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Abstract: The \'ollage Vib measured between {wo \ollage taps ¢ and b during mag-
netic flux transport in a type-1l superconductor carrying current I is the sum of two
conlr)buhons. the line integral from e to b of the electric field. along an arbitrary path

* through the superconductor and a ferm proportional to the time rate of change
of magnetic flux through the area bounded by the path C, and the measuring circuit
leads. When the current I(7) is oscillating with time 7, the apparent ac loss {the time
average of the product IV;p) depends upon the measuring circuit used. Only when the
measuring-circuit leads are brought out far from the surface does the apparent power
dissipation approach the real (or true) ac loss associated with the length of sample
probed. Calculations showing comparisons between the apparent and real ac losses
in a flat strip of rectangular cross section will be presented, showing the behavior as
a function of the measuring-circuit dimensions. Corresponding calculations also are
presented for a sample of elliptical cross section.

1 Introduction

As high-temperature superconducting materials move closer to large-scale e-
lectric-power applications, it is increasingly important to understand the mag-
nitude and origin of the ac losses in these materials. Ideally, measurements of
such losses should be carried out under experimental conditions close to those
of the proposed applications. For example, for testing materials intended for use
in ac power transmission cables, it is preferable that the ac losses be measured
while the conductor is carrying an applied ac transport current.
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In measuring the low-frequency ac losses of normal metals, it is safe to use
the simple procedure of (a) applying an ac current. I(f) = Iy coswt, (b) using a
high-impedance voltmeter to measure the corresponding voltage V(1) between
a pair of voltage taps across a representative segment of the conductor, and (c)
obtaining the average rate of power dissipation from P = (I(2)1(1)), where the
brackets denote the time average. It is at first surprising to learn that when
the sample is a type-II superconducting tape or strip, this simple method runs
into serious difficulties: The apparent rate of power dissipation Pap), so obtained
depends on where the voltage taps are placed on the tape (along an edge or
along the centerline) and on how far away from the tape the voltage leads are

extended before they are brought together, twisted, and led out to the volimeter.

([11.f21.13D)-

As emphasized by Campbell ([4]). to explain these results it is important
to account for the fact that when low-resistance leads are atlached at contact
poinis @ and b on the conductor, the time-dependent voltage 15, measured by
a high-impedance voltmeter is the sum of an electric-field integral term and a
magnetic-flux term. As shown in Refs. ([5][6]{7]), this voltage is

ab—/ E-dl - sm ) (1)

where the line integral is to be carried out from a to b along a path Cs through
the conductor, and @y, is the magnetic flux up through theiloop bounded by
the path (% and the measuring circuit leads (which define the contour Ch,). It
can be shown with the help of Faraday’s law that the voltage 153, is independent
of the contour Cs, because any change in the first term on the right-hand side
of Eq. (1) is compensated by a canceling change in the second term. It often is
convenient. to chose the contour Cs so that the first term is zero.

Because of magnetic hysteresis, the flux term, i.e., the second termn on the
right-hand side of Eq. (1), has terms in strip geometry that are both in phase
and out of phase with the current I(7). Only for normal-metal wires in which the
current density is uniform and for superconducting wires that have circular cross
section does the coniribution to the flux term from magnetic fields outside the
sample have a vanishing in-phase component. As pointed out. by Campbell ([4]),
in general only when the leads are brought out to a large distance hefore bringing
them together does the measurement give the true loss, i.e., the dissipated power
delivered by the power supply to the segment betiveen a and b. Since the true
loss involves the voltage measured across the terminals of the power supply, the
flux Py, involved in Eq. (1) is the total flux through the area bounded by the
contour Cj along the the sample of interest -and the contour.(;, along the leads
that connect the sample to the power supply. d

In Sec. 2, we present the details of how to calculate the meaeured time-
dependent voltage 17(1) generated by hysteretic losses in a flat sirip of rectangular
cross seclion carrying an alternating current I({). We show how the apparent
loss depends upon the measuring circuit geometry and examine the conditions
under which the apparent loss is a good approximation to the irue loss. We also
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present the corresponding results for a sample of elliptical cross section. In Sec.
3, we briefly summarize our results.

2 Theoretical Approach and Results

Consider a type-II superconducting strip of width 21¥ and thickness d < 21¥ in
the 2y plane, centered on the y axis, as shown in Fig. 1, such that the edges are at
2 = £1V. Assume that the London penetration depth X is less than the sample
thickness. Suppose that an alternating current Iy(f) = Ipcoswt is applied. A
corresponding self-field, which wraps around the sample, will be produced. If
the current amplitude is very tiny, the magnitude of the field at the sanmple
edges will be less than the lower critical field H¢; and thus will be too small to
cause any vortices to penetrate into the sample. However, we are most interested
in the case for which the current amplitude Jp is substaniial, such that vortices
or antivortices are nucleated at the edges and driven into the sample during each
half cycle.

X

Fig.1. Sketch of sirip geometry considered in this paper. The properties of long
curren{-carrying type-II superconductors of width 21V and thickness d < 21 are
examined,

To calculate the hysteretic losses under such circumstances, we use the critical
stale model, which is characterized by a critical depinning current density Je.
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We assume for simplicity in this paper that J. is independent of the flux density
B. We also assume that over most of the vortex-filled region. the local ficld is
sufficiently large by comparison with H¢; that we may take B = poH to good
approximation. At each value of the current Iy(f) (assuming that the current
amplitude Ip is less than the critical current I. = 21¥7dJ.), the quasistatic profiles
of the current density Jy(z,7) (averaged across the sample thickness) and the
magnelic flux density B(z, =,1) may be calculated using the Norris method [8]
as described in detail in Refs. [9] and [10).

When the current Iy () is equal to Iy, magnetic flux penetrates from both
edges to the coordinates = = *ag, where ap = \V/1 — (Io/I.)?, but By(z,0,1)
remains zero in the unpenetrated region |z| < ap. The current density Jy in the
strip is given by

] W2-a?
Jy(-c; 00) = ‘;Jcarcta]l Tg:"_—z&, l-l:l < 00, (2)
Jes ao < Je] < TV,

As I (1) decreases, however, new flux fronts move in from both edges. The cur-
rent density in each of these new regions has magnitude J., but. it is reversed in
direction. Let & = +a(1) denote the time-dependent coordinates of these incom-
ing flux fronts. As shown in Refs. [9] and [10], the current density in the strip
can be expressed as the superposition of two distributions,

Jy(2,t) = Jy(2;a9) — 2Jy(2; a), (3)

where the function Jy(z:a) is defined in Eq. (2), a(1) = W/1 - (I./I.)?, and
Iy = [Tp — I;(1)]/2. Note that a(f) = W when I;(f) = Iy, and a(f) = ap when
L(1) = —Ip.

From the Biot-Savart law, it follows that the magnetic flux density B(z,=.1)
in the vicinity of the strip also can be written as the superposition of two fields,

B(z,2,t) = B(z,z;a9) - 2B(z, =; a), (4)

where B(. z; ap) is the magnetic flux density generated by the current density
given in Eq. (2). Of the two terms on the right-hand side of Eq. (4), the first. is
independent of 1, while the second one depends upon ¢ via the coordinate a(?).
Having briefly discussed how to calculate the time-dependent magnetic flux
density in the strip, we now turn to the problem of calculating the apparent
and real rates of power dissipation. It is well known that the rate of power
dissipation for hysteretic losses is linear in frequency, since there is a fixed amount.
of energy dissipated each cycle. We thus calculate the apparent and real loss per
cycle per unit length of the strip. For simplicity, we consider two special circuit.
configurations:
Perpendicular case (Fig. 2). Here the voltage taps are placed along the cen-
terline of the strip (2 = 0, = d/2), and the leads extend perpendicular to the
surface to a height = before they are brought together, twisted, and led out to
the voltmeter.
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Parallel case (Fig. 3). Here the voltage taps are placed along the edge of the
strip (z = W,z = 0), and the leads lie in the plane of the strip but extend
perpendicular to the edge to the coordinate 2 > W before they are brought
together, twisted, and led out to the voltmeter.

The measured voltage for both cases is determined by Eq. (1), where the contours

Cs extend along the line z = = = 0 except for segments that extend perpendicular
to this line out to the voltage taps, as shown by the dotted lines in Figs. 2 and
3. It can be shown that the line integrals of the electric field {the first term of
Eq. (1)] vanish for these choices of Cs. To calculate the voltage V1, (1) for these
cases, we therefore need only to calculate the time derivative of the magnetic
flux through the shaded areas in the measuring circuits sketched in Figs. 2 and
3. The time derivative of the magnetic flux is obtained by first using the Biot-
Savart Jaw to express the magnetic field in terms of Jy(x,1), as sketched in Eq.
(4), and by taking the time derivative of the resulting expression using Eq. (3)
and the connection between a(1) and I;(1). The apparent loss per cycle per unit
length is then obtained by evaluating [ I,(1)V,n(1) dt over one period (2r/w),
where Va1,(7) is the voltage across unit length of the sample.

The apparent loss per cycle per unit length for the sirip in the perpendicular
case is

@) (& - -

— Farctan ( qF ) )
Vi) +1-F2

o [VI-F ((#) + m)

- —log
2 R N -
(;;—,)+\/(-';—,.-) +1—F2

_<1_£)-log (F)"+ 1+ () (ﬁ")z‘*‘l"Fz-—F\
(- (#) +1 ((Ti;)+\/(ﬁ;r)2+1)/

_( F)glo ()" +1+ (%) (%)2+1—F2+F\
g

14—
2 =12 . 2\ 2 ’
@+ @7 +1 (@) +VH) +1) )
(5)
where F = Ip/I., I. = 21WdJ,, and the thickness d of the strip is ignored relative
to the width 21V. Note that the apparent loss is zero when the leads are brought

together at the height = = 0. The reason for this is that both terms on the right-
hand side of Eq. (1) are then zero.
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Fig. 2. The perpendicular case: Measuring-circuit leads extend to a height = above the
sample.

Fig. 3. The parallel case: Measuring-circuit. leads extend 1o the coordinate = > 1¥.
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Similarly, the apparent loss per cycle per unit length for the strip in the
paralle] case is

Ly(F) = (”—fi) x
) (VG -1+ ) -

P e ORI
(%) + /() -1+ F2

-(1_5)2 (@ 1+(n)\/—,)——_1?1v—-+p\
2 (1= )/ (5 (;) ,/(‘%)—_1))

- (”E)lg/ <f%>2—1+<%>\/m-
2 \(1+F)m ((;V) +m)/
(6)

Figure 4 shows plots of the apparent loss per cycle per unit length in both
the perpendicular and parallel cases for strip geometry versus F = Iy/I. on a
semilogarithmic scale. Shown for comparison is the real (or true loss) per cycle
per unit length for strip geometry (solid curve) [8],

Lo(F) = (i"‘?]&) [(1- F)log(1— F)+(1+ F)log(1+F)—F?. (1)

Note that Lg oc F* for small F <« 1. We see that the apparent losses Ly and Ly
agree with Lo within about 1% when :/1¥ > 3 or z/1¥ > 3. For large values.of
z/W and z/W¥, the following expansions are useful:

Ly(F)=Lo(F)+

pol? Fi Fii-£) ( 1 )] (8)
- q+ = 3 +O - 15 ’
( 4 )[ 12(%)" 8(%) (#)

Ly(F)=Lo(F)+
/zofé’)[ F! +F*%—f§)+o(__1 )] (9)
(“ 12(%)° 8(%)} (%)°

W
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Fig.4. Apparent loss per cycle per unit length (in units of 1ol?/%) for a strip of
width 21¥ and thickness d, calculated as described in the text for parallel (dot-dashed
curves) and perpendicular geometry (dashed curves). The real loss, representing the
actual power dissipation made up by the power supply is shown by the solid curve [8].

For samples of elliptical cross section, the apparent loss per cycle per unit
length can be calculated by a procedure very similar to that described above,
except that the current density and magnetic fields are those found in Ref. [§].
We consider the elliptical cross section to be characterized by a semimajor axis
1V and semiminor axis d/2, such that the width of the sample is 213" and the
thickness at the thickest. point is d. The critical current is thus I. = (7/2)WVdJ,
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and the ratio of the semiminor axis to the semimajor axis is a = d/21V. The
results are, for the perpendicular case,

Ly(F)= (y?_-rlé’) X : : .
[5(—1%:(5(-‘)7 ((2 (%/:)2—(3F—5)(1—02)) \/(]iv)z—i-(l—a?)
- (2 (-]%)2-(21?—-5)(1—0-?)) \/(]—;;)2-1-(1-}")(1-&))

VI=F () + /() + (1= )

F?
- —log ]
i (ﬁ7)+\/(ﬁ,r)'+(1—17)(1_a2)
- (1 - §>zlog ((#) _ \/(ﬁ."):'*'(l - o-'-’))
(%) + V) + (1 —a?)

- (1 - 5)21og ((;%-) +y/(&) +0-F) -a-z))}
2 (T%)-\/(%)2+(1—F)(;~'; a?)
(10)
and, for the parallel case,

Ly(F)= (’-‘%I—“) x ,
[ﬁ(_i;))— ((2 (%)2+(3F—5)(1—02)) J(‘%) —(1-a?)
- (2 (-%)2+(2F—-5)(1—a2)> \/(%)2-(1-10)(1—“2))

. («r-—f*-(%)-»m_u_gz))
—gle : ,
(#)+ V(%) - (- F)(1-a?)

S (= 2log(("i')-\/<r;~f)'~<1—a2>)

(&) +V(#)" - (1-e?)

(&) - V(&) = (1= F)1-a?)

(11)
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Figure 5 shows plots of the apparent loss per cycle per unit length in both

the perpendicular and parallel cases for elliptical cross sections versus F = I/l

on a semilogarithmic scale. Shown for comparison is the real (or true loss) per
cycle per unit length for elliptical cross sections (solid curve) [§],

T

Lo(F) = (ﬁ‘i) [(1 -"F)]og,(l —F—)+(2—F)—'Z—] . (12)

Note that Ly o< F2 for small P « 1. We find that the apparent losses L) and Ly
agree with Lo within about 1% when =/1¥ > 3 or 2/1¥ > 3. For large values of
=/1¥ and 2/1¥, the following expansions for elliptical cross sections are useful:

Li(F)=Lo(F)+

2 — a2)F3 —a2(9 — F\F3
(/:nL_.) [_(1 QAP | (1= @) (2 4F)r +o( ! G)}
T 12 (5) 32 (%) \GF)
(13)

Ly(F) =Lo(F)+

(,mf) [(1 —a?)F3  (1-e?P@-F)F ( 1 )] (14)
5 - =11.

™ /| 2 2(5) - \(F)°

Notle that for both the strip geometry and elliptical cross sections the ap-
parent loss in the parallel geometry is an overestimate of the true loss, but the
apparent Joss in the perpendicular geometry is an underestimate. The predicted
behavior has been confirmed, at least qualitatively by Fleshler et al. [11][12].

The above calculations have been carried out for monolithic type-1I super-
conducting strips of rectangular or elliptical cross section, in which the critical
depinning current density is J.. Our calculations also should apply, with mi-
nor modifications, to strip-like composite conductors containing a uniform den-
sity (volume fraction f;) of untwisted superconducting filaments (each filament
characterized by J.) embedded in a normal-metal matrix. It can be shown that
application of a current to such a composite conductor induces a current that

flows initially with highest density in the filaments near the edge. Only when-

the current density in the outermost filamenis exceeds J. does current transfer

to filaments farther from the edge, thereby permitiing magnetic flux to pene--

{rate more deeply into the composite conductor. Under the application of an ac
current, the penetration of magnetic flux into composites is thus very similar to
that into monolithic superconductors. The maxinium supercurrent density, aver-
aged over the composite’s total cross section, is the engineering critical current
density, Je = fiJe. To describe losses of multifilamentary composite conduc-
tors using Eqs. (5)-(14), one must therefore replace Je by Je = foJe and I by
I. = 21¥dJ. for rectangular cross section or I..= (i/2)1VdJ, for elliptical cross
section. ' ) _
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Fig.5. Apparent .Joss per cycle per unit length (in units of poJ?/x) for a sample of
elliptical cross section (o — 0). calculated as described in the text for parallel (dot-
dashed curves) and perpendicular geomeiry (dashed curves). The real loss, representing
the actual power dissipation made up by the power supply is shown by the solid curve
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3 Summary and Acknowledgments

In this paper we have theoretically studied the hysteretic ac transport losses of
Lype-11 superconducting strips of rectangular and elliptical cross section carrying
an ac current. Our theory shows that the apparent loss per cycle per unit length
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depends both upon the placement of the voltage contacts on the surface of the
superconducior and upon the arrangement. of the measuring circuitl leads as
they are brought away from the sample before being twisted and led out to the
voltmeter. Our results show that the apparent loss per cycle is underestimated
in the perpendicular arrangement sketched in Fig. 2 but is overestimated in the
parallel arrangement sketched in Fig. 3. We have presented several expressions
that can be used to determine the amount by which the apparent loss per cycle
for a given measuring circuit configuration differs from the true loss per cycle.
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