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ABSTRACT easily interpreted. The method is implemented itera- 
tively in stages by using a treestructure (TS) initial- 
ization scheme [5] and the Iterated Conditional Modes 
(ICM) method [Z]. In the first stage, it is assumed that 

in the third three, and so on. After the completion of 
each stage, the best sequence is selected for that stage 

stages. If based on the derived criterion the sequence 
from the latest stage is better, it is kept, otherwise it 
is removed. The procedure ends with the processing of 

of levels. 
We are interested to apply our method to patch 

clamping recordings. One of the main objectives of 
patch clamping is the study of ion permeation mecha- 
nisms in biological membranes. Patch clamping allows 
for the isolation of small patches of membranes and in- 
volves measurement of ion channel currents. The ion 
channels are large proteins embedded in the membranes 
of all living cells. These macromolecules form pores 
across the cell membrane, and in certain conforma- 
tions, they allow the flow of ions into or out of the cell, 
thereby controlling the electrical function of the cell. 
The measured currents are noisy piecewise constant sig- 
nals which reflect the gating kinetics of the individual 
channels. Previous attempts to process such signals 
include the half amplitude analysis [8], mean-variance 
histograms [8], the stategram [7], various forms of the 
Hinkley detector [3], and Bayesian methods based on 
Markov chain prior distributions [4]. For an overview 
of statistical analysis methods in the study of ion chan- 
nels, see [l]. 

In this paper, we provide the derivation of our prc+ 
cedure, interpret the results, and show the necessary 
steps for its implementation. We also test the method 
on synthesized signals and apply it to single ion channel 
currents. 

A new approach for processing of piecewise-constant 
signals is propoged. It is based on modeling the ob- 
served data as a sum of a random signal and noise. The 

Gaussian. A MAP criterion is derived for joint estima- 
tion of the number of signal levels and reconstruction 

one corresponding to the likelihood of the data and two 
to penalties. One penalty term penalizes for unneces- 
sary transitions, and the other, for unnecessary levels. 

applied to single ion channel recordings. 

1. INTRODUCTION 

Piecewise constant signals arise frequently in many ar- 
eas of science and engineering. They are characterized 
by several constant levels and are commonly corrupted 
by unknown noise. In many applications, the number of 
levels and their associated values are not known. The 
signals themselves also change levels randomly. The 
main processing task is that of detecting the number 
of levels and reconstructing the noiseless signal. 

There are a variety of methods for addressing this 
problem. In this paper, we propose a procedure based 
on hierarchical models. The observed data are repre- 
sented as a sum of two random processes, one corre- 
sponding to the signal and the other to the noise. The 
unobservable (nod-) signal is modeled by a Gibbs 
distribution and the noise by a Gaussian distribution. 
We apply a maximum a posteriori (MAP) criterion to 
obtain the optimal number of levels and the estimate 
of the associated signal. The resulting criterion is a 
penalized likelihood function with terms that can be 
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2. PROBLEM STATEMENT AND 
TERMINOLOGY 

Let x k  be a signal which represents a random sequence 
of N samples, with k being the number of possible 
signal values (leveb), and let Xk be a realization of 
Xk. The set of various levels is denoted by s k  = 
{SI, $2,. - Q } ,  and the collection of all possible signal 
sequencies x k  by the set x k ,  where Xk = {Xk = [Zk[l] 

zk[2] - * *  zk[N]IT : Zk[d E &, 1 5 i 5 N}. The Signal 
remains constant with a value equal to 8j E &, i = 
1,2,. .C, for some time, which is referred to as the 
dwell time, and then moves to a different level. It then 
remains there for another dwell time, then changes lev- 
els again, etc. The signal Xk is unobservable. Instead, 
we observe the noise corrupted version y ,  which is ob- 
tained as a sum of x k  and a white noise vector w, Le., 

y = X k + W .  (1) 

The number of signal levels k, the signal levels & , and 
the noise parameters are unknown. Also unknown are 
the dwell times of the signal. Based on the model (1) 
and the assumptions 

0 the signal x k  has a finite number of well defined 
levels k, where k 5 K, for a known K, 

0 the signal is described by a Gibbs distribution, 

0 the noise samples are independent and zero mean 
Gaussian with variances that depend on the sig- 
nal levels, and 

e the introduced random processes are time revers- 
ible, 

the objective is to determine from y the number of 
levels h, k E (1,2, - - - , K}, and estimate the signal xk, 
which includes the signal levels Si, i = 1,2, * e ,  C, and 
the associated dwell times. 

One of the key assumptions is the Gibbs distribu- 
tion of the random signal Xk. If xk is one outcome 
from the set .&, its probability is given by [2], [6], 

where Z t  is a normalizing constant, and V(xk)  is an 
energy function. With the assumption (2), we adopt a 
neighborhood system N, which is a collection of subsets 
of {1,2,.-.,N}, that is N = {Ni : i E (1,2,...,N}}, 
where Ni denotes the neighbors of i and satisfies the 
conditions (a) i Nj and (b) i E Nj iff j E Ni. Thus, 
Xk is a one-dimensional Markov random field with re- 
spect t o N .  

Finally, we introduce the sequence of k different la- 
bels l k ,  where It[d € { 1,2, . - - , k}. This sequence is 
associated with the signal sequence xk via I 

(3) 

where a(-) is a function that uniquely maps the label 
sequence It to the signal Xk according to Z k [ q  = s([~J, 
i ~ { 1 , 2 , . . . , N }  . Forexample,ifIk=[I 1 2 1 3  '..IT, 
x k  = (81 81 sa SI 83 . -  -IT. In quantifying the probabil- 
ity p(xk), we choose energy functions that allow us to 
write 

d x k )  = dlk).  (4) 

3. ESTIMATION CRITERION 

We want to apply the maximum a posteriori probability 
(MAP) criterion for estimating k. The marginalized 
MAP estimate is given by 

( 5 )  

where p(k1y) is the posterior probability mass function 
of k given the observed data y- This criterion will be 
very difficult to implement because its solution is based 
on 

where f(yIlt,&) is the density of the data given the 
label sequence l k  and the signal and noise parameters 
6k with prior density f(&), 8 k  is the parameter space 
of 81, and p ( k )  is the prior probability of k levels. Note 
that the summation in (6) has an extremely large num- 
ber of terms. 

Another MAP estimator jointly provides the MAP 
estimates of k and Xk, and it is expressed by 

This criterion can readily be evaluated by using one of 
several existing iterative techniques. 

Finally, we introduce a third criterion, which we 
find more appropriate than (7) for reasons to be ex- 
plained below. The form of the criterion is 

or 



.- .-  

Clearly, the criterion (9) selects the joint MAP esti- 
mates of E and the label sequence l k .  Its main dif- 
ference from (7) is that it integrates out the unknown 
signal and noise parameters. Of course, once k and 1 k  
are estimated, it is trivial to determine the signal levels 
si and obtain the estimate of Xk. 

The evaluation of (9) is easier than that of (6) but is 
still computationally intractable. One difficulty is the 
evaluation of the normdizing constants zk needed due 
to p(1k). To alleviate this problem, we substitute p(lt) 
by the pseudolikelihood (21 

where 4 denotes the parameters of the Gibbs distri- 
bution, and &[q is the set of neighboring samples of 

Another problem in evaluating (9) is the computa- 
tion of the integral JB, f (Yllk,  &)f(8k)d&.  However, 
by Taylor expending f(yllk, 6,) around the maximum 
likelihood estimates 8 k ,  and using asymptotic assump 
tions, we can approximate it by 

l k  [i]. 

where it is the estimated label sequence, and n j  are 
the total number of samples whose label is It[-] = j. 

With these approximations and the assumptions 
that the additive noise is zero mean Gaussian with level 
dependent variance and p(E) = 1/K, the MAP crite- 
rion results in 

(12) 
where 6; is the estimated variance of the samples la- 
beled as a(.] = j. The interpretation of the three terms 
in (12) is straightforward. The first term is the likeli- 
hood which decreases with increasing k. The second 
and third terms are penalties for introducing signal 
transitions from one level to another and additional 
levels, respectively, and they grow with the number of 
transitions and k. Note that penalization for the pa- 
rameters of the Gibbs distribution is not necessary be- 
cause we assume the same parameters are present for 
all the models used in (12). 

4. IMPLEMENTATION OF THE 
PROPOSED CRITERION 

The criterion (12) can be implemented by applying the 
iterated conditional modes (ICM) algorithm [l]. For 

good performance, the ICM requires relatively good 
initial conditions. To obtain them Fe propose to use 
the tree-structure (TS) method introfluced in [5], which 
is a completely data driven scheme. The overall (Ts 
ICM) procedure consists of the following steps. First, 
assume that k = 1, estimate the only level 61, and 
evaluate the criterion function. Set h = 2, and as initial 
conditions use iy’ = i 1  - e and i?’ = 61 + e, where 
e is some small number, and 61 is the result for k = 
1. Apply the ICM method, estimate 61 and 62, and 
evaluate the criterion. Set k = 3 and use as initial 
conditions iy’ = 81 - e ,  if) = 61 + E, and ic) = 82, 
with 61 and 62 being the results for k = 2, and continue 
with the ICM and the evaluation of the criterion. As 
another possible set of initial conditions use 6(,0) = i l l  

6‘2”’ = 02-6, and 6:’ = &+e, and again apply the ICM 
and evaluate the criterion. As a final sequence of three 
levels, 13, choose the one that has the smaller criterion 
value. Next set k = 4, and continue along the same 
lines until the testing of k = K leyels is completed. 
The solution is the label sequence l k  that yields the 
smallest criterion value. Once i k  is determined, the 
signal x i  is easily estimated. 

5. SIMULATION RESULTS 

Our method was tested on synthesized data and ap- 
plied to real patch clamp recordings. The synthesized 
data records had 2000 samples, three different levels, 
and 6 level changes. The signal-to-noise ratio (SNR) 
was defined by minIA/ai, where A is the difference 
between the levels of two adjacent segments and u the 
standard deviation of the noise, which was the same for 
every segment. The SNR was varied between 1 and 5 
in steps of 1. For each SNR, there were 100 trials. The 
probability p(/k[~1&[8~, 4) in (10) was defined by 

where 4 = p, and um[d denotes the number of neigh- 
bors of i having the label m. The number of neighbors 
in the experiment was equal to four, that is, two neigh- 
bors on each side. The results are shown in Table 1. 
For SNR’s of 2 and higher, the method had very good 
performance. Figure 1 at the top shows a typical real- 
ization with SNR=2 and at  the bottom, the histogram 
of the detected level changes in 100 trials. The peaks of 
the histogram are at the correct locations of the signal 
transitions. 

Figure 2 at the top displays a real patch clamp 
recording, which is quite complex and has several con- 
ductance levels. We applied our procedure to these 
data to determine the number of levels and estimate 



kk. The maximum number of hypothesized levels was 
15. The procedure found 10 levels and estimated the 
noise-frke signal shown at the bottom of Figure 2. 

Table 1: The entries represent the number of times k 
levels were estimated in 100 trials. 
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Figure 1: Top: A realization with 3 levels and 6 transi- 
tions for SNR=Z. Bottom: Histogram of the estimated 
transitions in 100 trials. 
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Figure 2: Top: Red data with unknown number of 
levels. Bottom: Estimated signal with 10 levels. 
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