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Transverse Texnperature Distributions and Heat Generation Rate in Composite 

Conductors Subjected to a Constant Thermal Disturbance 

Y. S.  Cha 

EhergyTechnologyDivision 

Argonne National Laboratory 

Argonne, Illinois 60439 

Analytical solution of one-dimensional, transient heat conduction with 

distributed heat source is obtained to  predict the transverse temperature 

distribution and heat generation rate per unit volume of the composite conductor. 

The solution indicates that the temperature distribution and the heat generation 

rate depend on three dimensionless parameters; the dimensionless external 

disturbance wo, the dimensionless interface temperature e*, and the 

dimensionless parameter @ which depends on the thickness and the thermal 

conductivity of the superconductor. Results of the transient and steady-state 

solution are presented. It is shown that the heat generation rate per unit volume 

of the composite Q/Q, is directly proportional to  the current in the stabilizer. The 

dimensionless total internal generation rate wt in the superconductor is shown to  

reach a maximum at Q/Q, = 0.5 because wt depends on two competing factors, the 

current in the superconductor and the electric field strength which is 

proportional t o  the current in the stabilizer. The result of the present analysis 

reduces t o  a known steady-state solution in the absence of an external 

disturbance. Limitations of the present analytical model are discussed. 
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Introduction 

Cryogenic stabilization is important for the design and operation of 

superconducting magnets and is a subject of continuous and ongoing research. 

Essential to  cryogenic stabilization of superconducting magnets is the prediction 

of heat generation rate per unit volume of the composite conductor. An example 

is the well known equal-area theory of Maddock, James, and Norris [l]. The heat 

generation rate per unit volume of the composite conductor is usually calculated 

by assuming that (1) the current in the superconductor is equal to  the critical 

current with all the excess transferred to  the stabilizer, and (2) the critical 

current decreases linearly with temperature [ Z ] .  A more realistic model was 

proposed by Wilson [Z ]  to  calculate the heat generation rate by taking into account 

of the effects of finite thermal conductivity and thickness of the superconductor. 

The effect of finite thermal conductivity on heat generation rate is even more 

pronounced for high-temperature superconductors in view of its relatively low 

thermal conductivities. The solution reported by Wilson is for steady-state 

condition and is in the absence of an external disturbance. In this paper, we shall 

revisit the problem of heat generation rate in a composite conductor by 

considering the more general case of transient condition and in the presence of a 

constant thermal disturbance. We treat the problem as one-dimensional and 

obtain closed-form solution which predicts the transverse temperature 

distribution in the superconductor and the heat generation rate per unit volume of 

the composite conductor. It should be noted that most of the papers on stability 

deal with the propagation of normal zone in the longitudinal direction and 

assume that the temperature of the composite conductor is uniform in the 

transverse direction [3-51. The only exception is the two-dimensional model 

reported by Chyu and Oberly [6]. However, their solution is numerical and 
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therefore does not provide information on what are the relevant dimensionless 

(scaling) parameters. In this paper, we begin by deriving the governing 

equations. Then the results of steady-state and transient solutions are presented. 

Finally, we discuss the limitations of the present model with particular emphasis 

on its application to high-temperature superconductors. 

Analysis 

The objective is to  determine the transverse temperature distributions and 

heat generation rate in composite conductors caused by current redistribution as 

a result of a constant thermal disturbance. The geometry is shown in Fig. 1 

together with the assumed linear relationship between critical current density 

and temperature. We assume that the characteristic time of current diffusion is 

short compared to  that of thermal diffusion so that the current distribution is 

completely determined by the temperature distribution [ Z ] .  We assume that the 

length of the thermal disturbance in the axial direction is much larger than the 

thickness of the superconductor in the transverse direction so that the problem 

can be treated as one-dimensional in space by neglecting the edge effect. The 

governing equation in the superconductor is 

1aT W a2T 
a at k ax2 --=-+- 

where a is the thermal diffusivity, k is the thermal conductivity, T is temperature, 

t is time, X is the transverse coordinate] and the heat source per unit volume of 

the superconductor W is composed of two parts, 
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where Wo is the externally imposed heating rate per unit volume of the 

superconductor and represents a constant thermal disturbance, and Wi(T) is the 

internally generated heating rate per unit volume of the superconductor as a 

result of current redistribution in the superconductor and the stabilizer. If it is 

further assumed that the current density in the superconductor is equal to  the 

critical current density corresponding to the local temperature with all the excess 

current transferred to  the stabilizer, then the internal generation rate is [21 

Wi(T) = E J(T) = E J&T) = E J&Ti) (T, - T) / (T, - Ti) (3) 

where Ti is the temperature at the interface of the superconductor and the 

stabilizer, J is current density, J, is the critical current density, T, is the critical 

temperature of the superconductor, and E is the electrical field strength developed 

in the composite conductor as a result of current flow in the stabilizer. E is 

assumed to be uniform across the entire conductor. The initial and boundary 

conditions are 

t = 0 ,  T=Ti, 

X=O,  X = O , a n d  aT 

X = a ,  T = T i .  

(4) 

If we assume that the thermal conductivity of the metal stabilizer is much larger 

than that of the superconductor (which is applicable to  high-temperature ceramic 
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superconductors) and that the thickness of the superconductor (a) is not small 

compared to that of the stabilizer (b), then we do not need to  solve the heat 

conduction equation in the stabilizer. Substituting Eqs. 2 and 3 into Eq. 1 and the 

resulting equation can be solved by Laplace transform 171. After some 

manipulation, the solution turns out to be 

(-Un exp[-(N2 + p2)~]cos(Nx) 

N( p2 + N2) + 2(w*ee, + P2) 
n=O 

where N = (2n+lh/2 and the dimensionless variables are defined as, 

and 
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wo = W& I Qc. 

The parameter h = a / (a + b) is the superconductor fraction in the composite and 

the critical generation rate Qc (the heat generation rate per unit volume of the 

composite when most of the current is in the stabilizer) is defined as 

where p is the electrical resistivity of the stabilizer. The parameter Q in Eq. 6 is 

the internal heat generation rate per unit volume of the composite conductor 

(superconductor plus stabilizer), which is unknown and needs to  be determined. 

The parameter Q can be expressed in terms of the electric field strength E and the 

current density Jo(To), 

Using Eqs. 10, 13, and 14, it can be shown that 

where 

There is an additional condition that must be satisfied as a result of current 

redistribution, which is that the sum of the current in the superconductor and the 

stabilizer must be equal to  the total current, 
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Employing the dimensionless parameters defined previously, it can be shown that 

Eq. 17 is equivalent to 

Substituting Eq. 6 into Eq. 18 resulted in the following relationship between 8, and 

Q/Qc, 

where 

- (-Qn exp[-(N2 + p')~,.] sin(N) 
s= c 

n=O ( p2 + N ~ ) N ~  

We have now completed the formulation of the problem. For given values of wo, 

e,, and $, we want to  calculate 8 as functions of z and x and Q/Q, and P as 

function z by solving Eqs. 6, 15, and 19 simultaneously. Numerically, it is easier 

to  carry out the calculations in a slightly different manner. Instead of wo, e,, 
and $, one can use wo, Q/Q, , and $ as inputs, then P can be calculated explicitly 

from Eq. 15. Then 8, can be calculated by using Eq. 19. Finally, the 
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dimensionless temperature 8 is calculated by using Eq. 6. The calculations are 

straightforward because no iteration is involved. 

There is a simple relationship between the heat generation rate per unit 

volume of the composite and the current in the stabilizer (Ist). Substituting the 

electric field strength E = pJ,t into Eq. 14, it can be shown that 

Thus, the fraction of current in the stabilizer is equal to  the fraction of the heat 

generated in the composite conductor. Another interesting parameter is the total  

internal heat generated per unit volume in the superconductor, 

Since the total heat generated in the composite is equal to  the sum of the heat 

generated in the superconductor and the stabilizer, it follows that 

Q (a + b) = Wt a + p (J,# b . 

Substituting Eq. 21 into Eq. 23 and solve for the dimensionless parameter wt, 
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Both Eqs. 21 and 24 appear t o  be quite simple and depend only on the heat 

generation rate per unit volume of the composite Q/Q,. However, because Q/Q, 

depends on WO, @, and e,, so do ISt/Io and wk Equations 21 and 24 are applicable to 

both the transient and steady-state situations. 

Before presenting the results, it is interesting to point ou t  a special case of 

the general solution given by Eq. 6. Since the argument in the exponential term 

is negative, a steady-state solution always exist as z becomes large. Under steady- 

state condition, Eqs. 6 and 19 are reduced to 

If there is no external' thermal disturbance (wo=O), then the steady-state solution 

becomes 

8, = tanh(P) / / (1 - Q / QJ . 

Equations 27 and 28 are identical t o  the solution reported by Wilson 123, who 

calculated the steady-state, transverse temperature distributions and heat 

generation rate and applied the results t o  determine the cryogenic stability of a 

composite conductor. 
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Results andDiscussions 

The results of the previous analysis will be presented in two parts. The first 

part describes the numerical results of the steady-state solution and the second 

part describes the results of the transient solution. Instead of e,, we will define a 

dimensionless parameter e* 

e * = l - l / e g  

The relation between 8, and 0* is 
- ,  

(30) 

The results will be expressed in terms of 0*, which is the parameter employed by 

Wilson [a] ,  so that a direct comparison can be made. 

steadystate Solution 

In this case, the exponential terms in Eqs. 6 and 19 approach zero as z 

becomes very large. Figures 2 to  4 show the calculated 8* as a function of Q/Qc (or 

Is&) for various values of @. When there is no external disturbance (WO = 01, the 

result is shown in Fig. 2 and it is identical to that reported by Wilson [2]. The case 

of @ = 0 corresponds t o  the special situation where the superconductor is at a 

uniform temperature because the thermal conductivity k approaches infinity. I t  

can be seen from Fig. 2 that = 0 (Ti = Tg) at ISt/Io = 0 and €I* = 1 (Ti = TJ at Is& = 

1. This means that, in the absence of a external disturbance, all the current is in 



the superconductor when Ti = T,, and all the current is in the stabilizer when Ti = 

T,. The situation is different when there is an external disturbance (WO > 0) as 

shown in Figs. 3 and 4. Except for $ = 0, it can be observed that 0* < 0 (Ti < Tg) 

when Is& = 0 and 0* c 1 (Ti c T,) when Is& = 1. In order to  maintain all the 

current in the superconductor in the presence of an external disturbance, the 

interface temperature Ti must be smaller than the generation temperature T,. 

This is because the external disturbance causes current redistribution within the 

superconductor even though all the current is still in the superconductor. On the 

other hand, when all the current is transferred t o  the stabilizer, Figs. 3 and 4 

show that the interface temperature Ti is less than the critical temperature T,. 

This result is incorrect physically because if the interface temperature is less 

than the critical temperature, then a portion of the superconductor (near the 

interface) is still capable of carrying a certain amount of current and 

consequently not all the current is in the stabilizer, This unrealistic result arises 

because the analytical model could not account for the situation when the 

temperature of the superconductor exceeds the critical temperature. This can be 

explained by examining Eq. 3 which is the assumed internal generation rate in 

the superconductor. When T is greater than T,, the internal generation rate 

becomes negative which is obviously incorrect. When Ti is slightly smaller o r  

equal to  T, at I,& = 1 as shown in Figs. 2 to 4, the bulk of the superconductor is at 

temperatures greater than T, and Eq. 3 fails to  describe the physical situation 

correctly. We shall discuss this further in a later section. 

Another important feature which can be observed from Figs. 2 to  4 is that 

when $ > 3, a relative minimum appears in each of the curve in these figures. 

For example, when $ = 5, Q/Q, increases with decreasing 8* for Q/Q, < 1.5 and 

increase with increasing 0* for Q/Q, > 1.5. The portion of the curve with negative 



slope is most likely unstable because as the interface temperature Ti is reduced, 

the superconductor should be able t o  carry more current and therefore less 

current is transferred to the stabilizer. 

Typical temperature distribution in the superconductor is shown in Fig. 5 

where the dimensionless temperature 6 is plotted against x for various values of 

Q/Q, (or Ist/Io) with wo = 0.2 and Q = 5. As Q/Qc is increased, the temperatures in 

the core of the superconductor increases and approaches T, (0 = 0). However, 

when Q/Q, is greater than 0.8, 9 becomes negative and T becomes greater T,. 

This is again the result of employing Eq. 3 which is not valid when the 

temperature of the superconductor exceeds the critical temperature. 

It is interesting to find out how the dimensionless total internal generation 

rate wt varies with the dimensionless temperature e* and the heat generation 

rate per unit volume of the composite Q/Q,. Figure 6 shows the plot of wt versus 

Q/Q, (or Ist/Io) calculated by Eq. 24. The total internal generation reaches a 

maximum at Ist/Io = 0.5. The reason that wt has a maximum is because the 

internal generation rate depends on the product of two competing factors, the total 

current in the superconductor and the electric field strength. When the total 

current in the superconductor is large, the electric field strength is small because 

the current in the stabilizer is small. When the total current in the 

superconductor is small, the electric field strength is large because the current in 

the stabilizer is large. This characteristic is clearly demonstrated in Fig. 6 and by 

Eq. 24. Figures 7 and 8 show the variation of e* with wt for various values of 4. 
Again, wt reaches a maximum at some value of e* which depends on the values of 

Q and wg. 
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Transient Solution 

Figures 9 and 10 show the results of the transient solution calculated by 

Eqs. 19 and 30. It appears that the steady-state is approached when z =l. This 

means that the time required to reach steady-state is t z a%x. This characteristic 

time for transverse heat conduction in the superconductor can be compared to 

that of current diffusion in the stabilizer. The characteristic time of current 

diffusion in the stabilizer is t,t G poL2/p, where po (= 471; x 10-7 H/m) is the 

permeability of free space, and L is the characteristic length in the longitudinal 

direction. The ratio of the two characteristic times is 

The thermal diffusivity for high-temperature superconductors at 77 K is a E 10-6- 

10-7 rn%, and the resistivity of silver a t  77 K is p G 3.65 x 10-9 a-m. In the 

analytical model, we assumed that L is much larger than a so that edge effect can 

be neglected and the problem can be treated as one-dimensional. If L/a = 10, 

t / tSt E 0 . 5 8 ~ 1 0 ~  >> 1 . 

Then the time required for current redistribution in the stabilizer is much shorter 

then that required for the transverse temperature in the superconductor to reach 

steady-state. Steady-state current in the stabilizer and the electric field strength 

can be assumed to  establish instantly. But, as one can see that the margin is 

relatively small. If L/a > 10 is required, then t / tSt will no longer be much greater 

than 1, and the error introduced by the one-dimensional model will increase. 



Closed-form solution of transient heat conduction with distributed heat 

source is employed to  predict the transverse temperature distribution and heat 

generation rate per unit volume of a composite conductor subjected to  a constant 

thermal disturbance. The heat source includes a constant external disturbance 

and an internal generation term which is a function of temperature distribution 

in the superconductor (Eq. 3). It is shown that the dimensionless temperature 

distribution 8 (Eq. 6) and the heat generation rate per unit volume of the composite 

Q/Q, depend on the three dimensionless parameters e,, +, and WO. Results of the 

transient and steady-state solution are presented in Fig. 2 to 10. It is shown that 

the heat generation rate per unit volume of the composite Q/Q, is directly 

proportional to  the current in the stabilizer (Eq. 21). The dimensionless total 

internal generation rate wt in the superconductor is shown to  reach a maximum 

at Q/Q, = 0.5 (Fig. 6) because wt depends on two competing factors, the current in 

the superconductor and the electric field strength which is proportional t o  the 

current in the stabilizer. It is demonstrated that steady-state is approached when 

the dimensionless time z becomes greater than 1. In the absence of an external 

disturbance, the steady-state solution reduces to that reported by Wilson El. 

One of the basic assumption made in the present analysis is that the 

characteristic time of current redistribution in the superconductor and the 

stabilizer is much smaller than that of temperature redistribution so  that heat 

conduction in the superconductor is independent of the current diffusion process 

in the stabilizer. This assumption is shown to  be marginal for high-temperature 

superconductors. 
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Another basic assumption made in the present analysis is the distribution 

of internal heat generation rate described by Eq. 3. It is evident that Eq. 3 cannot 

accommodate temperature greater than T, because dissipation becomes negative 

when T > T, and Eq. 3 gives unrealistic results. In reality, T can be greater than 

T, and the local current density should be reduced to zero if T > T,. Consequently, 

the local heat generation rate should be zero. In other words, Wi = 0 and J = 0 

when T > T,. This additional constraint will cause complication for analytical 

solution but it can be easily handled by numerical solution. We are currently 

carrying out the numerical solution. In the numerical solution, we can also 

include the more general condition of a time dependent external disturbance 

instead of a constant external disturbance used in the present analysis. The 

present analytical solution can be employed t o  validate the results of the 

numerical solution under special circumstances. 
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Nomenclature 

a 

b 

E electric field strength, V/m 

I current, A 

1/2 the thickness of the superconductor, m 

thickness of the stabilizer, m 



< .  

IO 

JC 

JO 

J 

k 

L 

Q 
QC 

T 

T C  

Ti 

TO 
t 

tst 

W 

Wi 

WO 

wt 

WO 

wt 

X 
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operating current, A 

current density, Nm2 

critical current density, A/m2 

operating current density at T = To, Nm2 

thermal conductivity of the superconductor, W/m-K 

characteristic length in the longitudinal direction for current diffusion 

in the stabilizer, m 

heat generation rate per unit volume of the composite conductor, W/m3 

critical heat generation rate per unit volume of the composite conductor 

(Ea. 13), W/m3 

temperature, K 

critical temperature, K 

interface temperature between the superconductor and the stabilizer, K 

operating temperature before a thermal disturbance, K 

time o r  characteristic time for thermal diffusion, s 

characteristic time for current diffusion in the stabilizer, s 

heating rate per unit volume of the superconductor (Eq. 2), W/m3 

internal generation rate per unit volume of the superconductor (Eq. 31, 

W/m3 

external heating rate per unit volume of the superconductor, W/m3 

total internal generation rate per unit volume of the superconductor 

defined in Eq. 22, W/m3 

dimensionless external heating rate per unit volume of the 

superconductor defined in Ea. 12, W/m3 

dimensionless total internal generation rate per unit volume of the 

superconductor defined in Eq. 24, W/m3 

transverse coordinate, m 



X dimensionless transverse coordinate, X/a 

a 

P 
P 
h 
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thermal diffusivity of the superconductor, m2/s 

dimensionless parameter defined in Eq. 10 

electrical resistivity of the stabilizer, SZ-m 

fraction of superconductor in the composite, a/(a+b) 

a dimensionless parameter defined in Eq. 16. 

z dimensionless 

e dimensionless 

8, dimensionless 

e* dimensionless 

time, atla2 

temperature defined in Eq. 7 

temperature defined in Eq. 11 

temperature defined in Eq. 30 

st stabilizer 



Figwe Captions 

Fig. 1 A schematic of the geometry of the model and the assumed relationships 

between the critical current density and the temperature. 

Fig. 2 Variation of e* with Q/Q, or Is& for various values of $ with wo = 0 

under steady-state condition. 

Fig. 3 Variation of 0* with Q/Qc or  Is& for various values of Q with wo = 0.1 

under s teady-s t ate condition. 

Fig. 4 Variation of 8" with Q/Q, or Ist/Io for various values of @ with wo = 0.2 

under steady-state condition. 

Fig. 5 Variation of 8 with x for various values of Q/Qc or  Ist/Io with wo = 0 and 

$=5 under steady-s tate condition, 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Variation of wt with Q/Q, or Is& . 

Variation of e* with wt for various values of @ with wo = 0. 

Variation of e* with wt for various values of @ with wo = 0.1. 

Variation of e* with Q/Q, o r  Is& with wo = 0 and @ = 5 under transient 

condition. 



Fig. 10 Variation of e* with Q/Q, or ISt/Io with wo = 0.1 and @ = 5 under 

transient condition. 
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