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Abstract 
Spectroscopic ellipsometry (SE) has proven to be a very powerful diagnostic for 

thin film characterization, but the results of SE experiments must first be compared 

with calculations to determine thin film parameters such as film thickness and 

optical functions. This process requires 4 steps: (1) The quantities measured must be 

specified and the equivalent calculated parameters identified. (2) The film structure 

must be modeled, where the number of films is specified and certain characteristics 

of each layer specified, such as whether or not the film is isotropic or anisotropic, 

homogeneous or graded. (3) The optical functions of each layer must be specified or 

parameterized. (4) The data must be compared with the calculated spectra, where a 

quantifiable figure of merit is used for the comparison. The last step is particularly 

important because without it, no "goodness of fit" parameter is calculated and one 

does not know whether or not the calculated spectrum fits the data. 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thcreof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
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I. Introduction 
Spectroscopic ellipsometry (SE) has become increasingly important as a thin 

film diagnostic tool over the last decade [l]. Ellipsometry is a polarization-sensitive 

optical reflection technique [2], generally in the near ultraviolet-near infrared 

wavelength region, which means that it is non-destructive, and can be used in 

high-pressure and magnetic environments, situations where electron diagnostics 

cannot be used. However, the data obtained directly from SE measurements is 

usually not interesting; usable thin film parameters, such as film thickness, surface 

roughness, optical functions of the films, etc., must be obtained from the data by 

model calculations compared with the data. This is a common exercise in science 

and engineering, and as such is well understood. 

This interpretation of SE data requires 4 steps (Ref. 3 discussed the last three). 

The first step is to determine the parameters that are measured. This will depend on 

the SE instrument used, on the configuration of optical elements within the 

instrument, and on the characteristics of the sample and other perturbing optics, 

such and vacuum chamber windows. The second step is to specify the way in which 

the Fresnel Reflection coefficients (FRCs) are calculated. If the sample consists of 

several homogeneous layers of isotropic materials, simple 2 x 2 matrix methods are 

appropriate; if one or more of the films are inhomogeneous (where the optical 

functions vary with film thickness) or anisotropic, more complicated 2 x 2 matrices 

or 4 x 4 matrices must be used. The third step is to specify the optical functions of 

each layer; this can be a specification of a data base spectrum, a parameterization of 

the optical functions, or a combination of the two. The fourth step is the com- 

parison of the calculated Fresnel reflection coefficients with the experimental 

parameters; this is the critical step in that it determines the confidence one has 

concerning whether or not the calculation actually fits the data. In this paper, each 

of these four steps are reviewed. 
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11. Measured Parameters 
A general schematic representation of a generalized SE instrument [2,4] is 

shown in Fig. 1. The light source produces a collimated light beam, which passes 

through a polarization state generator (PSG), reflects off the sample (S), passes 

through a polarization state detector (PSD) and is then detected. The 

monochromator can be either before the light enters the PSG or after it exits the PSD. 

The PSG and the PSD each consist of polarizers and/or compensating optical 

elements, and result in changing the ellipticity of the light polarization. The PSG 

takes the unpolarized light from the source and elliptically polarizes it, while the 

PSG takes the elliptically polarized light reflecting from S and changes its ellipticity. 

The generalized sample S contains the actual specimen, but also any perturbations 

on the light polarization (such as vacuum chamber windows) between the specimen 

and the PSD or after the specimen and before the PSD. 

Since the PSG, S, and PSD are not in general ideal, we must take into account 

the possibility that each of these elements are depolarizing; therefore, the Stokes 

representation of polarized light must be used. In this case, the Stokes vector is 

defined as [Z]. 

I so I I Itotal 1 
s=  I s1 I = I I.-$ I 

I s2 I I Ix/4-Ln/4 I 
I ~3 I !. I~ - 11 J 

The elements of the Stokes vector are all intensities, and therefore real. The So term 

is the total intensity, Si is the intensity difference of the light polarized in the 

x-direction minus that in the y-direction, S2 is the intensity difference of the light 

polarized in the +45" direction minus that in the -45" direction, and S3 is the 

intensity difference of right circular polarized light minus left circular polarized 

light. If the light beam is totally polarized, then 



If the light beam is linearly polarized, then S3=O; elliptically polarized light will have 

S3+O. 

Since the polarization of the input and exit light beam is expressed in terms of 

Stokes vectors, the generalized sample matrix is a 4 x 4 Mueller matrix, which 

consists of real numbers. For the case of an isotropic sample with no polarization- 

perturbing optical elements, the Mueller matrix is simply [2]. 

m00 m01 m02 m03 I ( 1  -N 0 0 1  
M =  I m10mllm12 mi31 = I -N 1 o o I ,  

I m20 m21 m22 m23 I I o  0 c S I  
I m30 m3l m32 m33 J I o  o -s c J  

(3) 

where the parameters N, S, and C will be defined later. Perturbations due to 

windows and other optical elements between the PSG and the specimen, and 

between the Specimen and the PSD can be incorporated into the generalized sample 

Mueller matrix by pre- and post- multiplying M with a correction matrix. 

The intensity of the light reaching the detector is given by 

I = PSD *M* PSG , (4) 

where PSD is the row vector representing the change in light polarization due to the 

PSD and PSG is the column vector representing polarization created by the PSG. 

We can see immediately the limitations of ellipsometers based only on linear 

polarization optical elements. If both the PSG and the PSD contain no compensating 

optical elements, then only linearly polarized light is generated and detected; 

therefore S3 =O for both the PSG and the PSD and neither the 4th row or 4th column 

of the sample Mueller matrix is accessible to measurement and the intensity of light 
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incident upon the detector is not a function of the S parameter. On the other hand, 

if either the PSG or the PSD contains a compensating optical element (such as a 

quarter wave plate or a photoelastic modulator), then either the 4th row or 4th 

column of the sample Mueller matrix is now accessible to measurement and the S 

parameter may be determined. If the PSD measures both polarizations (such as with 

the 2-channel spectroscopic polarization modulation ellipsometer [5]) then N, S, and 

C can be measured simultaneously. 

Most SE instruments vary the polarization state as a function of time. For 

example, a rotating polarizer instrument will have as its PSG and PSD vectors 

This results in the intensity reaching the detector being given by 

I = 1 - N COS (28,) + COS (2Ot) ( COS (28,) - N) + sin (20t) C sin (28,) . 

The interesting sample parameters measured are N and C, and are given as Fourier 

coefficients of the intensity; the S term is not included in the intensity. Similar 

expressions can easily be obtained for many other ellipsometers. 

The important result of this is that the measured quantities from most 

spectroscopic ellipsometers are Fourier coefficients, which then can be related to 

elements of the sample Mueller matrix (N, S, and C for isotropic samples). In 

general, any ellipsometry experiment measures elements of the sample Mueller 

matrix S, or linear combinations of these elements. 

It is always possible to relate calculated Fresnel Reflection Coefficients (FRCs) 

to elements of the sample Mueller matrix [6] by 
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where 

A =  
( 1  0 0 
I o  0 0 
I o  1 1  
I O  -i i 

1 1  rPP rPs 1 
-1 I , J = I rsp rss 1 . 
0 1  
o J  

The elements of the J matrix are the complex FRCs for light polarized in the 

indicated direction [p (s) is for light polarized parallel (perpendicular) to the plane of 

incidence]; J" represents the complex conjugate of J and 63 represents the Kronecker 

product. If the sample is isotropic, then the off-diagonal elements rsp and rps are 0, 

and the standard sample Mueller matrix sample (see Eq. 3) is obtained, where 

p = rpp/rss = tan \v e a  = ye'*. 

N = cos (2V) = (l+) / (1+y2) 

S = sin ( 2 ~ )  sin (A) = 2 y sin(A) / (1++) 

C = sin ( 2 ~ )  cos (A) = 2 y cos(A) / (1+y2) 

As can be seen, N2 + S2 + C2 = p2 = 1. 

If the sample under investigation is anisotropic (i.e., when the refractive 

indices of the material now depend upon the direction in the material), then the off- 

diagonal elements of the sample Jones matrix are not generally 0, and the entire 

sample Mueller matrix can become populated with non-zero elements, many of 

which are correlated. If certain symmetry conditions are met (such as that the optic 

axis is in the plane of incidence or perpendicular to it) [2,7], then rsp = rps = 0, and the 

sample Mueller matrix will remain block diagonal. Furthermore, the notation that 

has been developed for isotropic systems must be extended for anisotropic systems. 

A convenient notation, based on Eqs. 8 above, is given by: 
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Note that N2 + Spp2 + Cpp2 + Ssp2 + Csp2+ Sps2 + Cps2 = 1. In this case, the sample 

Mueller matrix becomes 

M =  

where 

c 1  -N-aps 
I -N-asp l-aps-asp 
I Cps+51 -cps + 51 

sps + 52 -sps + 52 

c sp+  51 ssp + 52 I 
-csp + 51 -ssp + 52 I 

C + P l  S+P2 I 
-s + P2 c-Pl 1 

9 

%p = 2 Ysp /D, aps = 2yps / D, 

P1= ( csp cps + ssp sps D / 2, 

51 = (C cps + s Sps) D / 2, 

P2 = (Ssp cps - csp sps D / 2 I 

t;2 = (C sps  - SCps) D / 2 I 

51 = (C csp + s Ssp) D / 2, &= (C Ssp -SCsp) D / 2 .  

It is always possible to associate an ideal Jones matrix calculated from the FRCs 

(calculated) with a Mueller matrix (measured); the inverse is not true. For example, 

if the sample acts as a depolarizer, then this direct association cannot be used. A very 

simple case of this is when the sample consists of a thin film of non-uniform 
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thickness over the illuminating spot [8]. In this case, N2 + S2 + C2 = P2 c 1 and the 

distribution of film thicknesses can be determined. 

111. Calculation of Fresnel Reflection Coefficients 
The calculation of the FRCs from multiple thin films is a well-understood 

problem, if all the films are isotropic and if there are no depolarization effects. The 

most general method of performing this calculation is due to Abel&s [9]. In this 

formulation, one defines s- and p-transfer matrices for each layer j, given by 

Pj,p = I COS bj 
I i sin bj fij / COS $j 

Pj,s = I 
I 

COS bj 
i sin bj f i j  COS $j 

i sin bj COS $j / f i j  
COS bj 

i sin bj / f i j  COS $j 
cos bj 

I ,  
J 

where bj = 2 .n dj fi j  cos $j / h, dj is the thickness, f i j  is the complex refractive index, $j is 

the complex angle of incidence, all in the jth layer, and h is the wavelength of light. 

The characteristic matrix for the entire layer stack is given by 

Pp = ll Pj,p and Ps = ll Pj3 . 
The FRCs for the total structure are then calculated using 

where 
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The subscript 0 refers to the ambient, while the subscript sub refers to the substrate. 

If any of the films are anisotropic, then in general rsp and rps are no longer 0 

and a more complicated 4 x 4 matrix formalism [10,11] must be used, where the 

matrix elements are complex. If rsp = rps = 0, either because the film is isotropic or 

because of symmetry considerations, then the 4 x 4 matrices become block-diagonal 

2x2 Abeles matrices. 

Another complication arises when the refractive indices of each layer are 

functions of depth. The most general and straight-forward way of calculating the 

FRCs is to break the layer into many thinner lamella, each with a constant refractive 

index, and calculate the FRCs from Eqs. 11 above. Although this procedure works in 

the limit of very thin lamellae, in actuality, the number of layers required is quite 

large. 

In certain circumstances, it is possible to replace many lamella with a few 

lamella, if it is assumed that the dielectric function (both real and imaginary part) is 

linear with respect to depth. If it is assumed that the dielectric function of the j-th 

layer is given by 

E j + l =  Ej + a X, O<X<dj . 

It can be shown that [3] the Abeles matrices become: 

Pj,s = I 1 - (vj2/2)(qj +2adj/3) i Vj I . (13b) 
I i Vj (qj +adj /2) 1 - (vj2/2)(qj +adj/3) J 

where Vj  = 2 n dj / I , $  = sin $0 , and qj = Ej - 5. These calculations are performed to 

second order in Vj and first order in adj, so the thickness of each lamella must be 

sufficiently small that second- or third-order terms can be ignored. Other forms of 

the dielectric function can be calculated using the formalism of Jacobsson [12]. 
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IV. Optical Functions 
The third step in the analysis of SE data is to specify the wavelength- 

dependent optical functions of each of the layers. The simplest and most straight- 

forward way is to assign the spectroscopic dielectric functions for bulk materials that 

have been previously measured (see for example Ref. 13 and the associated data disk 

available from the Optical Society of America). These tabulated optical functions are 

usually very useful for substrates and certain types of thin films. However, the 

optical functions of thin film materials tend to be different than the optical functions 

of their bulk counterparts [14], so alternate ways of determining the optical functions 

of the layers must also be available. 

One such parameterization using effective medium approximations (EMA) 

has been used for many years. In this case, a composite dielectric function is 

calculated based on optical function spectra either in the data base or otherwise 

calculated (see below). The effective medium approximation assigns an 

intermediate dielectric function to a material using the expression 

where EH is the dielectric function of the host material and the sum is taken over all 

constituents. 

There are two variations of effective medium approximation (EMA), depending 

upon the choice of host materials: (1) the Maxwell Garnett (MG EMA) theory [15], 

where the major component is taken as the host material, and 2) the Bruggeman 

(B EMA) theory [16], where E = EH. Because the composite dielectric function is only 

on the right-hand side for the MG EMA, the calculation of E is quite straightforward; 

this theory is most accurate when the material consists of a well-known major 

constituent, interspersed with small, isolated minority constituents. In the B EMA, 
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complex E exists in both the numerator and the denominator for each constituent, 

complicating the calculation of E (see Ref. 17 for a technique to avoid branch cut 

problems for 2 constituent B EMA calculations). The Bruggeman EMA has been 

successfully used to simulate the optical functions of surface roughness and interface 

layers. 

In many cases, particularly in dealing with thin film materials that are not 

very well characterized, it is best to parameterize the dielectric functions of the layer. 

The Lorentz approximation has often been used for this [18,19], and is given by: 

fi2 = E = 1 + 2 Aj A.2 / (k2 - Lo2 + irh). (15) 

where the sum goes from 1 to NL; often one term is sufficient. 

There are other parameterizations that have recently been utilized, 

particularly for approximating the optical functions of amorphous materials. One, 

based on a calculation of Forouhi and Bloomer (F&B) [20], has received some 

attention, but is flawed by the assumption that k(E)>O for E<E,, where E, is the band 

gap of the amorphous semiconductor; the F&B approximation also is incorrect in 

the limits as E+O (for metals), and as E+-, and the Kramers-Kronig determination 

of the real part is incorrect. A more realistic model [21] is given by 

The real part of the dielectric function is calculated from E ~ ( E )  using Kramers-Kronig 

analysis, and results in a closed form. This formulation has several advantages over 

the F&B calculation: 1) Q(E) = 0 below the band gap; 2) Q(E) +const/E3 as E+-; E ~ ( E )  

+constant for F&B; 3) If E,=O, then E ~ ( E )  +const/E as E+O; Q(E) +const E for F&B. 

Equation 16 and its Kramers-Kronig transform have been fit to several data sets 
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fc ind in Refs. 13, 

F&B expression. 

sulting in far better fits than found from equivalent fits to the 

There are several other ways in which real situations in thin films can be 

parameterized. The effects of strain on the dielectric functions of materials can be 

parameterized if reasonably accurate spectroscopic values of the stress-optic constants 

of the materials are available; these functions are not readily available for many 

materials, but are available for Si, Ge, and GaAs [22]. Free carrier effects can be 

included by adding a Drude term to the dielectric function of a layer [23]. If the thin 

film consists primarily of polycrystalline material, then the optical functions of the 

film are significantly different from the dielectric functions of the single crystalline 

material or its amorphous analog (see ref. 24 for the dielectric functions of various 

forms of silicon); crystallite size effects have been successfully parameterized [23] for 

very thin, small-grained aluminum films. 

V. Comparison of Calculations and Data 
The final step in the process to analyze SE data is to compare the measured 

parameters with calculated parameters. This is a critical step, but has been discussed 

previously in Refs. 3 and 25; therefore, only a summary will be given here. 

It is extremely important to choose a proper figure of merit (FOM) function to 

use as a comparison between the measured calculated parameters. The most 

c o m o n  FOM used [26,27] is the reduced x*, which is given by 

where n is the total number of data points, m is the number of fitted parameters, 

Pexp(hi )  is the experimental data at wavelength hi, Pcal,-(hi,z) is the calculated 

quantity associated with the experimental data at wavelength hi and for the 

parameter vector z (with m elements), and Sp(hi) is the error associated with each of 
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the experimental data points. The errors in the data points will have a random 

component, which is usually small, and a systematic part, due to errors in the angle 

of incidence, the natural spread in wavelength due to the monochromator, errors in 

the wavelength due to the monochromator, errors in the azimuthal angles of the 

optical elements, etc. 

The use of x2 as the FOM has several advantages: 

(1) It is automatically a measure of the "Goodness of Fit." If x 2  - 1, then the 

calculated model fits the data; if x2>>1, the model does not fit the data. If x k < 1  for 

too many cases, then the error limits have probably been set too large. 

(2) The more accurate experimental data points are automatically weighted 

more than the inaccurate data points. This is particularly important for many 

rotating element ellipsometers, where measurements of A become very inaccurate as 

A-0" or -180". 

(3) If a conversion algorithm such as Levenberg-Marquardt is used, then 

elements of the calculation can be used to determine error limits of the parameter 

vector z. 

Once a FOM is chosen, then one must "guess" at appropriate values of the 

parameter vector z, and converge onto the best fit values of z using a conversion 

algorithm such as Levenberg-Marquardt. This calculation produces the curvature 

matrix [26,27], given by 

If E = A-1, then 6Zi,corr = (Eii)1/2 and 6zi,mcorr = (1 /Aij)I/' , where GZi,corr and 6Zi,mcorr 

are the correlated and uncorrelated error limits of the ifh element of the parameter 

vector z . In addition, the off-diagonal elements of the E matrix can be used to 

calculate the cross-correlation coefficients: Ei,j / (Ei,i Ej,j)'/', which can be used to 

measure correlations between parameters. 
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In reality, one cannot rigorously define error limits to the fitted parameters if 

there is any correlation between the fitted parameters [26,27]; all one can do is to 

define a (m-1)-dimensional ellipsoid which define the confidence limits of each of 

the fitted parameters. If the fitted function is non-linear (as it is for SE), then the 

confidence limits are not even described by ellipsoids, but rather a more complicated 

(m-1)-dimensional surface [26]; however, it often is a good approximation to assume 

that the confidence limit surfaces are ellipsoidal. 

As an example, consider the case of several thicknesses of Si02 grown on Si. 

The complex p function was calculated for 4 different Si02 thicknesses from 1.5 to 5.3 

eV using literature values of the dielectric functions for Si02 (ref. 13) and for Si 

(Ref. 28), assuming an angle of incidence of 65"; errors in p were approximated using 

the procedure described in Ref. 25. These calculated p spectra where then fit to a 3 

material model, consisting of air/Si02/c-Sir where the optical functions of Si02 are 

parameterized using Eq. 15 and assuming that h1=92.3 nm and r=O. This model 

consists of 2 fitable parameters: the Si02 thickness, and the Lorentz parameter A. 

The results are summarized in Table I. Since m=2 for this case, the resulting 

confidence interval ellipsoids are just an ellipses, and are plotted in Fig. 2. The 

results shown in Table I and Fig. 2 are related the correlated error is just the total 

height of the error ellipse along the direction of interest, while the uncorrelated 

error is the height of the ellipse at 0 error for the other parameter. 

As can be seen From Table I and Fig. 2, very thin films result in large 

uncertainties in the fitted parameters, and there is a large correlation between the 

two parameters. As the film gets thicker, both the correlated and uncorrelated error 

in A is decreased considerably; the absolute error in d also decreases modestly, but 

the relative error decreases considerably. This example quantifies what has been 

known for some time: it is not possible to determine both the film thickness and the 

optical functions of a very thin film. 
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VI. Summary 
In this paper, we have looked at the analysis of spectroscopic ellipsometry data 

in detail to determine the elements of the calculation. There are 4: 

(1) 

(2) 

(3) 

Determination of the measured parameters. 

Specification of the surface model. 

Determination of the optical functions of the constituent films and 

substrate. 

Parameterization of the model and the fitting of the data with 

calculated spectra. 

(4) 

Each of these steps is important, but step 4 is particularly important; if a "goodness of 

fit" parameter is not calculated, then the researcher is relying on "chi-by-eye" [26], 

and therefore has no quantifiable measure of whether or not his model fits the data. 

This research was sponsored by the Division of Materials Science, Oak Ridge 

National Laboratory, managed by Lockheed Martin Energy Research, for the U.S. 

Department of Energy, under contract DE-AC05-960R22464. 
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Table I 

The results of confidence limits to the calculation described in the text. The quantity 

dsi02 is the the Si02 film thickness, with correlated and uncorrelated errors shown 

as Gd,or, and Gduncorr respectively. The quantity A=1.099 for all calculations, but the 

orrelated and uncorrelated errors GAcorr and GAUncOrr vary considerably with film 

thickness. 

10 

20 

50 

100 

0.54 

0.40 

0.18 

0.25 

0.11 

0.12 

0.12 

0.15 

0.138 

0.041 

0.006 

0.004 

~Auncorr Cross- 
correlation 

0.027 -0.981 

0.012 -0.955 

0.004 -0.727 

0.003 -0.788 
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Figure Captions 

1. A schematic of a generalized ellipsometer. The PSG is the polarization state 

generator, the PSD is the polarization state detector, and the S is the 

generalized sample, which contains all elements between the PSG and the 

PSD, including windows. 

2. The confidence limit ellipses for the 2-parameter example described in the 

text. The correlated and uncorrelated errors are tabulated in Table I. 
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