalized phase-space. 

5 Simulation Results 
In order to illustrate the behavior of the NNC 

obtained with the above procedure, we present two 
cases: one involving a lead vehicle with constant ve- 
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Figure 3: Time behavior of the normalized relative position: velocity: acceleration and N N C  control 
action (jerk): together with the corresponding trajectory in the 2 - Ij plane for thc case of a lead 
vehicle with constant velocity. 
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locity, and the other involving a lead vehicle with 
varying acceleration. In both cases the same ANN is 
used to provide the control law that drives the fol- 
lower vehicles to the desired location with respect to 
the leader. 

5.1 Case 1: Lead Vehicle With Con- 
st ant Velocity 

In this example, the following arbitrarj- initial condi- 
tions of the two vehicles were specified: the velocity 
of the leader is set to UL = 2i.8mls (100kmlhr )  
and remains constant during the entire simulation. 
The follower has an initial absolute velocity of 
15.0mls (54kmlhr)  and is located 70 meters behind 
the lead vehicle. Both vehicles have zero initial ac- 
celeration. It is requested that the KKC drives the 
follower vehicle from its initial conditions to a con- 
stant time headway of 1.25 seconds behind the leader 
(or 37.5 meters), and maintains this relative position 
afterwards. 

Figure 3 shows the resulting beha\-ior of the fol- 
lower vehicle in the previously defined normalized rel- 
ative reference system. Figure 3(d) shows the control 
action (jerk) as a function of time, as provided by the 
NNC. Figures 3(a-c) show the resulting behavior of 
the relative position, velocity and acceleration of the 
follower with respect to the leader. As observed in 
Fig. 3(a), the initial distance between the two vehi- 
cles increases because in the coordinate system, which 
is moving with the leader, the folIower vehicle has ini- 
tially a negative velocity. This velocity first increases 
to  appropriate values, and then vanishes asymptoti- 
cally in order to  reach the requested location (i.e. in 
this case 37.5 meters behind the lead vehicle). It is 
observed from these figtires that the desired position, 
indicated by a fine-dotted line in Fig. 3(a). is reached 
after 20 seconds into the simulation. 

5.2 Case 2: Lead Vehicle With Vary- 
ing Acceleration 

In this example, the initial conditions of the two ve- 
hicles are the following: the absolute velocities of 
the follower and lead vehicle are 25.0mls (90krnlhr)  
and 27.8ml.s ( lOOkmlhr) ,  respectively the accelera- 
tions of the follower and leader are initially zero and 
$2.0m/s2, respectively, and the initial distance be- 
tween them is assumed to be T O  meters. During the 
simulation the acceleration of the leader alternates 
between $2.0m/s2 and -2.0m/s2 every 10 seconds. 

0 . 2 5  8 

0 . 2  - 
3 0.15 - 

.? - 0 . 0 5  

-0 .25  ' ' I 
-0.4-0.2 0 0.2 0 .4  0 .6  0.8 1 

Relative Position 

Figure 4: Trajectory in 2 - $ space of the fol- 
lower in the case of a lead vehicle with varying 
acceleration. 

I3 ,= L Followe: 

0 500 1000 1500 2000 
Location (meter) 

Figure 5: Location vs. time diagram for the case 
of a lead vehicle with varying acceler a t' ion. 

SimilarlJ- to the previous example, it is requested that 
the NKC controls the follower in order to maintain 
a constant time headway of 1.25 seconds behind the 
leader. 

In Fig. 4 we show the behavior of the follower in 
the normalized relative f - ij plane where as in the 
previous example. the leader is located at (1 ,O) .  Due 
to the initial relarive velocity of the follower and the 
positive accelerarion of the leader, the distance be- 
tween the two vehicles increases initially until the 
follower has acquired a positive relative velocity and 
then reaches the proximity of the requested distance. 
Since in this example the velocity of the leader has 
a periodic linear oscillatory behavior. the requested 
distance between both vehicles (due to the imposed 
constant time headway requirement) shows the same 
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Figure 6: Time behavior of the normalized relative position, velocity, acceleration and NNC control 
action (jerk) in the case of a lead vehicle with varying acceleration. 

Figure 7 :  Typical screen display of sliding road segment (fixed at the location of follower vehicle). 
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type of behavior which is manifested by the closed 
cycle trajectory in the i - jj plane (Fig. 4). 

The location versus time diagram for the leader 
and follower is given in Fig. 5, which shows the 
"wavy" path of the leader due to its cyclically chang- 
ing velocity, and the path of the follower as a result of 
the AICC. The normalized relative position, velocity 
and acceleration of the follower with respect to the 
leader are shown in Fig. 6(a-c), and the control action 
(jerk) provided by the NNC as a function of time is 
given in Fig. 6(d). As discussed previously, because 
the velocity of the lead vehicle oscillates during the 
course of the simulation, the requested distance be- 
tween both vehicles varies in time, as illustrated by 
the zig-zag dotted line in Fig. 6(a). 

6 Graphical Display of AICC 
Simulator 

An AICC-simulator with color graphic displays has 
been developed to facilitate the testing and evaluat- 
ing of the AICC system. The simulator provides ani- 
mated graphics showing the motion of two vehicles on 
a road segment in three different ways. Two windows 
in the simulator provide the location of the vehicles 
on the road. One of these windows shows the relative 
location of the vehicles from the point of view of the 
follower (sliding road view) and the other shows the 
actual position of the r-ehicles on the road. A third 
window contains a 3-D view of the road as seen by 
the follower. The screens displaying the sliding road 
view and the 3-D road view are shown as gray-scale 
copy in Fig. 7 and Fig. 8, respectively. 

Figure 7 gives the screen at 61.9 seconds into the 
simulation of case 2. The follower (identified by "F") 
is at a stationary location at  the far left, while the 
sliding road segment (150m length) shows the road 
between 2.404m and 2,554m. The absolute veloc- 
ity and acceleration are shown a t  the bottom of the 
corresponding x-ehicles. The requested distance is dis- 
played on the left side, while the actual distance and 
the deviation from the requested distance is given 
above the vehicles. 

The information regarding the relative position, 
velocity. acceleration and jerk of the follower vehi- 
cle as a function of time is also displayed graphically 
as the simulation progresses. 

\ / 
'\ 

Figure 8: Typical screen display of 3-D road 
view. 

7 Conclusions 
Using a simple nonlinear dynamic model, a NNC 
was successfully designed to  perform the tasks of an 
AICC. For this purpose a Feedforward ANN with sig- 
moid activation functions was used. The resulting 
controller was tested in an AICC-simulator with an- 
imated graphical displays. While this paper consid- 
ered the use of the AICC in a system of only two 
vehicles, work is currently being done to test the be- 
havior of the NNC in multiple vehicle platooning and 
stop-and-go traffic. These more complex applications 
should not pose difficulties for the NNC controller. 
In order to study the behavior of larger systems con- 
taining many AICC equipped vehicles the NNC is be- 
ing incorporated into the Argonne ITS simulator.[lO] 
More realistic vehicle dynamics models will also be 
considered in future work. 
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