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The on-momentum descriptionof linear coupling between horizontal and vertical betatronmotion 
is extended to include off-momentum particles, introducing a vector quantity called the "skew 
chromaticity". This vector tends to be long in large superconducting storage rings, where it 
restricts the available working space in the tune plane, and modifies collective effect stability 
criteria. Skew chromaticity measurements at the Cornell Electron Storage Ring (CESR) and at 
the Fermilab Tevatron are reported, as well as tracking results from the Relativistic Heavy Ion 
Collider (RHIC). The observation of anomalous head-tail beam losses ntar the tune diagonal in 
the Tevatron are explained in terms of the extended theory, including modified criteria for head- 
tail stability. These results are confirmed in head-tail simulations. Sour(:es of skew chromaticity 
arc investigated. 

1 INTRODUCTION 

This paper addresses the consequences of extending the standard on-momentum 
description of linear coupling to include off-momentum particles; an extension that 
introduces the concept of "skew chromaticity", in the form of ZL 2-D vector k which 
is embedded in a 3-D space. 
There are two general areas of concern: 

A 'decoupled lattice that is well behaved on-momentum may be badly behaved 
off-momentum, inside the natural momentum spread of the beam. In the worst 
case the (fractional) design tunes must be moved away from the tune diagonal, 
reducing the free space available in the tune plane. 

 collective phenomena are often stabiliid by adjusting the hcirizontal and vertical 
chromaticities. For example, theory and observation agree that the head-tail ef- 
fect is stabilised by making the chromaticities slightly positive (above transition). 
Coupling must be taken into account close to the diagonal, imd "duomaticities" 
must be replaced by "eigenduomaticities". 

No attempt is made to comprehensively survey the ways that momentum depen- 
dent coupling modifies collective stability behavior in general - not least because 
such a survey has not been performed. Rather, this paper illustrates the effects of 
skew chromaticity by deriving two modified criteria for head-tail stability. Exper- 
imental data from CESR and the Tevatron, and tracking data from RHIC, show 
that anomalous behavior is more likely in larger storage rings. 

1 ASTE 
Work performed under the auspices of the U.S. Dept. of Energy. 
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The first section below, On-momentum linear coupling, briefly summarises 
the standard linear coupling results in a formalism which is extended in the fol- 
lowing section, Off-momentum linear coupling. This is followed, in turn, by 
a discussion of observed and simulated head-tail behaviour in Head-tail stabil- 
ity with momentum dependent coupling. Finally, the question Where does 
skew chromaticity come from? is addressed, with particular reference to RHIC. 

2 ON-MOMENTUM LINEAR COUPLING 

The natural dimensionless strength of a thin skew quadrupole is given by 

where f is the focal length of the skew quad and pz and py are its horizontal 
and vertical beta functions. It is convenient to go immediately to a 2-D vector 
representation, where a ske2 quadrupole i has a vector qi with components along 
the orthogonal axes Q and b, given by 

where q5y and q5= are the vertical and horizontal betatron phases. When all skew 
quad vectors are summed together to give a resultant coupling vector q, its length 
is equal to AQmin, the closest approach of betatron eigentunes1a2. 

This minimum eigentune split is obtained when the two design tunes, Qz and Qy, 
are made equal. The eigentunes Q- and Q+ are given, for general design tunes, by 

where r is a 3-D vector given by 

r = q + (Qr - Qy)-z ( 5 )  

and G is a third orthogonal axis. The coupling vector q may be taken to be a 3-D 
vector, with one of its components always zero 

q.z I 0 (6) 

Q+ 2 Q- (7) 

Note that Eqn. 4 explicitly guarantees that one eigentune is larger than the other: 

as indicated mnemonically by the + or - subscript. 
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"Global decoupling" is routinely performed in most contemporary storage rings2. 
Typically, two skew quadrupole families and one erect quadrupole family (or one 
tune variable) are empirically adjusted to reduce AQmin to as small a value as 
possible. In the language of Eqns. 4 and 5 ,  this corresponds to making r = 0. 

"Local decoupling" is not a routine operational procedure in any storage ring, 
at the time of writing, although in the future it may become commonplace3. It is 
analogous to closed orbit correction, in that diagnostic inforination is taken from 
many beam position monitors, in order to calculate optimuni strengths for many 
independent correctors (in this case, skew quadrupoles). The goal, loosely speaking, 
is to make the eigenmodes at each position monitor as similar to pure horizontal 
and vertical motion as possible. As a rule of thumb2, the typical angle of uncor- 
rected eigenmode tilt is approximately given by AQmjn/lQa: - Q,I, the ratio of 
the minimum eigentune split to the design tune split. Thus, global decoupling is 
a useful precursor to local decoupling, much as A E / E  errors are removed before 
correcting the closed orbit. Local decoupling is not discussed any further in this 
paper. 

3 OFF-MOMENTUM LINEAR COUPLING 

Eqn. 4 also describes the off-momentum eigentunes, Q-(6) and Q+(6), if the hori- 
zontal and vertical tunes are expanded to first order in 6 = A p / p ,  the off-momentum 
parameter4s5 

The 3-D vector r is also expanded, to become 

.(a) = q + k.6 + [ ( Q ~ o  - Qyo) + (x= - xy:I a] (10) 

These equations introduce the familiar "normal chromaticitis" xz and xy, and 
also introduce an important new quantity, the "skew chromaticity" vector k. This 
vector, like q, lies in the the (a,b) plane, 60 that 

k.Z 3 0 (11) 

The skew chromaticity vector k has been measured at the Tevatron5 and at CESR6, 
and has been derived from tracking studies of RHIC7. Results are shown in Tab. 1. 
The last column, which is discussed below, records the empirically observed closest 
approach of eigentunes. 

The further expansion of Eqns. 8, 9, and 10 to include higher order polynomial 
terms is straightforward. However, this paper is almost exclusively concerned with 
momentum dependent coupling that is linear in 6. 
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TABLE 1: Skew chromaticityand the approximateminimumeigentunesplit, as observed at three 
colliders. High luminosity optics were used in all cases. The RHIC lkl value depends on which 
random number seed is used to generate errors. 

machine lkl AQmin 
(observed) 

CESR 0.5f0.5 0.001 
Tevatron 3.8 f 0.2 0.003 

RHIC 2.1 

3.1 Eigenchromaticities 

The eigenchromaticities x- and x+ are now defined as follows: 

dQ* 
d6 Xf z - 

This leads to the simple result 

1 r.v 1 
X i  = $xr+xy) f -- 2 1.1 

where it is convenient to introduce the vector v, such that 

dr 
d6 V I -  

Eqn. 13 is valid for any polynomial expansion of r, but the situation is easiest to 
linear order in 6, for then v is constant 

v = k + (x= - x y ) . z  (15) 

r(6) = r(O)+v.6 (16) 

in which case the vector r traces out a smoothly advancing straight line 

as the off-momentum parameter is scanned. 

9.2 Examples in 2-0 

To gain some insight into what is going on, it is pedagogically useful to temporarily 
reduce the dimensionality of the model by considering the case when 

Qt.0 = Qyo E QO 

xt. = x y  = xo 
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Substituting Eqn. 18 into Eqns. 10 and 15 yields 

r = q + k.6 
v = k  

thereby confining all vectors to the (a,b) plane. 

3.2.1 Perfec t  global decoupling First, consider the simplest; possible non-trivial 
case, when a perfect job of global decoupling has been performed, so that 

q = o  (21) 
Substitution into Eqns. 4 and 13 gives 

1 
Qi = Qo f 5 lk.61 

as shown in Fig. 1 with xo = lkl= 4.0. The eigentune split at a given value of 6 is 
just 

This expression provides an intuitive feeling for what k does; if IkI = 4 and the rms 
momentumspread of the beam is u,/p = then the eigentune split of a typical 
particle is 0.004. This is significant when compared to the design tune separation 
of 0.01 employed at the Tevatron5 and at RHIC. 

Q+ - Q- = Ik.61 (24) 

0.02 
u 
I 

6 
.e- - 
% 0.01 
Q) c 
3 
c 
Q) 
0 

4- 

9 
0.00 

-0.002 0.000 0.002 
-5 -0.002 0.000 0.002 

Off-momentum parameter, Dplp Off-momentum parameter, Dp/p 

FIGURE 1: Eigmtunesplit and eigmchmmaticities when the design tuna are equal (Qa = Quo), 
duomaticities are equal (xt = xv = 4.0), global decoupling has been pdcctly pcrfoxmed (q = 
0), and the skew chromaticity is similar to the value in the Tevatron (Iki = 4.0). 

Eqn. 24 also explains why it is difficult, in practice, to bring the eigentunes 
arbitrarily close together: even if global skew quadrupole correctors have been 
perfectly set, so that an on-momentum particle has Q+ = Q-, most of the particles 
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0.00 

will still have a significant eigentune split. Since a spectrum analyser averages over 
all particles within a bunch, when the beams are excited, it is impossible to get the 
two peaks that appear there to be closer together than about 

(25) AQ,c(observed) = 1kl.- UP 
P 

It is interesting to note the coincidence that CESR, the Tevatron, and RHIC all 
have up/p 21 0.001, although this number varies from shot to shot of coalesced 
beam in the Tevatron, and is not (yet) well known for RHIC. Thus, the prediction 
of Eqn. 25 is in good agreement with the last column of Tab. 1. 

-cl 

3.2.2 Realistic global decoupling It is difficult during routine global decoupling to 
reduce 1q1 below Ikl.up/p, because the primary diagnostic - eigentune measurement 
- is insensitive in this regime. Eqn. 21 does not, therefore, represent a plausible 
case in practice. Consider now the 2-D situation when q # 0, and when either 

3.c = 0 (26) 

A 
or 

The experimental measurement of the angle between the q and k vectors is possible, 
as reported for the Tevatrons, if sufficient beam time is available. 

3.k = 1 (27) 

0.02 
u 
6 
.e- - 
2 0.01 

1 

a r 

1 

FIGURE 2: Eigentune split and eigenchromaticities with equd design tunes and chromatic- 
ities (= = xv = 4.0), but with realistic global decoupling and skew chromaticity values 
(Iql= 0.003,Ikl= 4.0). In this case 5.; = 0, broadening the sharp features of Fig. 1. 

Figs. 2 and 3 show the behavior of the eigentunes and eigenchromaticities when 
1q1 = 0.003, and when either Eqn. 26 or 27 applies. In the former case the main 
effect is broadening of the previously sharp features. In the latter case the features 
remain sharp, but the momentum at which the eigentunes are identical is shifted. 
According to Eqn. 4, the closest approach of eigentunes occurs when r is shortest. 
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-0.002 0.000 0.002 
Off-momenturn parameter, Dplp Off-momentum parameter, Dp/p 

FIGURE 3: Eigentune split and eigenchromaticities with the same conditions as Fig. 2, except 
that c.g = 1. This is identical to Fig. 1, except that the sharp features an: offset in momentum. 

This happens, in complete generality, when 

r.v = 0 (28) 
In the current 2-D context this reduces to 

with a solution 

which is consistent 

(q+ k&).k = 0 

with the figures. 

4 HEAD-TAIL STABILITY WITH MOMENTUM DEPENDENT COUPLING 

When coupling effects are unimportant, head-tail stability is assured if both chro- 
maticities, xt and xy , are slightly It seems reasonable to make a Strong 
conjecture", that head-tail stability is only guaranteed in the presence of coupling 
if the eigenchromaticities are positive for all momenta within the beam. However, 
it is also reasonable to make a "weak conjecture", that it is only necessary for 
on-momentum particles to have positive eigenchromaticities. This is close to (but 
more convenient than) speculating that it is the average eigenchromaticity over one 
synchrotron period that is the fundamental quantity. This section investigates these 
conjectures, with reference to experimental data from the Tevatron and numerical 
d3ta from a simple simulation of the head-tail effect. 

First, we derive strong new criteria for xs and xu which guarantee that the 
eigenchromaticities are always positive, not only for all momenta, but also for all 
skew quadrupole and erect quadrupole settings. 
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4.1 Extreme eigenchromaiicities 

According to Eqn. 13, the extreme values of x+ and x- (with respect to changes 
in 6, q, Qr0 and Qyo) occur when 

r.v - = 1.1 
that is, when r and v are collinear. Collinearity is always acheived when 

r(6) = v6 (32) 
which occurs, for example, when 

q = o  
Q t o  = Qyo 

(33) 
(34) 

This corresponds, physically, to a machine in which a perfect job of global decou- 
pling has been performed, and the design tunes have been set equal. The values of 
the extreme eigenchromaticities are found by substitution into Eqn. 13, yielding 

(35) 
1 

X*crtrerne = -(xr 2 + Xy) * id- 
Insisting that both of the extreme eigenchromaticities are positive leads to the 
criteria 

These criteria are new and strong: if true, neither eigenchromaticity can ever be- 
come negative, for all momenta and for all erect and skew quadrupole settings. The 
criteria are sufficient (but probably not necessary) for positive eigenchromaticities 
in any particular lattice configuration. In order for both criteria to be met, xc and 
xy must be positive, even when k = 0, thereby recovering the standard uncoupled 
head-tail result. 

4.2 Tevatron observations and measurements 

During the 1989-1990 Tevatron collider run, the operators observed that high in- 
tensity bunches (Nbuneh > 6 x 1O'O) would occasionally go unstable if the machine 
ran close to the coupling resonance (Q+ - Q- 5 0.005). Sometimes beam losses 
were spontaneous. Sometimes they were initiated by human intervention - for ex- 
ample, when the operators periodically compensated for persistent current drifts by 
returning the tunes and the chromaticities to their optimum values. A preliminary 
theoretical analysis4 indicated that head-tail instability could arise as the working 
point approached the diagonal, but the operators reported that, to the contrary, 
beam loss often occurred when the tunes were being separated. How could theory 
and observation be reconciled? 
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Detailed results from dedicated beam studies of “Head-tail stability and linear 
coupling in the Tevatron” have been published elsewhere5. !Stability was inves- 
tigated for different lattice configurations - different settings of the design tunes 
and chromaticities, QOo, Qyo,x0, and xy. The skew quadrupole family strengths 
were fixed during the experiments, after they were initially set by a round of global 
decoupling. Experimental curves of tune versus momentum, for various lattice con- 
figurations, were all well fit by the parameters listed in Tab. f!. Entirely different 
behavior was observed between the case when the chromaticities were set equal, 
and the case when they were set grossly different. 

TABLE 2: Tevatron coupling parametus, as found by fitting several tune versus momentum 
curves, for various lattice configurations. Eigentunes were derived &om spectrum analyser peaks 
that were externally excited. The central momentum was varied by changing the FiF frequency. - 

parameter value 

Is1 0.0032 f 0.0008 
lkI 3.8 f 0.2 
C.6 X l  

When the chromaticities were bothset equal to xo, the horizontal design tune 
Qto was scanned across the tune diagonaI, in a search for head-tail induced beam 
loss. This was repeated for xo = 4,3,2, and 1, with significant beam loss observed 
as the diagonal was approached for the last two values. This is consistent with the 
criterion of Eqn. 37, which predicts unequivocal stability with equal chromaticities 
when 

Figs. 4 and 5 show the eigentune split and the eigenchromaticities as functions of 
momentum, when xo = 1.5, for two different ‘design tune spIits. Both eigenchro- 
maticities are above zero for all momentum o&ts when the design tunes are 0.007 
apart. Conversely, one eigenchromaticity is negative for all positive momenta when 
QtO and QvO are only 0.001 apart. 

The behavior of the Tevatron was quite different when the chromaticities were 
set to (xs, xo) = (8, -3). (These superficially bizarre chromaticity values were not 
chosen merely out of intellectual curiosity: persistent current driits in the Teva- 
tron force the horizontal and vertical chromaticities to move in opposite directions. 
These values are not unrealistic.) In this case total beam loss was observed as ihe 
design iunes retreatedjhm ihe diagonal. This cannot be understood in terms of the 
(sufficient but not necessary) stability criteria of Eqns. 37 and 38. Empirical insight 
is given by Figs. 6 and 7, which again plot the eigentune split and the eigenchro- 
maticities when the design tunes are 0.007 and 0.001 apart. In this case, one of 
the two eigenchromaticities is negative for all positive momentnun o&ts when the 

xo > 1.9f0.1 (38) 
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-5 
-0.002 0.000 0.002 
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Off-momentum parameter, Dp/p Off-momentum parameter, Dplp 

FIGURE 4 Tevatron eigentune split and eigenchromatidties when the design chromatidties were 
equal (x= = xu = 1.5). and the design tunes were 0.007 apart (Qd = .425,Q,o = .418). The 
beam was stable. 

-5 
-0.002 0.000 0.002 
Off-momentum parameter, Dplp Offmornenturn parameter, Dp/p 

FIGURE 5: Tevatron eigentune split and eigendvomaticities under the same conditions aa in Fig. 
4, except that the design tunes were brought together to be only 0.001 apart (Qd = .419,Qy0 = 
.418). Beam loss wod observed under these conditions. One eigenchromaticity was negative for all 
positive momentum offsets. 
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FIGURE 6 Tevatron eigentunesplit and eigenchromatidties when the design chromaticities were 
very unequal (xl = 8 . 0 , ~ ~  = -3.0). Such values can be reached after a long period of pvsistent 
current drift. In this case the design tunes were 0.007 apart (Qd = .425,(2@ = .418). The beam 
was unstable - total beam loss was observed - due to the very negative eigenchromatidties. 

. 

FIGURE 7: Tevatron eigentunesplit and eigahmatidt iesmder  the same conditions as in Fig. 
6, except that the design tunes were only 0.001 apart (Qd = .417,Q~ = .418). It is remarkable 
that the beam was stable. Both eigenhmatidties were positive for 6 0. 
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tunes are separated by 0.007, but both are positive when the tunes are only 0.001 
apart, at least in a small vicinity around zero momentum offset. 

These experimental results support the "weak conjecture" - that only the on- 
momentum eigenchromaticities are important in determining head-tail stability. 

4.3 A simple two macmpariicle head-tail model 
Various authors have reported analytical and simulation results for a linearised 
head-tail model, in which a bunch of total population N is broken into two macro- 
particles8~9JOJ1. 

When macroparticle 2 trails macroparticle 1 by a distance s, it is accelerated 
horizontally and vertically by the transverse wake field 

r 

where 7 is the Lorentz factor and m is the mass of an individual particle. The 
model becomes linear, and hence analytically soluble, if the wake force W1 is (un- 
realistically) taken to be a step function: 

W(S) = WI s > o  
Wl(S) = 0 s < o  

Implicitly assuming that the horizontal and vertical betatron motion is linear and 
uncoupled, and taking the longitudinal motion to be inexorable, sfrong head-fail 
stability is assured if 

where T, is the synchrotron period in fums, fo [Hz] is the revolution frequency, and 
Q is the total betatron tune (including the integer part). This stability criterion 
does not contain the chromaticity, which is taken to be zero. Note that T is 
proportional to T,, showing that a high synchrotron tune offers insurance against 
instability. 

Motion of the two macroparticles can be decomposed into two eigenmodes in each 
uncoupled plane. The pure "+" mode ( "-" mode) occurs when the macroparticles 
oscillate in phase (out of phase). When a modest chromaticity x is introduced 
in a single plane, the head-fail growth rates per turn for the eigenmodes of a low 
intensity bunch are 

7-g' = ~ 7 x 6  [l/turn] 

where 3 is the momentum amplitude of a macroparticle. This equation implies 
that either the "+" mode grows and the center of charge amplitude increases expo- 
nentially, or the "-" mode grows and the beam size increases, eventually leading 

(44) 
4T 
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to beam loss no matter what the chromaticity. Fortunately, the two macropar- 
ticle model overestimates TI', and in practice both modes are stabilised, above 
transition, by a slightly positive chromaticity8. 

Fig. 8 shows what happens to the horizontal amplitude growth rate of simulated 
motion, when the horizontal chromaticity is not modest, but t,he betatron motion 
remains uncoupled. The dashed line is an empirical fit 

which reduces to Eqn. 44 in the limit of small chromaticity. The empirical fit is 
well synchronised with the observed oscillations in the amplitude rise time, but the 
oscillation amplitudes are only in fair agreement. 

Finally, Fig. 9 shows what happens when skew quadrupoles and skew chromatic- 
ity introduce momentum dependent coupling between the hoxizontal and vertical 
betatron motion, with the Tevatron parameters of Tab. 2. The simulated region 
of stability is shifted to the right, with the amplitude growth rate going negative 
at x w 2.0. This is in remarkably good agreement with the analytically predicted 
criterion of Eqn. 38, which itself comes from the new stability criteria of Eqns. 36 
and 37. It is worth commenting that clean simulation data, as shown here, are 
only obtained when the initial macroparticle conditions correspond to a pure local 
eigenmode of the coupled system. 

5 WHERE DOES SKEW CHROMATICITY COME FROM? 

The total skew chromaticity vector k is the sum of vectors kj, 

k = C k j  
i 

where each component k; is the first differential of a skew quad vector 

Substitution of Eqns. 1 and 2 into Eqn. 47 shqws that, in general, differentials of si 
and 4i both contribute to k. In practice, however, the dominant contribution is from 
the variation off,  the skew quadrupole strength, with respect to momentum. This 
comes mainly from chromatic feed down in sextupoles - from horizontal dispersion 
in skew sextupoles and from vertical dispersion in normal sextiapoles. 

For example, a thin skew sextupole element of strength A2 gives a vertical angular 
kick of 

where the total displacement in the horizontal plane is 
Ad = A2& (48) 

ztot = X + % 6  (49) 
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Horizontal chromaticity 

FIGURE 8 The horizontal amplitude rise time as a function of the horizontal e m a t i d t y ,  as 
observed by simulation (solid line). The synchrotron period is Ts = 300 turns, 6 = 0.001, and 
there is no linear coupling. Empirical theory (dashed line) and observation are in fair agreement. 
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-0.0001 
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20.0 

FIGURE 9 The nimulated amplitude rise time for one 1 4  eigenmode M a function of equal hor- 
izontal and vertical chromaticities, with the same conditions as Fig.8, except that linear coupling 
is present with the TeMtron-like parameters of Tab. 2. The design tunes are equal. 
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while z is the betatron oscillation displacement and qz is the horizontal dispersion. 
This causes the skew sextupole to have a skew quadrupole component with a focal 
strength 

(50) 
1 - = 2A2qz6 f 

that is linear in the off-momentum parameter. So, in turn, 

Similarly, a normal sextupole of integrated strength B2 with a vertical dispersion 
of qy has a skew chromaticity element strength of 

lkil = $ q Y m  

Most storage rings are designed to lie in a horizontal plane, so that the idealised 
vertical dispersion is zero. Although there are strong chromaticity correction sex- 
tupoles, skew sextupoles are not present by design. Hence, there are usually only 
accidental sources of skew chromaticity. The question therefore becomes: “In the 
presence of realistic features and errors, how strong are the skew sextupole el* 
ments, and how large is the vertical dispersion at chromaticity sextupoles?” The 
following subsections attempt to answer this question, with reference to a generic 
FODO lattice, and to a case study of RHIC. 

5. I FODO lattices 

RHIC, like most storage rings, can be conceptually broken into FODO cell arcs 
and special purpose interaction or utility regions. Chromaticity correction is per- 
formed by two families of chromaticity sextupoles in the FODO cells, labeled F 
and D, according to whether the neighboring quadrupole is liorizontally focusing 
or defocusing. All of the sextupoles in one family have, at  least approximately, the 
same optical functions. It is therefore interesting to study the simple example of 
a pure FODO cell lattice, with no interaction or utility regions, in order to get a 
quantitative feeling for the parameters involved, and to see hciw they scale. 

The simplest possible FODO half cell consists of a thin quadrupole next to a thin 
sextupole, immediately followed by a long dipole. If the phase advance per half cell 
is 4112 in both planes, then the three natural control parameters are the length of 
the dipole (and the half cell) L, the bending radius of the dipclle (and the radius of 
the accelerator) R, and s, where 

s = SiJ.l(41/2) 

For example, the maximum and minimum optical functions are 

L l+s 
Pmoz = ;& 

(53) 

(54) 
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Similarly, the focal strength of the quadrupoles and the geometric strength of the 
F and D sextupoles, B ~ F  and B ~ D ,  are 

2s - -  1 - -  If1 L 

R -2s3 
~ 3 2 - ~  

B ~ D  = -- 
where the sextupoles have been set to exactly cancel the natural chromaticity of 
the FODO cells. Note, finally, that there are 

27rR N = -  
L 

half cells in a lattice that closes properly, since there is a bend angle of L / R  per 
dipole. 

A FODO approximation to a real machine significantly underestimates the stren- 
gths of the chromaticity sextupoles (and hence also underestimates skew chromatic- 
ity effects) by as much as an order of magnitude. This is not only because the inter- 
action region optics contribute a large part of the natural chromaticity in luminosity 
optics, but also because, in practice, thin sextupoles cannot be placed right next 
to thin quadrupoles. It is therefore important to remember, below, that the use of 
equivalent FODO cell parameters leads to an underestimate of the severity of the 
situation. 

5.2 The equivalent FODO model of RHIC 
Tab. 3 lists the optimum parameters for an equivalent FODO cell model of RHIC. 
The half cell phase advance 4112 has been set equal to the average of the (slightly 
different) horizontal and vertical half cell phase advances in the arcs, while the half 
cell length and radius, L and R, have been adjusted to best match the mzllrimum 
and m i n i u m  optical functions in the actual matched arc cell. 

Tab. 4 shows how well this simple FODO model matches real RHIC parameters. 
The optical functions are matched to within a few per cent, and the number of F and 
D.family sextupoles is only slightly overestimated in the FODO equivalent lattice. 
As expected for reasons discussed above, the FODO lattice seriously underestimates 
the strength of the sextupole families in the real RHIC luminosity optics, by a factor 
of 3.7 for the F family and 4.3 for the D family. 
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TABLE 3 FODO parameters for the equivalent lattice represmthg RHIC. 

half cell symbol units value 
parameter 

length L [m] 14.9 
radius R [m] 358.2 
phase advance 4 1 1 2  [deg] 42.1 

N 151.1 
S .671 

TABLE 4: Equivalent FODO lattice parameters for RHIC, compared to the actual values in 
luminosity optics, when p* = 1 m at two of the six interaction points. 

parameter symbol units FODO actual 
value value 

Maximum horizontal /3 
Minimum vertical /3 
Minimum horizontal j? 
Maximum vertical p 
Maximum dispersion 
Minimum dispersion 
Number of F sextupoles 
Number of D sextupoles 
Strength of F sextupoles 
Strength of D sextupoles 

50.1 
9.9' 
9.9' 

50.1 
1.84: 
.91 

75.6 
75.6; 

0.0245 
-.0492 

48.6 
- 9.9 

10.7 
47.2 
1.83 
.92 
72 
72 

0.0905 
-.2094 
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5.3 Rolled chromaiiciiy sextupoles 

If a chromaticity sextupole with strength B2 has been accidentally rolled by a small 
angle 8, it acquires a skew sextupole component of strength 

A2 = 38B2 (62) 

It follows from Eqn. 51 that 

where it is convenient to introduce the factor Gi given by 

A surprising result is that the values GF and GD at F and D locations in a FODO 
lattice are simply 

A better approximation for GF and GD in a storage ring like RHIC (although still 
an underestimate) is 

Xnaturd GF x -GD 2 - 
Xarc 

where Xnafural is the total natural chromaticity, including the interaction regions, 
while xarc is the natural chromaticity from the regular arc cells alone. According 
to the discussion above, 

GF x -Go x 4 
for the particular case of the RHIC luminosity lattice. 

the rms length of the total skew chromaticity vector is just 

GF = -Go = 1 (65) 

(66) 

(67) 

In a simple FODO lattice where the chromaticity sextupoles have a random roll, 

where N is the number of half cells. For example, if the 151.1 sextupoles in the 
FODO equivalent lattice of RHIC have a random roll angle of 1 milliradian, then 
it is reasonable to expect a skew chromaticity vector of length 

lkl 0.012 is91 

The smallness of this value shows that rolled chromaticity sextupoles are not ex- 
pected to be a major source of skew chromaticity in RHIC, even if realistic values 
for GF and GD are used. 

5.4 
Eqn. 52 describes the skew chromaticity element strength of a chromaticity sex- 
tupole when vertical dispersion is present. It is convenient to rewrite this equation, 

Vertical dispersion in chromaficiiy sezfupoles 
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i 

for a typical element in the presence of random errors, with the aid of Eqn. 65. It 
becomes 

Gi < 17y" >ll2 
lkil = 7 (70) 

The root mean square vertical dispersion < 7; >lI2 is caused by error effects, while 
the horizontal dispersion t]z is the design value. It is now useful to introduce the 
optical pseudo-invariant 

b U E -  a 
that describes the matched dispersion function in the regular arc of a storage ring. 
This quantity is only approximately constant: its values at the F and D quads in 
the RHIC equivalent FODO lattice are 0.260 and 0.289, respectively. The pseudo- 
invariant is used to scale the rms vertical dispersion at Merent locations in a 
storage ring, - through 

where the quantity E measures the degree of vertical dispersion present: E = 0 in 
an ideal ring, but E = 1 in a ring rife with vertical 
Eqn. 70 yields 

c 

which shows that it is the sextupoles at D IoLations 
of skew chromaticity, since ~ V D  >> 

dispersion. Substitution into 

(73) 

that dominate the generation 

Neglecting the contribution from the F sextupoles, the totid skew chromaticity 
vector in a lattice with ND D family sextupoles is typically 

(74) 

For example, the 72 D sextupoles in RHIC generate a total skew chromaticity of 

IkI = 5.71G~lE (75) 

where optical values from Tab. 4 have been used. This shows that vertical disper- 
sion in chromaticity sextupoles is a potent source of skew chromaticity in RHIC - 
especially when the realistic value GD B -4 is used. Trackiing simulations show 
that E k: 0.05 to 0.10 if there is no deliberate attempt to control vertical disper- 
sion in RHIC, dominating the observed value of lkI k: 2.1. At the time of writing, 
vertical dispersion correction schemes are being evaluated for application in RHIC. 

5.5 Skew sezlupole harmonics in superconducting magneis 

Upwanted magnetic field harmonics in superconducting magnets, where the fields 
are 'current dominated", are naturally larger than in normal conducting magnets, 
where fields are "iron dominated". Considerable care is necesrrary in the design of 
a superconducting dipole, for example, in order to reduce the unwanted allowed 
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body harmonics - sextupole, decapole, et cetera - at all excitations. RHIC magnets 
of all kinds are well modeled by a body harmonic that is smoothly distributed 
along the length of a magnet, plus delta function end multipoles at the Yead" and 
"return" ends, where the conductor geometry is subject to mechanical (and other) 
constraints. (The coils are connected to the outside world at the lead end, but 
simply turn back into the magnet at the return end.) For the most part the lead 
end multipoles are stronger than the return end multipoles. 

TABLE 5: Dominant ~ources of SYSTEMATIC skew sextupole kicks in RHIC. 

Magnet Count Skew Horz. Horz. Vert. Element 
sext. disp. beta beta strength 

strength 
N A2 l7.Z Pz P y  Ik;l 

[m-21 [ml [ml [ml 

Arc dipole body 144 -.0012 1.20 24.3 23.9 .011 
Dipole lead end F 72 -.0064 1.65 39.7 12.8 .076 
Dipole lead end D 72 -.0064 1.05 13.5 39.6 .050 
Arc quad F 69 -.0007 1.77 49.7 9.7 .008 
Arc quad D 69 .0007 .91 10.4 47.6 -004 

Tab. 5 records the dominant systematic skew sextupole elements in RHIC. The 
body harmonic of a magnet is conveniently represented by an equivalent multipole 
kick at its center. Hence the optical functions assigned to the arc dipole correspond 
to the center of the dipole. There is a strong tendency for a set of systematic 
vectors in RHIC to cancel when they are added up, since the horizontal and vertical 
tunes differ by about one unit, and the element vectors tend to form a circle. 
This paper makes no attempt to properly and carefully add each set of systematic 
vectors. Rather, the last column in Tab. 5 simply lists Ikl, the strength of a single 
element. The arc dipole lead ends are clearly the dominant source of systematic 
skew sextupoles in RHIC. 

Similarly, Tab. 6 records the dominant random skew sextupole elements in RHIC 
magnet harmonics. In this table it is trivial to estimate the total skew chromaticity 
strength due to a particular source, by multiplying the individual element strength 
by the square root of the element count. The last column lists the root mean 
square total strength, < k2 >lI2, averaged over an ensemble of accelerators. At the 
bottom of the table, the grand Mal of .40 records the sum of all random sources, 
added in quadrature. This is almost completely due to body harmonics in the arc 
dipoles and in the low beta interaction region (IR) quadrupoles. 

Skew sextupole harmonics in RHIC magnets are less potent in generating skew 
chromaticity than vertical dispersion errors in chromaticity sextupoles. 
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TABLE 6: Dominant sources of RANDOM skew sextupole kicks in RHIC. 

Magnet Count Skew Horz. Horz. ‘Vert. TOTAL 
sext. disp. beta beta strength 

strength (rms) 
N A2 flt Pt P y  lkl 

[m-21 [ml [ml [ml 

Arc dipole body 
Dipole lead end F 
Dipole lead end D 
Arc quad F 
Arc quad D 

IR quad 1 F body 
IR quad 1 D body 
IR quad 2 F body 
IR quad 2 D body 
IR quad 3 F body 
IR quad 3 D body 
IR Q 1 F lead end 
IR Q 1 D lead end 
IR Q 2 F lead end 
IR Q 2 D lead end 
IR Q 3 F lead end 
IR Q 3 D lead end 

GRAND TOTAL 

144 
72 
72 
69 
69 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

.0012 

.0001 

.0001 

.0008 

.0008 

.00032 
-00032 
.00073 
.00073 
.00045 
.00045 
-00036 
.00036 
.00036 
.00036 
.00036 
.00036 

1.20 
1.65 
1.05 
1.77 
.91 

-.49 
.52 
.73 
-.47 
-.75 
.49 
-.49 
.56 
.67 
-.55 
-.69 
.54 

24.3 23.9 
39.7 12.8 
13.5 39.6 
49.7 9.7 
10.4 47.6 

667 708 
718 668 
1354 550 
558 1335 
1332 556 
575 1313 
665 812 
825 645 
1127 743 
754 1110 
1151 715 
725 1134 

.14 

.01 

.01 

.08 

.04 

.05 

.05 

.2 1 

.13 

.13 

.09 
-06 
.07 
.10 
.08 
.10 
.08 

.40 

6 SUMMARY AND CONCLUSIONS 

The standard vector model of on-momentum linear coupling has been extended 
to include off-momentum particles. In this model, the difference in eigentunes is 
given by the length of a 3-D vkctor that  is parameterised by is, the off-momentum 
parameter, and k, the 2-D “skew chromaticity” vector. The Mlues of the eigenchm 
maticities - defined as the differentials of the eigentunes with respect to 6 - have 
been shown to be important in determining head-tail stability. Strong criteria on 
the normal chromaticities have been derived that guarantee head-tail stability for 
any skew quadrupole and erect quadrupole settings. The off-mnmentum model and 
the new criteria are in good agreement with Tevatron experiments and with simple 
simulations. 

The most potent source of skew chromaticity appears to he vertical dispersion 
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in chromaticity sextupoles. Large machines are more vulnerable than small ones. 
All reasonable attempts must be made to keep the vertical dispersion in the arcs 
small. Accidental systematic and random harmonics in superconducting magnets 
can also contribute significantly to the net skew chromaticity vector. However, 
RHIC statistics suggest that, with care, these sources can be well controlled. Rolled 
chromaticity sextupoles are only a weak source of skew chromaticity. 
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