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Abstract 

A neural network model was developed to predict the weld pool shape C pulscd-l.. =r :I:'+'-Im 
welds. Several different network architectures were examined and thc; optimum architecture WU- 

identified. The neural network was then trained and, in spite of the small size of the training data set, 
the network accurately predicted the weld pool shape profiles. The neural network output was in the 
form of four weld pool shape parameters (depth, width, half-width, and area) and these were 
converted into predicted weld pool profiles with the use of the actual experimental pool profiles as 
templates. It was also shown that the neural network model could reliably predict the change from 
conduction-mode type shapes to keyhole-mode shapes. 

. . 

Introduction 

Weld pool shape is critically important in terms of determining the quality of a weld. For example, 
the depth of penetration is often the most important feature that determines whether a weld is 
acceptable or not. Over the last two decades, many fundamental studies have tried to develop models 
that predict the weld pool shape from first principles"'. These models have become increasingly 
sophisticated over the years and have been very usefbl in providing a better, more fhdamental 
understanding of the factors that affect the weld pool shape. However, as the models have become 
more advanced, they have also become more cumbersome to use and require ever-increasing 
computational times. Thus, they are often not suitable for simple parametric studies or for providing 
guidelines for determining appropriate process parameters. Furthermore, they are not particuIarly 
amenable to in-process applications such as control loops where simplicity and rapid response time 
are required. For the use of models in real-time process applications, the ability to make 
instantaneous predictions is desirable and often essential. 

One solution for providing real-time predictions of weld pool shape (as well as other weld 
attributes such as cracking propensity or weld properties) is the utilization of neural network models. 
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These models are empirically based but they can be quite sophisticated while still maintaining the 
essential features of ease of use and rapid response time. Several recent papers have addressed the 
issue of predicting weid shape with neural networks in arc-welding'-" and Iaser s p o t - ~ e l d i n g ' ~ ~ ~ .  The 
present paper describes the application of neural network modeling to the problem ofpredicting weld 
pool shape in pulsed Nd:YAG laser aluminum welds. It is demonstrated that neural network 
predictions can be quite accurate, even if limited data to train the network are available. The use of 
neural networks in predicting weld pool shape (or weld properties) is quite general and can be applied 
to any welding process, provided the proper data for training the neural network are available. 

Recently, a neural network model for the prediction of weld pool shape as a knction of welding 
parameters in pulsed Nd:YAG laser aluminum welds was developed". In that study, the neural 
network was trained on an initial set of data and was tested on welds that were produced in a second 
round of welds. However, welds made in the two rounds were very different in character in that the 
first-round welds exhibited characteristics of conduction-mode welds (broad, less penetration) while 
the second-round welds were more Iike keyhole welds (narrower and deeper). Not surprisingly, the 
reliability of the neural network predictions was limited because the network was trained on one type 
ofweld and tested on another. In the present study, the neural network was trained on the combined 
data from both weld rounds. In this way, the ability of the neural network to predict significantly 
different weld pool profiles was more meaningfully evaluated. 

Neural Networks - Background 

Output Layer 

Hidden Layer 

Input Layer 

Neural networks are based on a simple scheme in which inputs are related to outputs by a system 
of interconnected nodes. A very simple description of the concept behind neural networks is given 
below. There is extensive literature on the theory behind neural networks. The reader is referred to 
other publications for more  detail^'^-'^. A network structure consists of three layers of nodes: input 
nodes, hidden nodes, and output nodes. These nodes are "connected" to each other so that the value 
of one node will affect the value of another. The relative influence that one node has on another one 
is specified by the "weight" that is assigned to each connection. A schematic diagram of a simple 
neural network is shown in Figure 1. The three layers are marked in the diagram. In principle, the 
hidden layer can consist of multiple sub-layers but in this study only one hidden layer was considered. 

In the schematic example of Figure 
1, the input layer has three nodes, 
representing three input variables, 
while the output layer consists of 
t w o  nodes, corresponding to two 
output variables. In addition, the 
hidden layer has four nodes, as 
shown in the diagram. The 
different weights for the node 
connections are depicted by 
different line thicknesses. 

Figure 1: Schematic diagram showing the multiple layer The network is based on the 
structure of a neural network and the inter-connectivity mathematical relationships that 
between the nodes of the network. 



follow. With input node values, ii , for all i input nodes, the sum Sy at hidden nodej is given by 

1 

where ivy are the weights for the connections between all input nodes i and hidden nodesj, and I, is 
a constant known as the bias. This sum is calculated for each of thej  hidden nodes. The value of the 
hidden node is then calculated from the sums with the use of a transfer function. In the current study, 
sigmoid transfer fhctions were used. Therefore, the value of each hidden node, Hj , is given by 

7 -  1 
Hj = 

It e-SJ” 
where S’f is given by Equation (1). The same procedure is used to sum the contributions from each 
of the hidden nodes to obtain a sum for each output node k as given by 

where w are the weights connecting hidden nodesj with output nodes k. The values for H, are given 
by Equation (2) while H, is a constant bias. Finally, the sums at the output nodes are converted in 
output values, 0, , by means of another (sigmoid) transfer function 

Jk. 

1 
Ok = 

It 
(4) 

Once again, the values for A: are obtained from Equation(3). In addition, the actual input and output 
data are usually normalized so that a conversion to li values and from 0, values is also needed. 

Neural network training is carried out with the use of a training data set that contains sets of 
inputs and corresponding outputs. By means of an optimization scheme, the neural network is 
developed by comparing the predicted output values with the actual outputs and adjusting the weights 
to minimize the prediction error. For example, when applied to weld shape modeling, the input nodes 
may correspond to weld process conditions such as welding speed, power, and material thickness 
while the output nodes may represent weld pool shape parameters such as width and penetration 
depth. Through the learning process, which involves thousands of iterations, a complicated set of 
empirical relationships between input and output variables is developed. Eventually, with minimal 
user influence, the network “learns” a scheme in which outputs are associated with the inputs. In the 
present analysis, a feed-forward network with a back-propagation learning scheme was utilized16. 

Experimental Conditions 

Autogenous, pulsed Nd:YAG laser welds were made on 3-mm-thick sheet of aluminum alloy 
5754. A range of welding conditions was examined and the parameters are listed in Table 1. The ten 
conditions on the left of Table 1 were from the first round ofwelds (and were used to train the earlier 
neural network’‘) while the thirteen conditions on the right were from the second round of welds. 
In the present study, all 23 conditions were used to train the neural network. All welds were made 
at approximately 4 pulses/mm in order to insure sufficient overlap of the pulses. The average power 



was varied from 50 to 244 W to include a wide range of power levels and corresponding pool shapes 
and sizes without reaching full penetration. The aim was to cover typical welding conditions used 
in practice. In all cases, the laser beam was focused on the top surface. The welds were sectioned 
and five transverse cross-sections were examined metallographically from each weld. Average shape 
parameters from the five transverse views were used to compensate for the variation in weld profile 
shape due to the pulsed nature of the welding process. 

Weld Pool ShaDe Characterization 

In order to predict weld pool profiles, it was first necessary to identifjr parameters that characterize 
the weld pool shape. One approach is to describe the cross-section profile in terms of an analytical 
knction. However, this has several drawbacks. First, the experimental cross-sections included a 
wide range of shapes and therefore a simple geometric hnction would be inappropriate. Second, the 
number of parameters in an analytical description would have to be limited since the limited amount 
of data available for training does not justi@ a model with a large number of adjustable parameters. 
Finally, the use of an analytical function to describe the weld pool shape would introduce a bias based 
on the choice of the analytical function. Therefore, four physical parameters relating to the actual 
weld pool shape were used instead of an analytical function. 

The four parameters describing the actual shape of the weld pool cross-section were penetration 
depth, width (at the top ofthe weld), width at half penetration (referred to as “half-width”), and total 
area. These four parameters were evaluated from the experimental weld pool cross-sections, as 
shown schematically in Figure 2. The top surface of the welds was often irregular (see Figure 2). 
This presented a problem when ascertaining the area of the welds. It was decided to use the actual 

Table 1: Laser welding conditions for alloy 5754. 

ID Weld Pulse Average Pulse 
Speed Energy Power Duration 

( d s )  (Joules) (Watts) (msec) 
1 6.38 2 51 2.2 
2 6.38 2.9 74 2.2 
3 6.38 4.1 101 2.2 
4 10.2 3 125 2.2 
5 10.2 3.5 158 2.2 
6 10.2 4.1 165 2.2 
7 10.2 5.5 203 2.2 
8 2.55 11.3 123 7.5 
9 3.83 9.5 190 7.5 
10 3.83 13.2 196 7.5 

.-- 

ID Weld Pulse Average Pulse 
Speed Energy Power Duration 
( d s )  (Joules) (Watts) (msec) 

1 1  3 4.17 50 2.2 
12 3 6.25 75 2.2 
13 3 8.33 100 2.2 
14 5 5 100 2.2 
15 5 7.5 150 2.2 
16 5 9.05 181 2.2 
17 6.38 4.0 100 2.2 
18 7.65 3.33 100 2.2 
19 7.65 5 150 2.2 
20 7.65 6.67 200 2.2 
21 7.65 8.13 244 2.2 
22 10.2 3.95 158 2.2 
23 10.2 5.0 200 2.2 



weld cross-section areas, without arbitrarily ignoring protuberances or depressions on the top surface. 
However, when using the output from the neural network model to construct a predicted weld pool 
cross-section, a flat top surface was imposed. 

Finally, it was necessary to relate the four shape parameters to an actual weld profile. This was 
accomplished by using the experimental weld profiles as templates. The output shape parameters 
from the neural network were compared to the entire set of experimentally measured profile 
parameters and the closest match was identified. Then, the corresponding experimental weld profile 
was scaled appropriately so that the final profile depth and width corresponded to the predicted 
values. In this way, the predicted weld shape resembled the actual experimental weld cross-sections 
and there was no need to impose an arbitrary analytical function to describe the complex profiles. 
The weld profile template library was relatively extensive because all five cross-sections that were 
taken from each weld were utilized. 

Network Develoument 

The calculations were carried out with the use of a commercial software package, Neural Works 
Professional II/PLUSTb* 17. The development of the network was broken down into four stages. 
First, the input and output parameters were identified. In principle, it is desirable to choose input 
parameters that relate directly to the weld process conditions. Therefore, four process variables 
(speed, average power, pulse energy, pulse duration) were chosen as input nodes. However, there 
was another, unknown variable that changed from the first round of welds to the second and led to 
the change in weld shape character from conduction type to keyhole type. A fifth input node was 
added to distinguish the two rounds and account for the unknown process condition that changed. 
The output nodes corresponded to the four weld pool parameters, as explained earlier. 

The second step was to determine the optimum network architecture, and specificdly the optimum 
number of hidden nodes. As the number of hidden nodes is increased, the network is better able to 
identifj a pattern between the inputs and outputs in the learning data set. However, if the number 

of hidden nodes is too large, then the 
.,._. .. :.. .,.. ...:. .... ........ ..<.:... ...... . , : .  ... ...: . . . .  

. ..... . 
-'..:,.;.;.:: . .  I 
. .  ,. ..; . .... . .... ... ._..... ... ... . . . .  network tends to memorize the input-output 

pairings in the learning data set rather than 
identi@ relationships and, as a result, the 
network is less accurate in predicting weld 
pool shapes for new data. The optimum 
number of hidden nodes is controlled to a 
large extent by the size of the learning data 
set. If an extensive learning set is available, 
then many hidden nodes can be utilized 
effectively. To determine the optimum 
architecture, the complete 23-point data set 
was subdivided into pairs of training and 
testing sets, with 20 and 3 points, 
respectively. Five such pairs were created, 

Figure 2: Micrograph of typicd weld PO01 profile and using randomly chosen data points, and 
parameters measured for each weld. 



networks were developed for each training subset. The learnability and predictability of the networks 
were measured by the root mean square (RMS) error of the network output for the learning and 
testing data sets, respectively. A lower RMS corresponds to better learnability or predictability. 
Average RMS values for the network output for the five pairs of learning and testing data sets were 
calculated for each network configuration. Network configurations with one to six hidden nodes 
were examined. A plot of the RMS error as a function of the number of hidden nodes is given in 
Figure 3. The learning RMS error decreases monotonically with increasing number of hidden nodes, 
as expected. However, the prediction RMS error is a minimum with two hidden nodes. For all other 
configurations that were examined, the RMS error was greater and the network’s ability to predict 
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Figure 3: Plot of the average RMS error as a fbnction of 
the number of hidden nodes for the Iearnabiiity and 
predictability of the network. 
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behavior was diminished. This same 
behavior, Le., the minimum prediction 
RMS for two nodes, was also found 
for a second set of calculations with 
different starting weights for the 
network development. Therefore, it 
was concluded that a network 
architecture with two hidden nodes 
was optimal. The final network 
architecture is shown in Figure 4. 

With the optimum network 
configuration identified, the next step 
was to develop the “best” network. 
For this stage, the entire data set of 
23 points was used. Different starting 
values for the network weights were 
used and the networks were trained 
until firther training did not yield any 
improvement in the R M S  error. 
Eighty different sets of starting 
weight values were tested and the 
best of the resultant networks was 
found. It should be noted that 
additional testing with different 
starting weights would likely yield an 
even better network since the nature 
of neural network analysis is such that 
an absolute best network is never 
found. However, the differences in 
RMS error between the top five 
networks was minimal and this was 
taken as an indication that further 
training was not likely to yield any 
significant improvement. 

Figure 4: Final neural network architecture. 



The final step was to assess the ability of the best network to predict weld pool shape for new 
process conditions. This was accomplished in the following manner. One data point was removed 
from the total of 23 and a new network was taught with the remaining 22 points, using the optimal 
architecture and starting weight values identified earlier. Then, the network was tested on the one 
point that was omitted. In this way, a true prediction was obtained since the test point was new to 
the network. This procedure was repeated twenty three times, to test each data point separately. 

Results and Discussion 

As discussed in detail above, the optimum neural network architecture was found to include two 
hidden nodes. With this configuration, the results of the predictability testing provide a quantitative 
measure of the accuracy with which the network predicts the weld pool shape parameters. In the 
predictability test, the neural nets that are developed are basically the same as the best network, with 
the only difference being that each net is trained on a different combination of 22 of the total 23 data 
points. The predictability test results for all 23 data points are summarized in Table 2. Prediction 
errors are Qiven in terms ofboth absolute and relative values. From the table, it can be concluded that 
the predicted shape paraiiieters are in relatively good agreement with the experimental values. The 
absolute errors are less than 0.15 min, 0.25 mm, and 0.15 mm' for depth, width, and area, 
respectively, in nearly all cases. Percent errors are 20% or less in most cases, except for the smallest 
weld pool sizes where the percent errors tend to be large e v w  if the absolute errors are small. 

A visual comparison of predicted pool shapes vs experimental s h a p  ,- . - ... . ..., --- 1 ... C 
conditions 9, 13, and 20 in Table 2. The predicted pool shape is bold while the five corresponding 
experimental cross-sections are shown by the fainter lines. It can be seen that the predicted pool 
shapes agree very well with the experimental pool shapes. For condition 9, the prediction errors in 
Table 2 are greater than the average errors and yet the prediction falls well within the range of pool 
shapes that was found experimentally. While condition 9 in Figures 5 is from the first set of laser 
runs, conditions 13 and 20 in Figure 5 are from the second set of welds. The different weld 
characteristics, namely the wider and broader shapes from the first round and the deeper, more 
keyhole-like shape in the second round, are reproduced by the neural network model. For 
comparison, predictions from the earlier neural network model" for conditions 13 and 20 are shown 
in Figure 6. It can be seen that the earlier model predicted the weld pool shape reasonably we11 for 
condition 20 but the prediction for condition 13 was not very good. The inaccuracy in the prediction 
was due to the fact that the earlier neural network was trained on only the first set of welds. In the 
present case, the neural network accuracy is outstanding for both types of welds. This is attributable 
to the fact that this newer network was trained on data that included both the wide weld shapes as 
well as the keyhole-type shapes. 

The objective of this study was two-fold. The first objective was to demonstrate the ability of 
neural network models to predict weld pool shapes. The results in Figure 5 show that reliable 
predictions are possible for a wide range of pool shapes and weld conditions. This was achieved in 
spite of the fact that the data set was relatively small in size, containing only 23 different weld process 
conditions. The second objective was to show that the shortcomings of the earlier neural network 
model were due to the fact that the weld pool shapes in the training data set were of an entirely 
different nature than the shapes in the test set. In the present study, where both types of pool profiles 



Table 2: Experimental and predicted laser pool shape dimensions for conditions in Table 1. 
D = depth (mm), W = width (mm), A = area (mm’). Half-width omitted due to space 
limitations. 

Experimental Predicted 
/ ID  D W A I D  W A 

1 0.10 0.61 0.06 0.21 0.86 0.10 
2 0.20 0.87 0.13 0.19 0.82 0.09 
3 0.41 0.98 0.23 0.27 1.04 0.18 
4 0.17 0.89 0.12 0.23 0.88 0.12 
5 0.16 0.94 0.27 0.98 0.17 
6 0.24 1.03 i::: 1 0.28 1.06 0.19 
7 0.36 1.22 0.28 1 0.46 1.19 0.35 
8 0.66 1.35 0.50 ! 0.69 1.24 0.51 
9 0.43 1.18 0.32 , 0.51 1.36 0.41 i 10 , 0.97 1.57 0.76 0.88 1.28 0.62 
11 0.81 1.00 0.40 1 0.67 0.75 0.38 
12 1.31 1.06 0.88 1.16 1.00 0.70 
13 1.51 1.03 1.03 1.49 1.22 0.96 
14 0.65 0.92 0.34 1 0.79 0.93 0.47 
15 1.22 1.25 0.71 1.35 1.13 0.90 
16 1.43 1.14 1.03 1 1.54 I.34 1.02 
17 0.46 0.90 0.25 0.45 0.86 0.25 
18 0.28 0.S5 0.18 0.29 0.52 0.14 
19 0.55 1.06 0.33 0.52 0.94 0.31 
20 0.81 1.26 0.51 0.92 1.11 0.60 
21 1.32 1.16 0.88 1 1.02 1.33 0.72 
22 0.31 0.88 0.21 0.97 0.18 
.23 0.45 1.00 0.28 :::; 1.1 1 0.27 

- 

’ 

YO Error Absolute Error 
D W A  D w A 
110 41 67 0.11 0.25 0.04 

5 6 31 0.01 0.05 0.04 
34 6 22 0.14 0.06 0.05 
35 1 0 0.06 0.01 0.00 
69 4 31 0.11 0.04 0.04 
17 3 12 0.04 0.03 0.02 
28 3 25 0.10 0.03 0.07 
5 8 2 0.03 0.11 0.01 
19 15 28 0.08 0.18 0.09 
9 18 18 0.09 0.29 0.14 
17 25 5 0.14 0.25 0.02 
11 6 20 0.15 0.06 0.18 
1 18 7 0.02 0.19 0.07 

22 1 38 0.14 0.01 0.13 
11 10 27 0.13 0.12 0.19 
8 18 I 0.11 0.20 0.01 
2 4 0 0.01 0.04 0.00 
4 4 22 0.01 0.03 0.04 
5 11 6 0.03 0.12 0.02 
14 12 18 0.11 0.15 0.09 
23 15 18 0.30 0.17 0.16 
6 10 14 0.02 0.09 0.03 
18 11 4 0.08 0.11 0.01 

I 1 21 11 . Average 18 I 0.09 0.11 0.06 

were combined in the training data set, the change in weld pool shape could be treated in a more 
accurate fashion. These results show that neural networks provide a suitable means for modeling 
weld pool shapes as a function ofweld process parameters. Neural network models have the added 
advantage that they are rapid, providing virtually instantaneous results, and therefore they may be 
ideaily suited for integration into process control routines. 

Summarv 

A neural network model has been developed that reliably predicts the weld pool profile in pulsed- 
laser aluminum welds. The present model is an improvement over an earlier one in that the change 
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Figure 5: Predicted weld pool shapes (bold) superimposed over experimental pool profiles. The 
identification numbers refer to Table 2. 

13, Early Model 20. Early Model 

1 mm w 
Figure 6:  Predicted weld pool profiles from earlier neural network model’‘. 

in nature from conduction-mode to keyhole-mode weld pool shapes is taken into account. The neural 
network model is accurate over a wide range of process conditions, in spite of the fact that the 
training data set is relatively small. 
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