
711

MACRO CONTROL STRUCTURES FOR STRUCTURED

PROGRAMMING IN ALC

THESIS

Presented to the Graduate Council of the

North Texas State University in Partial

Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Kim G. Connally, B.A.

Denton, Texas

December, 1975

Connally, Kim G., Macro Control Structures for

Structured Programming in ALC. Master of Science (Computer

Sciences), December 1975, 187 pp., 4 tables, 27 illustrations,

bibliography, 38 titles.

This thesis describes a set of computer program control

structures which permits the application of certain structured

programming techniques to the IBM/360 assembly language

(ALC). The control structures are implemented by programmer-

defined instructions known as macros.

A history of computer software is presented, providing

a basis for the emergence of structured programming. A

survey of the major concepts of structured programming with

special attention to control structures and their

significance to structured programming follows.

The macros developed in this study include DO, ENDDO,

LEAVE, CASE, and ENDCASE. They provide a looping control

structure, a loop-escape construct, and a selective control

structure. Examples of usage are given.

71C~

TABLE OF CONTENTS

Page
LIST OF TABLES.... v

LIST OF ILLUSTRATIONS...*. ,.. ... vi

Chapter

I. INTRODUCTION..1..

The Evolution of Software
Purpose of the Study
Justification

II. STRUCTURED PROGRAMMING*. 11

Dijkstra's Work
Mills' Work
Modular Programming
Program Clarity
Open Programming
Summary

III. CONTROL STRUCTURES.... 37

Bohm and Jacopini's Work
Significance of Simple Control Structures
The GOTO Controversy
Subroutines
Conclusion

IV. CONTROL STRUCTURES IMPLEMENTED WITH MACROS
FOR ASSEMBLY LANGUAGE PROGRAMMING.... 67

Repetitive Control Structure Macros
The LEAVE Macro
Selective Control Structure Macros

V. SUMMARY, CRITIQUE, AND CONCLUSIONS. 95

Summary
Critique
Conclusions

iii

TABLE OF CONTENTS (Continued)

Page
APPENDIX A................... 104

APPENDIX B.................. 130

APPENDIX C.151

APPENDIXD.*.0. .v....w...172

BIBLIOGRAPHY 185

iv

LIST OF TABLES

Table Page

I. Keyword Parameters for the DO Macro. 70

II. Keyword Parameters for the LEAVE Macro 81

III. Keyword Parameters for the CASE Macro. 92

IV. Keyword Parameters for the ENDCASE Macro 92

V

LIST OF ILLUSTRATIONS

Figure Page

1. The Excessive Use of GOTO Statements
in a Program. 13

2. Development Support Library 24

3. Spacing andIndentation 32

4. A Sequencing Structure. 39

5. A Selective Structure 40

6. A DO WHILE Structure. 41

7. A DO UNTIL Structure. 42

8. Nested Control Structures 44

9. Decomposition of Program Structures 45

10. Improper Use of Control Structures. 47

11. Multivalued Selective Structure 49

12. Multivalued Selective Structure Implemented
by Nesting Simple Selective Structures. . . 50

13. Abnormal Termination of a Repetitive
Structure 51

14. A DO Loop with Multiple Exits 58

15. Examples of DO Macro Parameters 72

16. Flowchart of a DO and ENDDO Construct 74

17. DO Macros Nested to the Second Level. 75

18. Flowchart of Stack Logic for Code in

Figure 17 76

19. Examples of LEAVE Macro Parameters. 80

vi

LIST OF ILLUSTRATIONS (Continued)

Figure

Flowchart of Execution of a LEAVE Macro

Properly Coded LEAVE Macros.......

Improperly Coded LEAVE Macros . . .

Flowchart of the Execution of a CASE and
ENDCASE Construct...... is........

Example of CASE Macros Using Option=l

Example of CASE Macros Using OPTION=2

An Example of Kessler's CASE Macro. .

Flowchart Showing Structured Logic of
Program M......................

Page

. . . 82

. . . 84

. . . 84

. . . 86

. . . 88

90

. . . 101

. . . 175

vii

20.

21.

22.

23.

24.

25.

26.

27.

CHAPTER I

INTRODUCTION

The Evolution of Software

During the first generation of the computer industry,

the late 1940's through the middle 1950's, the emphasis on

the development of computer software was negligible

(2, p. 470). At the time technology was focused on the

development of functional hardware. The vacuum tube proved

so unreliable that extensive maintenance was required;

consequently, only a minimum amount of programming could

be done. The few computers available were typically

one-of-a-kind and short-lived, so the need for standard

software packages was not felt. Since the early machines

were slow in execution and contained small memories, the

programmer was severely restricted by the capabilities of

his computer (3, p. 860).

The lack of software development then was a direct

result of the primitive and unreliable hardware in

existence; moreover, many programmers believed that with

the improvement of computer machinery the burden of the

programmer would be lifted (3, p. 860). The programmer

would no longer have to contend with the limitations of the

1

2

hardware but would enjoy a new freedom, and programming

would no longer be a problem.

As a result of the early experiences with computers,

the important role that software and programming would

assume in future machines was grossly underestimated

(2, p. 469). The second generation of computers, extending

from the late-1950's to the mid-1960's, gave the programmer

his larger and faster machine, and in so doing, completely

altered the role of software in the computer industry.

The programmers of the second generation faced-

the task of developing software to match the advances in

electronic technology. The transistorized machines of the

second generation introduced an unforeseen complexity to

programming. Programmers had to deal with such problems

as I/O interrupts, multilevel stores and multiprogramming.

The limitations of computing were shifting from the hardware

to the software.

Another problem confronted the programmers of the

second generation. With these new and more powerful machines

the widespread use of computers in industry became feasible

(2, p. 472). There was a tremendous demand for programmers

and software by business and industry. Not only was the

computer industry lacking in software development, but

there was also an inadequate number of experienced

programmers available to produce the needed software.

3

The problems of the software industry continued to

grow with time. During the mid-1960's, the beginning of

the third generation computers, integrated circuit technology

came into use. Again computer hardware increased in speed

and complexity. There now existed what has been termed the

"software crisis" (2, p. 474). In short this crisis

represented the disparity between the sophistication and

capabilities of computer machinery and the inadequate and

functionally underdeveloped software used by these machines.

In summary, as the technology of computer hardware

improved, providing smaller, faster, and more complex

machines, programmers were faced with the increasingly

difficult task of designing software for these machines

and programming the many problems of business and industry

which these machines were capable of solving. To quote

Dijkstra,

. . . as long as there were no machines, programming
was no problem at all; when we had a few weak
computers, programming became a mild problem, and
now that we have gigantic computers, programming
has an equally gigantic problem (3, p. 861).

A crisis has developed as a result of the inabilities of the

programmers and their software to meet this problem.

Today this problem is best reflected in the software

produced in industry. Industrial programs are usually very

expensive since they typically require many man-hours to

code, and quite often they are error-prone because their

complexity prevents adequate debugging. Industrial software

4

is usually difficult to understand, hard to modify, requires

constant maintenance and cannot be adequately tested for

correctness. This is not surprising since many industrial

programmers have had no formal training in organized program

production.

The typical industrial programmer produces on the order

of five to ten lines of code per day over the average life

of a project because most of his time is spent debugging

(1, p. 58). Programming techniques in present use are not

producing either the quantity or quality of software that

is in demand.

The computer industry has realized the inadequacies of

software and programming techniques for quite some time.

Accordingly, within the last seven years a growing number of

programmers have expounded various concepts and methodologies

which they believe will improve software design and will

increase the productivity, reliability, maintainability,

and extendability of programs. These various concepts and

techniques have been referred to as "structured programming."

At this time there is disagreement as to what does or does

not constitute structured programming. Some programmers

feel that it encompasses a wide variety of techniques while

others view it as a single or perhaps limited aspect of

programming. It remains to be seen exactly what will

eventually be included in a definition of structured

5

programming, but its development has been a direct result

of the software crisis.

Chapter II presents a survey of the major concepts

associated with structured programming. The work of E. W.

Dijkstra is first presented. It includes the concepts of

"GOTO-less" programming, hierarchy of software modules,

abstract resources and the principle of non-interference.

Dijkstra's work is followed by a discussion of the

contributions of H. D. Mills, which includes such concepts

as the "top-down" approach to programming, the chief

programmer team method, the one-entry and one-exit rule for

program module design, and the development support library.

A number of other important structured programming concepts

which are not associated with a particular contributor are

also discussed. These concepts include modular programming,

program clarity, and open programming.

Of the various concepts involved in the structured

programming controversy one of the most commonly implicated

is the issue of control structures. A control structure

is a program instruction or set of instructions which

determines the order in which other program instructions

will be executed or the number of times a particular set of

instructions are to be executed. Simple control structures

include the unconditional branch statement, the branch-

on-high and the branch-on-low instructions. More

6

sophisticated control structures include the FORTRAN DO

statement, PL/I IF-THEN-ELSE statement, and program

interrupts caused by external events.

The controversy centers around the correct use of

control structures. What set of control structures should

the programmer be allowed to use? Should he have a large

set of structures at his disposal or should he be limited

to a small but sufficient set? Should the GOTO statement

be allowed or should it be removed completely? What

discipline should be imposed on interrupt programming

methods? These are some of the questions to which

programmers are addressing themselves in an effort to

determine the proper set and use of control structures in

programming.

Purpose of the Study

The purpose of this thesis is to describe the

development of a small but sufficient set of control

structures to facilitate structured programming in ALC,

the macro assembly language of the IBM 360 computer.

An ALC macro call consists of a single programmer-

defined macro instruction which may be inserted into an ALC

program. At assembly time the macro instruction is replaced

by a predetermined set of ALC instructions associated with

it. With a set of ALC macro definitions for various

higher-level language control structures an assembly

7

language programmer is able to code programs using the

concepts of structured programming which require these more

sophisticated structures. The programmer uses the macro

instructions to implement the logic defined by higher-

level language control structures.

Before describing the macros developed in this thesis,

a survey of the major concepts of structured programming is

presented both to familiarize the reader with structured

programming and to set in proper perspective the important

role that control structures play in structured programming.

The concepts of control structures are more fully expanded

in a separate chapter which precedes the discussion of the

macros.

Justification

The numerous articles which discuss structured

programming and the control structures of structured

programming limit themselves almost without exception to

a discussion of concepts which apply to higher-level

languages. Kessler (4) has published a noteworthy report

which did attempt to apply the concepts of structured

programming directly to assembly language. Given the

present state of software and the prevalent use of assembly

languages in industrial programming, it should be evident

that there exists a need for a thorough investigation into

8

the application of structured programming techniques to the

control structures of assembly language programming.

Assembly language programs by the nature of their

instruction sets are difficult to code and debug; thus the

need for improving assembly language programming techniques

is obviously present. Since assembly language programs

usually require many more lines of code than equivalent

higher-level language programs, the necessity of improving

assembly language programs would seem to be greater than

that of higher-level languages. One of the major intentions

of structured programming is to make programs more readable;

the assembly language program is in most instances more

difficult to read than a comparable higher-level language

program.

The use of structured programming control structures

in higher-level languages facilitates a block-structured

or modular program design. If these control structures

are applied to assembly languages, then block-structured

programming could be more easily implemented in assembly

language programs. The control structures or branching

mechanisms which are presently available in most assembly

languages do not readily lend themselves to modular or

block-structured programming.

Higher-level languages usually contain a variety of

control structures, some of which may be very powerful.

9

In contrast, the typical assembly language contains an

unconditional branch, unconditional subroutine linkage, and

a small set of very simple conditional branches such as a

branch-on-equal, branch-on-high, branch-on-negative, etc.

With the implementation of a more powerful and problem-

oriented set of control structures in assembly languages

the methods of structured programming could be applied

more directly to assembly language programming.

This research was undertaken in light of the fact that

there exists a need to improve the techniques of assembly

language programming. If the concepts of control structures

of higher-level languages within the scope of structured

programming are applied at the assembly language level,

perhaps significant improvements in assembly language

programming will be achieved.

Before entering a discussion of control structures

and their proper use, an overview of the development of

structured programming, its major concepts, and its major

contributors will be given in Chapter II in order to

establish the significance and relationship of control

structures to structured programming.

CHAPTER BIBLIOGRAPHY

1. Baker, F. T. and H. D. Mills, "Chief Programmer Teams,"
Datamation, XIX (December, 1973), 58-61.

2. Bauer, F. L., "Software and Software Engineering,"
SIAM Review, XV (April, 1973), 469-480.

3. Dijkstra, E. W., "The Humble Programmer," Communica-
tions of the ACM (October, 1972), 859-866.

4. Kessler, M. M., *Concepts* Report 4, OS/360 Assembly
Language Block Structured Programming Macros, IBM.

5. Rosen, Saul, "Electronic Computers: A Historical
Survey," Computing Surveys (March, 1969), 7-36.

10

CHAPTER II

STRUCTURED PROGRAMMING

The origin of structured programming is usually traced

to a letter by E. W. Dijkstra (7), which appeared in the

March, 1968, issue of the Communications of the ACM. The

letter entitled "GOTO Statement Considered Harmful" warned

programmers of the potential problems which the GOTO

statement may introduce into programs.

Dijkstra's Work

In his letter Dijkstra pointed out that the unrestricted

use of the GOTO statement may unnecessarily complicate the

flow of control within a program. Because of the complexity

of such a program difficulties may be encountered if

debugging or modification is required.

If a program contains many GOTO statements, it is

likely that the program will have a nonlinear flow of

control. This means that its instructions will not be

executed in the same order as they are written. In contrast,

when a program contains no GOTO's or other branching

constructs, its instructions are executed in a purely

sequential manner. The first instruction is executed

first, the second next, and so forth until termination

11

12

occurs. Such a program is said to have a linear flow of

control. While few programs can be written in a purely

linear fashion, the free use of GOTO's may completely

destroy any semblance of linearity and produce unnecessarily

complicated program logic.

Figure 1 illustrates the type of program which may

result from the blatant use of the GOTO statement. Notice

that the program has a very complicated execution sequence.

There is no correspondence between the order in which the

statements appear and their order of execution. Although

the program of Figure 1 is rather small, it would be

difficult to debug or prove correct because of its

nonlinear flow of control.

Since the time of Dijkstra's letter so much literature

has been published on the use of GOTO statements that

structured programming and "GOTO-less" programming are

sometimes used synonymously. This, however, is an over-

simplification. A program which contains GOTO's may be very

well structured in the sense that it maintains an almost

linear or sequential flow of control. On the other hand the

flow of control of a program coded without GOTO's is not

inherently linear or necessarily well structured. Dijkstra

cautioned the programmer that the GOTO statement lends itself

to misuse, i.e., it may disrupt the sequential execution of

the program. He was not suggesting that programming without

13

Start Program

-- LOOPA:

r ~'(IF)...GO
TO LOOP C

GO TO FINISH---- -w n

----m+LOOP C:

- - -

-~ KU

IF)...GO TO LOOP E

O TO LOOP F

-* LOOP D:

--- ----- GO TO LOOP_A

'LOOP E:

fr----------oGO TO LOOPD

) LOOPF:

*GO TO LOOPD

--- FINISH: END Program

Fig. 1--The excessive use of GOTO statements in a
program.

.

. . .. * .

14

the GOTO statement would in itself produce well-structured

programs.

It has been shown in a paper by Bohm and Jacopini (4)

that the following three control structures are a sufficient

set to define any program logic: a sequence control

structure, a repetitive control structure, and a selective

control structure. Using these three structures only, the

GOTO statement is not needed nor for that matter are any

other control structures required.

At this time there is a controversy among programmers

as to whether or not the GOTO statement should be completely

eliminated since it is not strictly required. Those in

favor of its removal argue that it is merely a temptation

toward poor programming practices. Those not in favor of

its removal argue that circumstances occur when the

judicious use of an occasional GOTO statement will not

interfere with the program's structure and will, in fact,

provide a solution to a logic problem which may otherwise

require excessive code.

The concept of programming without the GOTO statement

is by no means the only contribution of Dijkstra to

structured programming. Concerned with the development of

software systems, he published his experience with the

"THE" Multiprogramming System which made use of what he calls

abstract resources in the design of software systems (6).

15

Dijkstra views a software system as a hierarchy of

software modules or machines. Each level of the hierarchy

produces an abstract resource which is supported by the

level below it. Each of the resources is available to the

level directly above it. Any module then consists of a

set of programs which manipulate the abstract resource of

the next lower level and produce an abstract resource

which can be manipulated by the next higher level.

An example will illustrate Dijkstra's concepts of

abstract resources, hierarchy layers, and levels of

abstraction.

A software package which will read a file is to be

written. The file is considered the highest level of

abstraction and will consequently, be the highest layer in

the hierarchy. The next level is a record since a file

can be considered a collection of records. A record is a

collection of words, a word is a collection of bytes and a

byte is a collection of bits so that the hierarchy of

resources needed to read a single bit is as follows:

Highest Level: FILE

RECORD

WORD

BYTE

Lowest Level: BIT

There are five abstract resources and hence, five levels of

abstraction. Each level is a layer in the hierarchy and

16

represents a functional part or machine in the system. A

set of programs would be written to implement each level.

For instance, at the lowest level a set of programs would

be written which operate on bits and thus alter bytes. At

the highest level a set of programs would operate on records

to manipulate files.

Dijkstra emphasizes that each level has a specific

relation to the level immediately above and below it, and

that special care should be taken to insure that each level

is consistent in that the operations executed at one level

will be supported by those below and will, in turn, support

those in the level immediately above.

In developing his software system Dijkstra attempted

to use a design which would lend itself to thorough testing

and which could be proven logically correct. Using his

method of hierarchy of levels, Dijkstra was applying what

he refers to as the "principle of non-interference" (3,

p. 143). This principle suggests that the correctness of

the software system can be more readily determined if the

system is divided into a set of smaller problems which are

logically independent and which can be united into the

software package at the functional level. These small

problems must be proven correct at every level of inte-

gration.

To test the example above using this principle it

would be necessary to test each layer. For example, the

17

middle layer would be independently tested to insure that

it correctly manipulates bytes to produce words. Likewise,

when each layer had been thoroughly and independently

tested, the system would be considered correct.

It should be noted at this time that Dijkstra's

hierarchy of levels or layered approach to software design

appears to be equivalent to a modular approach to program-

ming. In fact, Dijkstra's approach is modular, but he has

imposed other restrictions such as the hierarchy concept

on the modules formed by the design. The sample given

above is modular in that the byte programs are independent

of the bit and word programs, however, there is the added

restriction that the word programs may manipulate only

bytes and have no direct effect or connection to record,

file or bit programs. Modular programming,which will be

discussed later, does not necessarily place such restrictions

on the relationships among various modules. There is no

hierarchy or layering of modules in the conventional

approach to modular programming.

Dijkstra seems to be most concerned with developing

techniques for designing and encoding programs which will

lend themselves to testing and proof of correctness. He

advocates the avoidance of GOTO statements because they tend

to add complexity to programs and hence, increase the

difficulty of proving their correctness (7). Dijkstra

approaches software design with his hierarchy technique

18

since to verify the software system, it is necessary to

prove correct only the independent layers rather than the

system as an entity. In designing his multiprogramming

system Dijkstra was assisted by a group of programmers

who were mostly mathematicians; thus, an indication of

the emphasis he places on the necessity of proving program

correctness (6).

Mills' Work

Harlen Mills, F. T. Baker, and others at the IBM

Corporation have developed some operational procedures for

the design and encoding of large reliable programs. The

techniques they have developed represent a major contri-

bution to structured programming.

Mills (14) describes what he calls a "top-down"

approach to program design and coding. He also elaborates

on a number of programming techniques, which he collectively

refers to as structured programming. These techniques

include the use of a standard set of control structures or

branching conventions, a modular or segmenting method of

programming, and a restriction on any module that it have

only one entry and one exit point.

The top-down approach to programming is a technique

whereby the initial problem is repeatedly broken down into

a hierarchy of program modules or segments. The highest

module might represent a control or supervisory function.

19

The various routines called by the control module would

represent the next lower-level of the hierarchy. Likewise,

the second-level routines reference various lower-level

routines. In effect, a tree structure containing program

modules is formed. Coding begins at the highest level

and proceeds downward with "program stubs," dummy names to

represent uncoded segments being inserted into the code

where references to lower-level segments are made.

The program modules or segments are carefully limited

in size so that they may be coded on a single page. A

segment defines a function having one entry and one exit

point. The function merely transforms data which may or

may not represent another segment.

The branching conventions or control structures which

may be used in coding a segment include a simple sequencing

of code, a selective branching structure such as an IF THEN

ELSE statement and a repetitive control structure such as a

DO WHILE statement. The GOTO statement is not permitted.

By requiring that each program segment be designed

and coded according to these particular structured program-

ming techniques, a certain amount of program uniformity is

insured (12, pp. 22-23). Each segment will be reasonably

small and will not possess any complicated control structures

to interfere with module testing or readability (13,

p. 156). Module interfacing is simplified when the one

20

entry and one exit rule is used since there can be only one

path of connection between program segments.

A top-down design method permits program testing

concurrently with program coding (13, pp. 9-10). Once a

particular segment on the hierarchy structure has been

coded, it may be tested by having the programmer provide

the necessary input to evaluate the correctness of the

segment. This input, of course, will eventually be supplied

by the lower-level segments which are called by the segment

being tested. In this manner the program can be verified

as each module is coded; thus the reliability of the entire

system is proven without having to rely on exhaustive

testing once the system is complete.

Mills' top-down programming technique is similar to

Dijkstra's layered approach to program design; however, the

two methods seem to depend on slightly different concepts

and each emphasizes somewhat different aspects of design.

While Dijkstra is chiefly concerned with the separation of

abstract resources during his hierarchy development (13,

p. 57), Mills is mostly interested in achieving a hierarchy

tree structure of one entry and one exit modules. Dijkstra

emphasizes a design approach which is intended to be highly

testable and provable while Mills, though he is concerned

with the ability to test programs seems to emphasize

simplicity and clarity in program design (12, p. 57).

21

Another concept of structured programming developed at

IBM and described by Mills (13) is the "chief programmer

team," which is an organizational and managerial technique

for large program production.

The chief programmer team consists of a chief

programmer, a backup programmer, a programming librarian,

and other junior programmers required by the particular

production. These team members utilize a development support

library and apply the principles of top-down design and

structured programming described by Mills in the development

of large programs.

The chief programmer is a technical manager responsible

for designing and coding the most important segments of the

program. All other team members receive their respon-

sibilities and coding assignments from the chief programmer.

He coordinates all program interfaces and supervises all

coding to insure the proper use of top-down structured

programming techniques. Quite naturally the chief programmer

must be a highly experienced and competent programmer since

the success of the team and the project are largely dependent

upon his decisions.

The backup programmer is a research assistant to the

chief programmer and helps significantly in the design and

coding of the major portion of the project. He must be

completely familiar with the entire project and be ready to

assume the position of chief programmer should the need

22

arise. The backup programmer shares the burden of

responsibility, allowing the chief programmer to concen-

trate on the major problems encountered in the project.

The backup programmer may, for example, develop all testing

procedures without the assistance of the chief programmer.

The programming librarian is responsible for

maintaining all listings and records of the project. This

information is kept in both an internal, machine-readable,

and an external, human-readable, form. The librarian

maintains this information in a development support library.

The development support library contains a set of

organized listings which detail the current status and

previous development of the project. These listings

represent the external project records. Among these

records are notebooks which are headed by a directory and

contain an alphabetized list of the program modules. A

journal is kept to record all changes in updating the

directory. All results of testing procedures are also

recorded in a journal.

By maintaining a detailed record of the project's

development the programmers have an accurate account of all

program bugs encountered and tests made at any given time.

Since these records are maintained by a programming

librarian, the programmers are not burdened with time-

consuming clerical work.

23

Besides maintaining and updating the various records

which are kept in the library, the librarian has a signifi-

cant amount of paperwork to do concerning the documentation

of the design and coding phases of the program. Mills (2)

emphasizes that the librarian is a key member of the team

rather than a part-time assistant to programmers.

The development support library consists of a number

of office and machine procedures for maintaining

programmer-generated material such as coded program segments,

for maintaining files and records of the project in the

external records, for processing data in the internal

library which is on disk, and for performing all runs during

each stage of program development including testing

procedures.

During the course of the project programmers make

corrections in status notebooks, introduce new or altered

coding sheets, and request various runs. It is the respon-

sibility of the programming librarian to invoke the

necessary office or machine procedures to accomplish these

tasks. He is responsible for preparing and executing all

program runs and posting the results in the external and

internal files.

Figure 2 shows the relationship of the librarian and

programmers within the development support library (2). It

is evident in the diagram that the librarian plays a key

role in the success of the library.

Plo l

Programmers

Coding Sheets
Marked-up Notebooks
Run Requests

Control Cards, DSL_______I

Project Notebooks:
Status, Archives
Run

Control Cards, DSL
Office Procedures

puter Computer
at Output

. Computer

DSL Project
Machine Library
Procedures

Fig. 2--Development support library

24

Com

moProgramming Mw-
Librarian-

I

25

By using the development support library within the

chief programmer team method, the team members are working

on a common product rather than merely coding independently,

separate segments of a large program. Since the members

are working together, there is less chance of duplicating

code or coding errors. The library provides an in-depth

documentation of the development of the project. This

documentation reflects the progress of the team.

The chief programmer team concept was developed in

order to improve the organization, communication, and

productivity of programmers involved in large-scale

programming. The top-down method is applied to program

design under the chief programmer team method, and the

structured programming techniques are applied in code

segments within the top-down method.

F. T. Baker (1) described an industrial project which

was developed using a chief programmer team. The project

required twenty-two man-months to design and code, involving

the production of over 83,000 lines of code. Only twenty-one

errors were found during formal testing of the completed

system.

Baker concluded that the use of the chief programmer

team, top-down programming, and the application of structured

programming techniques contributed to the success of the

project. He suggested that the top-down method may not

always be applicable to some types of projects, and that

26

other methods may be more feasible in the design of some

programs. For instance, when a program organization,

viewed as a tree structure, is narrow and tall, then a

strictly top-down approach may require too much time to be

practical (1, p. 343). Baker also suggested that the chief

programmer should do more code reviewing and allow the

other members to do the major portion of coding. In the

project described by Baker the chief and backup programmers

did most of the functional coding; consequently, there was

little time to review code, especially that written by

junior programmers.

As a result of the development of top-down programming

and the chief programmer team at IBM, the concept of

structured walk-through evolved at that corporation (16,

p. 31). A structured walk-through is a series of progress

meetings which are held at various times in the design and

development of a programming project.

A committee of approximately five members discuss the

completeness, accuracy, and general quality of a project's

development (10, p. 30). Each member of the committee, or

reviewer as he is called, presents a brief introduction to

his portion of the project and then "walks" the other

committee members through the specific function of his

area of responsibility. In this way each member becomes

familiar with the purpose and progress of all aspects of

the project.

27

One committee member, the recording secretary, records

errors and inconsistencies which are discovered during each

reviewer's walk-through. When the meeting is completed,

each reviewer is given a copy of the secretary's notes.

It is the responsibility of each member to insure that any

problems within his area are resolved and that he notifies

other committee members of any corrective action he takes.

The purpose of a structured walk-through is not to

evaluate the ability or effectiveness of its committee

members, but rather, through the exchange of information

and ideas, determine the progress of the project, and

detect the errors existing in the production at its current

level of development (16, p. 30). Committee members are

encouraged to exchange ideas, offer constructive criticism,

and view the meetings as educational experiences.

The use of structured walk-through provides a method

for not only measuring a project's development, but also

for discovering production errors at the earliest possible

time when they are easiest to correct and have the smallest

impact on the production (10, p. 35).

Modular Programming

Modularizing a program refers to the technique of

isolating sections or functions in the program so they may

be designed and coded independently; hence the original

problem is reduced to a set of smaller ones. Program

28

modules might be coroutines, subroutines, programmer-defined

functions, loops, or merely sequences of instructions which

are logically grouped and coded together. The concept of

modularity is not new to programming, but it has recently

been given new emphasis as a structured programming

technique.

The advantages of modular programming include: simpli-

fication of program design and coding by reducing a large

problem into a set of smaller ones, extendability of coded

modules since a functional program module can be inserted

into other programs, ease of program modification where only

effected modules need to be altered, and clarity of program

design since the function of the entire program can be

viewed as the interaction of the individual program modules.

Within the realm of structured programming programmers

are well aware of the benefits of modular programming. They

do not agree, however, on the principles which should govern

program modularizing. Two methods which form a basis for

program modularization have already been discussed, namely

Dijkstra's levels of abstraction which modularizes according

to what he calls abstract resources, i.e., the various

elements or data types on which a program operates, and

Mills' top-down design approach which modularizes according

to a stepwise refinement of program segments. Besides these

methods there exist two other important techniques which

29

involve program modularity. They are compartmentalization

and information hiding.

Compartmentalization is an approach to program coding

whereby program modules are formed on the basis of their

relationship to a particular design decision. Examples of

design decisions include such things as I/O formats,

arithmetic precision, and variable declarations. The

advantage of this approach to program modularity is its

ease of modification when new design specifications must

be incorporated. For example, in a compartmentalized

program if a new input format were required, only the

module which generated formats would need to be changed.

There would be no need to search through various program

segments to alter each format statement.

To implement compartmentalized modules the most

appropriate technique is by means of macros. One macro may

expand to produce various format statements while another

may, for instance, generate declaration statements. Such

macros may provide the basis for program modules rather

than other program features such as functions or subroutines.

Parnas (15) has suggested a method of modular program-

ming which attempts to reduce the interface requirements

and relationships between modules and thus reduce module

connectivity. His method, information hiding, stresses

the need to code some modules without utilizing character-

istics or features of other interfacing modules. The

30

programmer -is supplied- with the information needed to code

his module, and information relating to the connecting

modules is deliberately withheld or "hidden" from him.

This technique may require additional coding to facilitate

the proper interfacing of modules, but information hiding

produces program modules which are inherently nonrestrictive

and independent in nature.

It appears that no single modularizing technique is

sufficient to always produce the most efficient and well-

structured program; rather the technique to use seems to

be dictated by the nature of the problem. The current

interest in modular programming should yield valuable

methods for the decomposition of programs and contribute

significantly to structured programming.

Program Clarity

It was once considered sufficient to produce a program

which would satisfy the problem at hand. It did not really

matter if the program could be interpreted by anyone other

than its author. As programs increased in size, however,

and as the need for program modification became greater,

program managers began to insist on code which could be

understood and readily interpreted.

One of the basic goals of structured programming is

to establish methods which will increase the readability of

programs. This means writing a program in such a way that

31

programmers unfamiliar with it will be able to understand

what it is attempting to do.

The use of documentation is very important in providing

program clarity. If there are explanatory comments at

the beginning of each program module, the purpose of the

code will be more apparent. Besides explaining code

documentation should specify any restrictions or exceptions

to code function such as input format requirements,

arithmetic precision of output, or "special cases" not

handled properly by the program.

The use of spacing and indentation will also improve

the clarity of program documentation. Spacing to separate

program modules and indentation to represent loop nesting

and extent of control within a loop will help produce more

legible code.

Figure 3 illustrates the use of spacing and inden-

tation. Modules A and B in the figure are separated by

spacing to show their logical independence. Module B has

two levels of indentation to indicate both the range of the

IF statement within the outer DO, and the range of the THEN

DO and ELSE DO statements within the IF. Notice that

spacing within the IF statement clarifies the effect of

the THEN DO and the ELSE DO routines.

The use of meaningful labels and variable names will

also improve program readability. Acronyms and word abbre-

viations may be necessary if the language being used

32

DO WHILE . . .

Module A -*

END

Spacing -

DO I = 1 TO 10

IF . .

THEN DO:

END

Module B -*

ELSE DO:

END

END

END

Fig. 3--Spacing and indentation

33

places restrictions on the lengths of labels and variable

names.

Open Programming

Programming was once considered an art which only a

few people knew how to do, but today it is more and more

becoming a professional skill which can be taught and

improved upon with proper guidance. Indeed, the basis of

structured programming is a set of methods and techniques

which assumes that programming can be taught and improved

upon with the application of these techniques.

Open programming is a method for teaching and improving

programming skills. It involves a group approach to

learning. Programmers compare and discuss each other's

work making evaluations and suggestions for improvement.

An open panel discussion may be used to critique programs.

There is frequent exchange of experiences and problems with

fellow programmers.

The basic goal of open programming is self-improvement

of programming techniques by studying the programming

methods of others and having others evaluate one's own

work. Weinberg (16) speaks of this practice as "egoless"

programming. Each programmer must be willing to accept

the constructive criticism of others while, at the same time,

share his programming abilities with his critics.

34

Summary

This chapter has presented the major concepts associated

with the term "structured programming." A variety of

methods and techniques have been discussed, and it remains

to be seen just which of them will be included in a formal

definition of structured programming.

Intuitively it appears that any definition of structured

programming will have to be of a general nature encompassing

many concepts and techniques since the solution of the

multitude of problems presented to programmers today

require a variety of approaches and methods, especially

with regard to program design.

Chapter III will discuss more fully the role of

control structures in structured programming. So far it

has been suggested that the proper use of control structures

is to adapt a small but sufficient set of branching

conventions and that the use of the unconditional GOTO

branching statement should be avoided. Chapter III will

present some of the theory and application of control

structures with a more thorough analysis of the GOTO

controversy.

CHAPTER BIBLIOGRAPHY

1. Baker, F. T., "System Quality Through Structured
Programming," Proc. FJCC, (1972)., 339-343.

2. , and H. D. Mills, "Chief Programmer
Teams," Datamation, XIX (December, 1973),, 58-61.

3. Benson, Jeoffrey, "Structured Programming Techniques,"
Record of the 1973 IEEE Symposium on Computer
Software Reliability, New York, (April, 1973),
143-47.

4. Bohm, C. and G. Jacopini, "Flow Diagrams, Turing
Machines and Languages with Only Two Formation
Rules," Communications of the ACM, IX (May, 1966),
366-371.

5. Denning, P. J., "Is It Not Time to Define 'Structured
Programming'?" SIGPLAN Notices, (February, 1974,
6-7.

6. Dijkstra, E. W., "The Structure of the 'THE'
Multiprogramming System," Communications of the ACM,
XI (May, 1968) , 341-356.

7. , "GOTO Statement Considered Harmful,"

Communications of the ACM, XI (March, 1968), 147-148.

8. , "Complexity Controlled by Hierarchecal
Ordering of Function and Variability," Software
Engineering, Report on a conference sponsored by
the NATO Science Committee, Garmish, Germany,
October, 1968, 181-185.

9. Donaldson, James, "Structured Programming,"Datamation,
XIX (December, 1973), 52-54.

10. Improved Programming Technologies Management Overview,
IBM Corporation, Data ProcessingDiVison7,SysE6ms
Marketing, Installation Productivity Programs
Department (August, 1973).

11. McCracken, Daniel, "Revolution in Programming: An
Overview," Datamation, XIX (December, 1973), 50-52.

35

36

12. Miller, E. and G. Lindamood, "Structured Programming:
Top-down Approach," Datamation, XIX (December, 1973),
55-57.

13. Mills, H. D., Chief Programmer Teams: Principles and
Procedure Report No. FSC 71-5108, IBM Federal
Systems Division, Gaithersburg, Maryland,

14. , "On the Development of Large Reliable
Programs," Record of the 1973 IEEE Symposium on
Computer Software Reliability, New York (May,~1973)
155-159.

15. Parnas, D. L., "Information Distribution Aspects of
Design Methology," Information Processing, LXXI,
339-344.

16. Weinberg, G., The Psychology of Computer Programming,
New York, Von Nostrand Reinhold Co., 1971.

CHAPTER III

CONTROL STRUCTURES

Almost every paper on structured programming alludes

to the proper use of control structures. This is not

surprising since the structures used can affect many

aspects of a program. The degree of linearity in program

execution is a direct result of the structures used.

Program modularity can be maximized with effective control

structures. Testing a program and proving its correctness

may be feasible only if the program's structures allow the

isolation of program segments. The clarity and readability

of a program may be significantly hampered if it contains

complicated control mechanisms.

Bohn and Jacopini's Work

The importance of control structures has not been

overlooked by those interested in improving programming

techniques. A paper by Bohm and Jacopini (2) is frequently

referenced in structured programming articles. The paper

shows mathematically that the control of any flowchartable

program can be logically defined using only three control

structures. These structures include 1) a sequencing

procedure, 2) a selective structure, and 3) a repetitive

37

38

structure. Each structure is characterized by a single

entry and single exit point.

The sequencing structure, shown in Figure 4, represents

the normal execution of instructions, i.e., in the order the

instructions were written. Figure 4 represents a linear

flow of control. A program containing no branching struc-

tures would be completely sequential or linear in the

strictest sense.

A selective structure, illustrated in Figure 5, causes

the execution of a particular block of code or set of

instructions depending on the truth of the selective

condition. In the diagram the diamond represents the

selective mechanism. The IF THEN ELSE structure of PL/I

is a selective structure. When the IF statement is true,

all instructions within the THEN block are executed. When

the IF statement is false, all instructions within the

ELSE block are executed.

The IF THEN ELSE structure may be considered linear

since each instruction is executed or not executed in the

same order as it is coded. The program flow of control does

not change directions but continues forward either bypassing

instructions or executing them as they are encountered.

The third structure, a repetitive block, is shown in

Figures 6 and 7. This structure represents the repeated

execution of a block of code. The diamonds in the diagrams

39

Fig. 4--A sequencing structure

40

Fig. 5--A selective structure

41

Fig. 6--A DO WHILE structure

42

Fig. 7--A DO UNTIL structure

43

represent the selective mechanisms which determine the

number of repetitions. There are two forms of this

structure. The first one, Figure 6, tests the looping

condition before loop execution. This is implemented in

PL/I with the DO WHILE statement. The second form, Figure 7,

implemented in ALGOL with the DO UNTIL statement and in

FORTRAN with the DO statement, tests the looping condition

after each execution of the loop. When the looping

condition is satisfied, the repetitive structure passes

program control to the instruction immediately following

the loop.

Any program logic can be performed by some combination

of these structures. They may be sequenced one after

another or nested in any combination. As an example,

Figure 8 shows the nesting of several structures. A

repetitive block is contained within a selective block

which is itself nested within another selective block.

Notice that the one entry and one exit feature is maintained

within the logic structure.

A simple program which uses only the structures

suggested by Bohm and Jacopini is diagrammed in Figure 9.

The program includes combinations of all three structures

and can be decomposed into the various structures used.

Each structure maintains a single entry and single exit

point; this insures a certain degree of consistency in

program design.

Fig. 8--Nested control structures

44

LI

LI

ji

45

START

FooSTOP

Fig. 9--Decomposition of program structures

46

Figure 10 represents a program containing control

structures other than the three just described. In the

figure blocks one through four appear to form a DO UNTIL

structure; however, the loop condition may possibly be

overridden by decision block two which provides a branch

from within the loop. In blocks nine, eleven, and twelve

a similar loop situation exists in that there are two

decision blocks and two exits from the loop. In the

second situation, however, the logic is further complicated

by the fact that different paths are taken depending upon

the point of departure from the loop.

Figure 10 is a reasonably short program, yet its

unusual control structures may prove difficult to debug.

Also problems may arise in understanding the purpose of the

code because of the rather complicated logic structure.

It appears that the programmer has developed control

structures to accomplish the program logic, but he has made

no attempt to develop a relatively uncomplicated or readable

program design. By adhering to the use of the three simple

and sufficient control structures, the programmer can

define the logic of any program in a manner that will

require only simple control structures which may be combined

in larger decomposable structures.

Donaldson (4, p. 53), however, describes two occasions

where the strict use of only the three mentioned structures

will result in inefficiency.

47

START

<2

3

9 8 12

10

STOP

Fig. 10--Improper use of control structures

48

The first situation occurs when a multivalued selective

structure, as shown in Figure 11, is required. Such a

situation arises when only one of the three operations is

to be performed, depending on whether a variable is less

than, equal to, or greater than zero. A control structure

implemented for this use is the FORTRAN computed GOTO

statement.

To implement a multivalued selective structure using

only the three structures of Bohm and Jacopini, a selective

structure must be nested within another selective structure,

as in Figure 12. Compared to the computed GOTO, this nested

form of the selective structure may be grossly inefficient

and less readable since it requires an unnecessary ordering

of decision statements.

The second instance of inefficiency occurs when the

abnormal termination of a repetitive structure is required.

This situation is illustrated in Figure 13. Although this

structure violates the single entry and single exit rule,

Donaldson (4, p. 53) suggests that such a structure may

save considerable time and space. Since this structure

contains two possible loop-terminating conditions, its

use should be properly flagged.

The three basic control structures can usually be

approximated in most higher languages. They are directly

implemented in PL/I with the IF THEN ELSE and DO constructs,

in ALGOL with the IF THEN ELSE and the FOR constructs and

II 1

Fig. ll--Multivalued selective structure

49

logic- 1 -1

I
if

ji r

1

Fig. 12--Multivalued selective structure implemented by
nesting simple selective structures.

50

L+

51

Fig. 13--Abnormal termination of a repetitive
structure.

52

in COBOL with the IF THEN ELSE and the PERFORM constructs.

FORTRAN has an IF statement which can approximate a

selective structure and a DO construct for repetition

(13, P. 111) .

Assembly languages do not possess IF statements or DO

constructs, but these structures can be approximated if

macro processing is available. The use of macros to

implement these constructs will make the structure of

an assembly language program more visible since macro

instructions tend to stand out among other assembly language

instructions. Without macros, however, assembly language

programming is limited to a few conditional and uncondi-

tional branching mechanisms which can only simulate

selective and repetitive structures with a great deal of

awkwardness, and which tend to obscure program structure.

Significance of Simple Control Structures

The major advantage of limiting the programmer to the

three sufficient control structures is that it forces him

to design more carefully (1, p. 146). With simplified

logic he must take care in deciding how to code iterative

and selective procedures and make sure that termination

conditions are correct. Forcing the programmer to be

careful will increase the likelihood of a correct program.

The programmer need not be concerned with a vast

repertoire of program structures if he is limited to three.

53

He need only decide how to combine these three to satisfy

his problem. With such simple logic his programs will more

likely be understood. Diagrams, such as Figure 7, can be

used to illustrate program logic and program decomposition.

Since each of the three structures maintains a single

entry and exit point, the program lends itself to segmen-

tation and modularity. Such programs are more readily

verified since testing can be done on program segments

rather than on the program as an entity.

If only the three structures are used, program notation

can be greatly simplified and easily understood. A notation

such as the following:

DO

End DO

and

IF . .

THEN

END THEN

ELSE

END ELSE

will suffice to define most program logic. Programs will

not contain complicated or vague structuring mechanisms which

tend to obstruct readability and clarity. If the single

54

entry and exit rule is maintained while using this notation,

the program can be read in a linear fashion making program

logic easier to follow.

While these three structures are sufficient to code

any programmable logic, it has been pointed out (4) that

they may be inefficient in some cases. Limitations on code

size or execution time may force the programmer to use other

structures to improve code efficiency. When there are not,

however, strict limitations on code size and execution time,

the use of this simple set of structures should provide

overall efficiency, with respect to program readability,

accuracy, and maintenance. Although a program may require

more time to design and may be less efficient in terms of

code usage and execution time, the debugging time will be

considerably less and program maintenance considerably

easier. A certain amount of assurance in the quality of the

program can be implied if the constructs used are simple (1).

The use of a simple but sufficient set of control

structures can improve almost every aspect of program design

and coding. Program features most likely to be negatively

affected by these structures include: time required for

program design since the designer is limited by the logic

structures available to him, and program length and

execution time since the set of structures are sometimes

inefficient.

55

The benefits of using the simple structures seem to

outweigh their disadvantages. The author believes that

the use of a simple set of structures will improve most

programs especially in terms of functional correctness

and program readability. The use of additional constructs

should be avoided whenever possible, but when they are

utilized, care should be taken to insure that their

presence has been properly documented. It is much too

easy for a program to become unnecessarily complex when a

variety of constructs are used indiscriminately by a

careless programmer.

The GOTO Controversy

In regard to the use of other control structures in

programming besides the three discussed above, much

attention has been directed to the use of GOTO statements.

Dijkstra (3) and Mills (9) are just two of the many authors

who have directly attacked the use of GOTO constructs in

programming. Hopkins (6), on the other hand, suggests

that while the GOTO is commonly abused in programming

today, it is not necessary or even desirable to discontinue

its use in computer languages.

In an effort to define a structured programming

technique, the elimination of GOTO constructs is sometimes

presented as the only issue (8, p. 51). Indeed, Hopkins

(6, p. 55) suggests that the GOTO issue has been greatly

56

over-emphasized. Programmers looking for a simple solution

to the problems of programming today have used the GOTO

as a scapegoat. While Hopkins (6) agrees that the removal

of GOTO's will improve the code of most programmers, he

does not consider this sufficient grounds for eliminating

the structure from programming.

Removal of the GOTO statement is suggested mostly on

the arguments of programming clarity and simplicity of

logic. Most studies expound methods of improving GOTO

programs by the substitution of other control structures;

few, however, discuss the cases where these other structures

will themselves produce inefficient code or perhaps some

other undesirable side effect. Attention has been focused

on the elimination of the GOTO statement and, for the most

part, has ignored the problems which programming without

the GOTO may introduce.

One of the major criticisms of the GOTO structure is

its use in multiple exits to different program locations

from within a loop. Consider the following FORTRAN code

whose structure is diagrammed in Figure 14.

DO 1 I=1,50

X = X + 1.

Y Y + 1.

57

IF (M .EQ. 10) GO TO 3

M=Y*2

IF (M .EQ. 200) GO TO 4

T = T + 1.

1 CONTINUE

3

4

The loop contains three possible exit points, each of which

branches to a different location in the program, and

consequently, produces a somewhat complicated execution

sequence. When the loop has terminated, program control will

be at one of three possible locations, and the problem of

determining which location may be significant. If the

programmer is accustomed to unrestricted use of the GOTO,

loops similar to the one just described may be common in

his programs.

While it is desirable to avoid this type of logic,

eliminating the GOTO will not necessarily prevent multiple

exits to locations outside the control of the looping

structure. The following PL/I code produces a multiple-exit

loop, yet it contains no GOTO structures. Here the

programmer has used the RETURN statement just like a GOTO,

i.e., to escape the control of the loop and branch to a

location outside the range of the loop. Thus, merely

58

Fig. 14--A DO loop with multiple exits

59

eliminating GOTO statements will not prevent awkward control

paths or complex logic structures.

DO I = 1 TO 10;

X = X + 1;

Y = Y + 10;

IF X = 100 THEN RETURN;

M = Y * 2;

IF M = 200 THEN RETURN;

T = T + 1;

END;

Multiple loop exits will not necessarily complicate

the logic structure. If the exits all branch to the end of

the loop, then the block structure which the loop represents

is maintained. In effect, the loop has executed or partially

executed some number of times and control passes to the

location just past the loop.

On occasion a programmer will discover that a large

code segment is not functionally correct, and with the

addition of a GOTO statement the program can be made to

execute correctly. In this case the insertion of a GOTO

may save a considerable amount of time, especially if major

code alteration is required to correct the mistake without

using the GOTO; moreover, if a functional program were

required in a short time, the programmer may be forced to

use the GOTO since major code revision is usually time-

consuming.

60

If used with discretion then, the GOTO may be an

appropriate means of solving an awkward logic problem. Also

since some programs are used only once or are used only by

the programmer himself, the need for simplicity or clarity

in a program may not be felt; the programmer may see no

justification for coding without the GOTO. Although every

program can be written without the use of GOTO statements,

not every program need be so written.

The program which must maintain strict limits with

regard to code efficiency or length may be possible only

with the use of GOTO statements. While this situation should

be avoided whenever possible, the fact that it does occur

suggests that, from a practical point of view, the GOTO

construct may be quite useful.

Some of the reasons for eliminating the GOTO have

already been mentioned. They include: destruction of

program linearity when GOTO constructs are freely used;

increase in program complexity due to GOTO branches; and

the decrease of program modularity, clarity, and readability

due to the presents of GOTO constructs.

The strongest argument against the GOTO statement is

the fact that there are so many ways to use it incorrectly.

The presence of a GOTO is more likely to be the result of

poor programming techniques than it is a sound logic

structure. Since the GOTO is not needed and since it is

61

so apt to be misused, there is good reason to desire its

removal.

It is suggested by Wulf (14, p. 68) that efficiency

should not be used as an excuse for GOTO programming.

Efficiency of program code should be achieved through a

highly optimizing compiler; the programmer should not have

to resort to introducing GOTO constructs for the sake of

improving run time. Code optimization during compilation

is more effective if the programmer has used a block-

structured program design and has avoided the use of

GOTO structures which unnecessarily disrupt program

modularity.

Programming with GOTO's necessitates the use of

labels, a factor which adds to program complexity since

a label referenced in a program instruction requires a

search through the source code to locate the label and

interpret the referencing instruction. One of the basic

reasons for developing a structured programming style is

to achieve a certain degree of program simplicity. Removing

the GOTO's will reduce the need for labels, and hopefully,

simplify program logic by reducing the number of label

references.

The author is of the opinion that programming without

the GOTO in most cases will improve the quality of a

program; however, to completely eliminate the GOTO seems

to be unjustified at this time. It should be remembered

62

that there are circumstances where the GOTO is useful even

though it may produce awkward code or undesirable program

logic. Although it lends itself to misuse, the GOTO is

not unique in this respect. Many features of a language

may be subject to improper or inefficient use, yet it

would be impractical to remove all of them.

Subroutines

Another control structure which deserves special

attention is the subroutine call. Like the GOTO statement

the subroutine call causes an unconditional branch. The

branch passes control from the main program to an external

set of instructions, referred to as the subroutine or

subprogram, which are then executed. Once the subroutine

has been executed, program control returns to some location

in the main program.

The use of the subroutine call does not disrupt the

structure of a repetitive, selective, or sequential construct

within the main program when the subroutine satisfies two

conditions. First, if the subroutine returns control to

the statement immediately following the subroutine call,

then linearity has been preserved. Three sequential

statements will have been executed: these statements are

the one preceding the call, the subroutine call, and the

statement following the subroutine call. The second

63

condition requires that the subroutine itself consist of

some combination of the three simple control structures.

Some subroutines allow multiple entry and exit points

in addition to multiple return locations. The legality of

their use in terms of structured programming control

structures seems to be unclear at this time since most

authors, when discussing control structures of structured

programming, do not mention subroutines specifically.

Program modules is a frequently-used term which may or may

not include subroutines. Mills (10), when discussing

control structures, uses the term segments. He suggests

(10) that program segments should have only one entry

and one exit point, but it is unclear whether or not he is

applying this rule to subroutines as well.

It seems reasonable to assume that the concepts of

control structures discussed in this chapter would apply

directly to subroutines. The subroutine is a block of

code that is represented in a program by a single

instruction, the subroutine call. The subroutine, when

inserted in place of the call, should produce a logic

structure conforming to the principles of structured

programming.

Conclusions

The theory of control structures plays a key role in

the development of a structured programming technique;

64

however, control structures alone will not provide the

solution to the present software dilemma. All aspects of

programming, including data structures, must be investigated

to develop the most effective approaches to program design

and constructions.

CHAPTER BIBLIOGRAPHY

1. Benson, Jeoffrey, "Structured Programming Techniques, "
Record of the 1973 IEEE Symposium on Computer
Software Reliability, New York (April, 1973),
143-147.

2. Bohm, C. and G. Jacopini, "Flow Diagrams, Turing
Machines and Languages with Only Two Formation
Rules," Communications of the ACM, IX.(May 1966),
366-371. ~~

3. Dijkstra, E. W., "GOTO Statement Considered Harmful,"
Communications of the ACM, XI (March, 1968),
147-148.-

4. Donaldson, James, "Structured Programming,"
Datamation, XIX (December, 1973), 53-54.

5. Fisher, David, "A Survey of Control Structures in
Programming Languages," SIGPLAN Notices, (November,
1972), 1-13.

6. Hopkins, Martin, "A Case for the GOTO," SIGPLAN
Notices, (November, 1972), 59-62.

7. Leavenworth, B. M., "Programming With(out) the GOTO,"
SIGPLAN Notices, (November, 1972), 54-58.

8. McCracken, Daniel, "Revolution in Programming; An
Overview," Datamation, XIX (December, 1973), 50-52.

9. Mills, H. D., How to Write Correct Programs and Know
It, FSC 73-5998, IBM, Gaithersburg, Maryland,
(December, 1972) .

10. _, "On the Development of Large Reliable
Programs," Record of the 1973 IEEE Symposium on
Computer Software Reliability, New York (May,~1973),
155-159.

11. , Mathematical Foundations for Structured
Programming, IBM FSD Report FSC 72-6012, IBM
Gaithersburg, Maryland, (February, 1972).

65

66

12. Peterson, W. W., et al., "On the Capabilities of While,
Repeat, and Exit Statements," Communications of
the ACM, XVI (August, 1973), 503-512.

13. Tenny, Ted, "Structured Programming in FORTRAN,"
Datamation, XX (July, 1974), 110-115.

14. Wulf, William, "A Case Against the GOTO," SIGPLAN
Notices, (November, 1972), 63-69.

CHAPTER IV

CONTROL STRUCTURES IMPLEMENTED WITH MACROS

FOR ASSEMBLY LANGUAGE PROGRAMMING

In IBM 360 assembly language programming (7) there are

no instructions which will provide for the documentation

and execution of selective and repetitive control structures

described in the previous chapters. Like most assembly

languages the IBM 360 language contains only a set of

conditional and unconditional branching instructions of

which the most sophisticated include the BXLE, BSH, and BCT

instructions (6, pp. 66-67). With the use of labels and

these branching instructions available to him, the programmer

may simulate in ALC the selective and repetitive structures

he needs. The additional instructions required for imple-

menting these structures, however, may significantly increase

the complexity of the code and reduce the clarity of the

program. Because there are no adequate control structures

available in ALC, the programmer is forced to improvise

looping and selective structures each time they are required

in a program.

A set of IBM 360 assembly language macros to be used

as selective and repetitive control structures were

developed in this study. These macros should provide at

67

68

least two important benefits to the ALC programmer. First,

the burden of formulating such control structures when they

are required is removed from the programmer; he needs only

supply the necessary symbolic parameters for the macro

which will generate the desired control structure.

The second important benefit which the macros provide

is an increase in program clarity. It is readily apparent

to anyone reading the code that the macro prototype

statements represent looping and selective structures.

The mere presence of the macro names within the code

indicates the extent of control of each structure. If the

NOGEN print option is used, the program source listing is

significantly simplified since macro-generated code is not

shown. The NOGEN option causes the suppression of print-out

of all macro-expanded code. The source listing includes

only ALC instructions and macro instructions as they were

coded by the programmer. When the NOGEN print option is

omitted and the source listing contains the expanded macro

code, the program, of course, looks much like a typical

assembly language program, since all of the branching

instructions and labels necessary to implement the macros

are shown. The Appendices contain examples of programs

with unexpanded code and programs with expanded code.

The differences will be readily apparent to the reader.

69

Repetitive Control Structure Macros

To implement a looping or repetitive control structure

in ALC two macros, DO and ENDDO, have been developed. The

DO macro generates the code for testing the looping

condition and the code which either continues the execution

of the loop or branches to terminate the loop. The ENDDO

macro besides providing a label to which a branch will

occur when the loop is terminated, signifies the extent of

control of the DO macro.

The DO macro is similar to the DO statement in PL/I.

It may be specified with just an increment and range such

as DO I = 1 TO 10 BY 3, with just a WHILE condition such

as DO WHILE (X LE 2) or with both a looping range and WHILE

condition such as DO I = 1 TO 100 BY 3 WHILE (Y GT 30).

These options are specified by means of keyword parameters

attached to the macro prototype statement.

The looping conditions may be specified by literals

when parameters are equated to numeric values, in registers

when parameters are equated to register numbers,or by

locations when parameters are equated to labels. Numeric

values may not be used to specify locations. Once the DO

loop parameters are determined, they are maintained in a

stack generated by the macro; the programmer need not be

concerned with destroying looping variables initially

specified in registers or locations. He is free to use

registers and locations originally containing looping

70

parameters as he wishes without affecting the state of the

DO loop parameters. Table I contains an explanation of

each DO macro parameter.

TABLE I

KEYWORD PARAMETERS FOR THE DO MACRO

Keyword Characteristics
Parameter Meaning of Value

Label to identify corresponding
ENDDO macro.

Value of the lower range of a
DO loop.

Value of increment of a DO loop
range.

Value of the upper range of a
DO loop.

Register containing the lower
range of a DO loop.

Register containing the incre-
ment of a DO loop range.

Register containing the upper
range of a DO loop.

Location containing the lower
range of a DO loop.

Location containing the incre-
menet of a DO loop range.

Location containing the upper
range of a DO loop.

Indicates the presence of a
DO loop.

Indicates the presence of a
DO WHILE condition.

Any valid ALC
label.

Integer.

Integer.

Integer.

Integer from
0 to 15.

Integer from
0 to 15.

Integer from
0 to 15.

Any valid ALC
label.

Any valid ALC
label.

Any valid ALC
label.

Any non-null
value

Any non-null
value.

LABEL

LOWNUM

BYNUM

HGHNUM

LOWREG

BYREG

HGHREG

LOWLOC

BYLOC

HGHLOC

DOLOOP

WHILE

71

TABLE I--Continued

Keyword Characteristics
Parameter Meaning of Value

Logical operator for a DO
WHILE condition.

Register containing the left
operand of a DO WHILE
condition.

Register containing the right
operand of a DO WHILE
condition.

Location containing the left
operand of a DO WHILE
condition.

Location containing the right
operand of a DO WHILE
condition.

Numerical value representing
the left operand of a DO
WHILE condition.

Numerical value representing
the right operand of a DO
WHILE condition.

LTLEEQGE,
GT, or NE.

Integer from
0 to 15.

Integer from
0 to 15.

Any valid ALC
label.,

Any valid ALC
label.

Integer.

Integer.

The ENDDO macro utilizes only one keyword parameter

LABEL. This parameter should be equated to the value of

the LABEL parameter of the DO macro associated with the

ENDDO macro.

Examples of the DO macro are shown in Figure 15. Macro

A represents a simple DO loop. The lower range is specified

in register three (LOWREG=3), the upper range is a numerical

WOP

WREGA

WREGB

WLOCA

WLOCB

WLITA

WLITB

DO

)- ENDDO

LABEL=XX,LOWREG=3, BYLOC=INCRMT,
HGHNUM=85,DOLOOP=T

LABEL=XX

LABEL=YESWHILE=8,WOP=LE,
WREG=5 ,WLOCB=SPACE

) ENDDO

- - DO

--- ENDDO

LABEL=YES

LABEL=HERE, DOLOOP=Z , LOWLOC=NUM,
BYREG=14,HGHREG=3,WHILE=??,
WLITB=100,WLOCA=TIME,WOP=GE

LABEL=HERE

Fig. 15--Examples of DO macro parameters

72

MACRO A

DO

MACRO B

MACRO C

73

eighty-five (HGHNUM=85), and the increment for the loop is

contained in location INCRMT (BYLOC=INCRMT). Note that the

DOLOOP parameter has been made non-null. This is required

when a DO loop is specified. Macro B represents a simple

DO WHILE loop. The loop will be executed as long as the

contents of register five (WREGA=5), is less than or equal

to (WOP=LE), the contents of location SPACE (SLOCB=SPACE).

The WHILE parameter must be made non-null when a DO WHILE

loop is specified. Macro C represents a combination of a

DO loop and DO WHILE condition. In this macro both the

DOLOOP and WHILE parameters must be made non-null. The

lower limit of the DO loop is contained in location NUM,

(LOWLOC=NUM), the upper limit is in register three

(HGHREG=3), and the increment is in register fourteen

(BYREG=14). The WHILE condition is satisfied when the

contents of location TIME (WLOCA-TIME), is greater than or

equal to (WOP=GE), a numerical one hundred (.WLITB=100).

When both a DO loop and DO WHILE condition are specified,

each is tested before the loop is executed. The basic

logic of a DO and ENDDO construct is shown in Figure 16.

Since a stack is used to maintain DO loop parameters,

the DO macro permits nesting. A DO macro and its ENDDO

macro may be entirely contained within the bounds of a

second DO and ENDDO macro. Figure 17 illustrates nesting

of DO macros to the second level. Notice that the LABEL

parameters of the DO and ENDDO macros must be properly

74

START

NO DO YESE CIFIED

TEST
RANGE

ONDITIONS

NO HPECLEOP YES

YES NO

INCREMVENT
ASSEMBLY- LOOP

TI14E COUNTER
ERROR

NO WHIL YES
ECIFIED

TEST

WHILE
CONDITION

ON- YES
DITION
ALSE0

NO

EXECUTE
MACRO-

CONSTRUCT

ED

Fig. 16--Flowchart of a DO and ENDDO construct

75

DO LABEL=LOOPA,

DO LABEL=LOOPB,

DO LABEL=LOOPC,

ENDDO LABEL=LOOPC

ENDDO LABEL=LOOPB

ENDDO LABEL=LOOPA

Fig. 17--DO macros nested to the second level

matched, i.e., at any given level of nesting, the LABEL

parameters of the DO and ENDDO macros are equated to

identical values. (A unique LABEL parameter value should

be specified for each DO construct.)

Figure 18 illustrates the use of the stack in executing

the nested macros of Figure 17. As each DO macro is

encountered its parameters are stacked in a last-in first-out

stack. Before executing a particular DO loop, its parameters

are unstacked and tested. If the loop is to be executed,

then the parameters are restacked; otherwise, the parameters

are not restacked, and the loop is bypassed. Thus, each

76

START

STACK
LOOP A
PARAMETERS

COMPLETE UNSTACK
EXECUTION AND TEST
OFLOOP A LOOP A

PARAMETERS

STACK OOP A

LOOPPCAATISEXED

PARRETERS ATISF

STACK
LOOP B

PARAMETER

COMPLETE UNSTACK
EXECUTION AND TEST

OF LOOP B PARAMETERS

STACKOP
LOOP B TISIE

PARMETERS TSID

YES
STACK
LOOP C

PARAMETERS

COMPLETE UNSTACK

EXECUTION AND TEST

OF LOOP C LOOP C
PARAMETERS

STACK OOP
LOOP C ATISFIED

PARAMETERS

yES END

Fig. 18--Flowchart of stack logic for code in Figure 17

77

time LOOP A is executed the DO macro of LOOP B will be

encountered, its parameters stacked, unstacked, and tested.

In a similar manner, with each execution of LOOP B, the

DO macro of LOOP C will be encountered, and its parameters

will be stacked, unstacked, and tested.

Program instructions falling between a DO macro and

its corresponding ENDDO macro represent the body of the code

affected by the looping construct. This code may include

any acceptable ALC instruction including macro instructions;

however, the loop should not include branching instructions

which transfer program control to a point outside the range

of the DO macro. If the programmer wishes to terminate

the looping construct abnormally, he should use the LEAVE

macro, which is discussed in this chapter.

The DO macro extensively tests parameter specifications

at assembly time. When an incorrectly specified parameter

is detected, an appropriate error message is printed if the

expanded macro code is shown, and the macro is terminated.

Before termination of the macro, however, the "work"

registers will be restored with their original contents so

that program execution may continue. The macro, however,

will have essentially been ignored by the program.

In addition to the complete source listings of the DO

and ENDDO macros, Appendix A contains an expanded version

of each of these macros and sample listings of macro-

generated error messages.

7-8

This particular form of the repetitive control structure

was selected for implementation because it offers the

greatest flexibility in defining looping conditions. A

loop may be defined with a simple range condition similar

to the FORTRAN DO statement, with a simple comparison

condition similar to a PL/I DO WHILE or with a combination

of both a range condition and comparison condition similar

to the PL/I statement, DO I=...TO...WHILE(......). Since

conditional tests are always executed prior to loop

execution, a DO UNTIL structure as illustrated in Figure 7

cannot be generated with the DO and ENDDO macros. The DO

UNTIL statement tests looping conditions after the loop is

executed; consequently, the loop is always executed at

least once even when a condition fails on initial testing.

In order to avoid any ambiguity with regard to initial loop

execution, a DO UNTIL construct was not implemented. All

repetitive loops will be executed only after their looping

conditions are tested. If the conditional test fails

initially, the loop will not be executed at all.

The LEAVE Macro

It was pointed out in Chapter III that occasionally

it may be expedient to abnormally terminate a looping

construct, i.e. branch to the end of the loop from a

point within the loop control. Figure 13 is a construct

representing an abnormal loop termination.

79

The DO and ENDDO macros generate instructions that

will terminate a loop only when the inclusive code has

been completely executed. The programmer might insert a

branch instruction within the inclusive code to escape the

DO macro, but such a practice is not advised, since the

effects of the branch instruction may not be readily

understood or perhaps may be overlooked by a programmer

unfamiliar with the code.

To provide a loop escape mechanism the LEAVE macro

has been developed. It permits a conditional or uncon-

ditional branch to the end of the ENDDO macro, and thus,

the looping control structure will be abnormally terminated.

Figure 19 illustrates the use of the various LEAVE

macro parameters. In the first LEAVE macro LABEL is

equated to AAAA in order to associate it with the external

DO and ENDDO macros. This LEAVE macro contains a

conditional branch since the COND parameter has been made

non-null, COND=F. If the number nine (LITA=9) is equal to

(OPRATOR=EQ) location Y (LOCB=Y) then the LEAVE condition

will be true and a branch to location AAAA, (LABEL=AAAA)

will occur. The second LEAVE macro does not specify a

condition and will, consequently, produce an unconditional

branch to AAAA (LABEL=AAAA) when executed. The third

LEAVE macro contains a conditional branch (COND=;), and

the branch is executed if the contents of register ten

80

DO

LEAVE

LEAVE

ENDDO,

DO

LEAVE

LABEL=AAAA, . .

LABEL=AAAA,COND=F,LITA=0,
OPRATOR=EQ,LOCB=Y

LABEL=AAAA

LABEL=AAAA

LABEL=XYZ, . . .

REGA=10,LITB=22,OPRATOR=NE,
LABEL=XYZ ,COND=;

ENDDO LABEL=XYZ

Fig. 19--Examples of LEAVE macro parameters

6

0

81

(REGA=10) are not equal (OPRATOR=NE) to a numeric twenty-two

(LITB=22). The LABEL parameter (LABEL=XYZ) specifies the

destination of the LEAVE branch. Table II contains a

summary of LEAVE parameters, and Figure 20 describes the

basic logic of the LEAVE macro at execution time.

TABLE II

KEYWORD PARAMETERS FOR THE LEAVE MACRO

Keyword Characteristics
Parameter Meaning of Value

Destination of a LEAVE macro
producing a branch.

Indicates the LEAVE branch is
conditional.

Logical operator for a condi-
tional branch.

Register containing the left
operand of LEAVE condition.

Register containing the right
operand of LEAVE condition.

Location containing the left
operand of LEAVE condition.

Location containing the right
operand of LEAVE condition.

Numerical value of the left
LEAVE condition operand.

Numerical value of the right
operand of LEAVE condition.

t

Any valid ALC
label.

Any non-null
value.

LT ,LE EQ, GE,
GR, or NE.

Integer from
0 to 15.

Integer from
0 to 15.

Any valid ALC
label.

Any valid ALC
label.

Integer.

Integer.

LABEL

COND

OPRATOR

REGA

REGB

LOCA

LOCB

LITA

LITB

82

S T

TARVE

NO CON-
DITION
CIFI

YES

TEST

LEAVE

CONDITION

BRANCH TO

LABEL -YES--C-ONDITI
TRUE?

NO

ENDED

Fig. 20--Flowchart of execution of a LEAVE macro

83

If the LEAVE macro is used in lieu of a branching

instruction, there can be no doubt as to the intentions of

the code. The LEAVE statement appearing in the code will

readily indicate the presence of a possible abnormal loop

exit. Since the LEAVE macro may be specified with condition

parameters, the programmer need not include the additional

instructions to test his branching condition. He need

merely specify the branching conditions by means of the

keyword parameters; thus, the development of the LEAVE

macro provides the programmer with a convenient and simple

method for abnormal loop termination.

While it is possible to specify a LEAVE macro which

will branch to a point other than just beyond the control

of the looping macro, this practice should be avoided as

explained in Chapter III since it may significantly

complicate the program's structure.

Figures 21 and 22 illustrate the proper and improper

use of the LEAVE macro. Notice that when coded properly

the DO and ENDDO LABEL parameters are identical to each

other and to any inclusive LEAVE macro LABEL parameters.

The LEAVE macro also tests parameter values at assembly

time, and when improperly specified, the LEAVE macro will be

ignored at execution time. Like the DO macro not all

parameters of the LEAVE macro can be verified at assembly

time; macro specification errors may, consequently, cause

system-generated errors at execution time.

LABEL=LOOP, . . .

LEAVE

LEAVE

ENDDO

LABEL=LOOP, .

LABEL=LOOP, .

LABEL=LOOP

Fig. 21--Properly coded LEAVE macros

HERE

LABEL=LOOP, .

LEAVE LABEL=HERE,

LEAVE LABEL=THERE,

ENDDO LABEL=LOOP

THERE

Fig. 22--Improperly coded LEAVE macros

84

DO

DO

0

. . .

85

Appendix B contains a source listing of the LEAVE

macro, an example of the expanded macro code, and samples

of macro-generated error messages.

Selective Control Structure Macros

A selective control structure, the CASE macro, for

ALC has been developed in this study. The CASE macro

provides a multiple-selective structure for the programmer

so that alternative sets of program instructions may be

executed depending on the truth of the conditional

parameters specified with each CASE macro.

Each CASE macro must be followed by an ENDCASE macro.

All program instructions placed between the CASE and

ENDCASE macros represent the code which will be executed

if the CASE condition is true.

The CASE macro generates code to test the macro

condition which is specified with keyword parameters

similar to those which are used with the LEAVE macro. If

the condition is true, instructions immediately following

the CASE macro are then executed. If the condition is

false, a forward branch to the paired ENDCASE macro will

occur. The basic logic of a CASE macro is flowcharted in

Figure 23.

The ENDCASE macro may be specified in one of two ways.

The first way, OPTION=l, will cause a branch around any

successive CASE macros if the preceding CASE condition were

86

START

TEST CASE
COND IT ION

O CONDITION
TRUE?

EXECUTE

CASE
CONSTRUCT

DETERMINE

OPTION OF

ENDCASE
MVACRQ

4OPTION=1

YE

NO

BRANCH TO

ENDELSE

MACRO

cEND

Fig. 23--Flowchart of the execution of a CASE and
ENDCASE construct.

87

true. In other words, when several successive CASE and

ENDCASE macros are coded with OPTION=l, the first encoun-

tered CASE construct whose condition is true will be

executed. All subsequent CASE macros will be bypassed.

If OPTION=2 is specified with successive CASE macros, each

of the macro constructs with true conditions will be

executed.

In order to provide an alternative set of instructions

to be executed when all of the immediately preceding CASE

conditions are false, the ELSE and ENDELSE macros have been

developed.

The ELSE macro is merely a prototype statement to

signify the beginning of the alternative code. The ENDELSE

macro provides a label for branching purposes when the

instructions included between the ELSE and ENDELSE macros

are not to be executed. The ENDELSE prototype statement

indicates the termination of both the selective CASE macros

and the ELSE macro.

An example of several CASE and ENDCASE macros using

OPTION=1 is shown in Figure 24. The conditional parameters

for a CASE macro are identical to those of the LEAVE macro

with the exception of the COND parameter. The CASE macro

is always conditional so a COND parameter is not required.

The ENDCASE macros contain three parameters. One of the

parameters is the OPTION keyword which in all cases has been

equated to one. This indicates that as soon as one of the

88

CASE

ENDCASE

) CASE

) ENDCASE

1 CASE

rENDCASE

-CASE

ENDCASE

ELSE

,-ENDELSE

LABEL=ONE , LITA=7 , REGB=6 , OPRATOR=GT

OPT ION= 1, LABEL=ONE, LAB=TAG

LOCA=HERE , LABEL=TWO, OPRATOR=GE , LITB=4

OPTION=1,LABEL=TWO,LAB=TAG

LABEL=THREE,LOCB=NAME,LITA=2,OPRATOR=LE

LAB=TAG,OPT ION=1,, LABEL=THREE

LABEL=FOURREGA=5,REGB=8 ,OPRATOR=EQ

LABEL=FOURLAB=TAGOPT ION=1

LAB=TAG

Fig 24.--Example of CASE macros using OPTION=1

89

CASE conditions is true and its inclusive code is executed,

the remaining CASE constructs along with the ELSE construct

will be bypassed. In other words at most only one of the

four constructs will be executed, namely the first one

encountered whose condition is true. If all of the CASE

conditions are untrue, the ELSE construct will be executed.

The LABEL parameters associate each ENDCASE macro with its

corresponding CASE macro. The LAB parameters specify the

location of the ENDELSE macro associated with the CASE

macros. Notice that each ENDCASE macro has its LAB parameter

equated to TAG. This is necessary since a branch to the

same ENDELSE macro will occur if any one of the CASE

constructs is executed.

Figure 25 is a set of CASE and ENDCASE macros similar

to those in Figure 24 except for the specification of the

OPTION parameters. In Figure 25 each CASE construct has

OPTION=2 specified. Since the second option has been

specified, each CASE construct will be tested and executed

if its condition is true. There is no ELSE construct

included since forward branching does not occur when the

second option is used.

The programmer is at liberty to use any combination

of OPTION=1 and OPTION=2 CASE constructs that he wishes.

Since the CASE and ENDCASE macros never produce backward

branching, program linearity is not destroyed when the two

options are used in successive CASE constructs. It is

90

CASE

ENDCASE

CASE

ENDCASE

CASE

ENDCASE

CASE

---)-ENDCASE

Fig. 25--Example of CASE macros using OPTION=2

LABEL=ONE, LITA=7 , REGB=6 , OPRATOR=GT

OPTION=2,LABEL=ONE

LOCA=HERE, LABEL=TWO, OPRATOR=GE , LITB=4

OPTION=2, LABEL=TWO

LABEL=THREE , LOCB=NAME , LITA=2, OPRATOR=LE

LABEL=THREE,OPTION=2

LABEL=FOUR, REGA=5, REGB=8 , OPRATOR=EQ

LABEL=FOUR, OPTION=2

91

important to remember that when OPTION=1 is specified, an

ELSE construct must also be included. Tables III and IV

summarize the various parameters which may be specified

with the CASE and ENDCASE macros.

Both the CASE and ENDCASE macros contain a number of

error detection instructions. For the most part, macro

keyword parameters are checked to insure that they have been

coded correctly. If a CASE macro has been incorrectly

specified, its condition is set to false. When ENDCASE

macros have been incorrectly specified, the OPTION parameter

is set to one and the macro is accordingly expanded.

The source listings for the CASE, ENDCASE, ELSE, and

ENDELSE macros are in Appendix C, which also contains an

expanded version of each of the macros and samples of

macro-generated error messages.

The CASE macro as a selective control structure was

implemented because of its versatility with respect to path

selection. Any number of CASE constructs may be succes-

sively defined; thus, there is no limit to the number of

possible paths from which the programmer may choose. To

the contrary the PL/I IF THEN ELSE statement, which is a

form of the selective control structure, limits the

programmer to one of two possible paths unless nesting is

used. The CASE macro also allows the programmer to execute

more than one of the tested paths if he so desires. This is

possible when OPTION=2 is specified. The CASE macro is

92

TABLE III

KEYWORD PARAMETERS FOR THE CASE MACRO

Keyword Characteristics
Parameter Meaning of Value

LABEL Label to identify corresponding Any valid ALC
ENDCASE macro, label.

OPRATOR Logical operator for the CASE LTLEEQGE,
condition GT,or NE.

REGA Register containing the left Integer from
operand of the CASE condition. 0 to 15.

LOCA Location containing the left Any valid ALC
operand of the CASE condition. label.

LOCB Location containing the right Any valid ALC
operand of the CASE condition. label.

LITA Numerical value of the left Integer.
operand of the CASE condition.

LITB Numerical value of the right Integer.
operand of the CASE condition.

TABLE IV

KEYWORD PARAMETERS FOR THE ENDCASE MACRO

Keyword Characteristics
Parameter Meaning of Value

OPTION Numerical value specifying type Integer value
of CASE construct, of 1 or 2.

LABEL Label linking ENDCASE macro Any valid ALC
with corresponding CASE macro label.

LAB Label linking ENDCASE macro Any valid ALC
with corresponding ENDELSE label.
macro.

93

especially appropriate for structured programming since it

produces no backward branches. Each CASE construct is

tested sequentially as it is encountered within the code

producing a linear flow of control.

Appendix D contains a simple program which illustrates

the combined use of the CASE and nested DO macros. A

flowchart of the program is also included to illustrate

the control structure of the program.

The DO, LEAVE, CASE, and ENDCASE macros contain a

number of assembly-time error messages. All pertain to the

specifications of macro parameters. Some of these messages

indicate illegal parameter values while others identify

missing parameters or duplicate parameters. It is possible

to detect these error conditions at assembly-time since macro

parameter values must be specified before program assembly

begins. Other error conditions, relating to particular ALC

instructions which are included within a macro definition,

will produce system-generated messages at assembly time.

The macros described in this chapter do not contain

any execution-time error tests since any error condition

occurring during execution will produce a system-generated

error message. At execution time each macro has already been

expanded into a set of ALC instructions, and these instruc-

tions with other program instructions are subject to all of

the error-detecting capabilities of the particular system

being used.

CHAPTER BIBLIOGRAPHY

1. Chapin, Ned, 360/370 Programming in Assembly Language,
New York, McGraw-Hill Book Co.,~1968.

2. Dijkstra, E. W., "Structured Programming," Software
Engineering, Report on a Conference Sponsored by
the NATO Science Committee, Rome, Italy, October,
1969, pp. 84-88.

3. Hannula, Reino, Computers and Programming; A System/
360-370 Assembler Language Approach, Boston,~Ma.,
Houghton Mifflin Co., 1974.

4. Kent, William, "Assembler-Language Macroprogramming:
A Tutorial Oriented Toward the IBM 360," Computing
Surveys, (December, 1969), 183-196.

5. IBM System/360 Operating System Assembler Language,
IBM Form No. GC28-6514-8.

6. IBM System/360 Operating System Principles of Operation,
IBM Form No. GA22-6821-8.

94

CHAPTER V

SUMMARY, CRITIQUE, AND CONCLUSIONS

Summary

Within the last seven years a growing number of

programmers have expounded various concepts and method-

ologies which they believe will improve software design

and will increase the productivity, reliability, maintain-

ability, and extendability of programs. These various

concepts and techniques have been collectively, and in

part, referred to as "structured programming."

The purpose of this study was to present a survey

of the major concepts, contributors and techniques of

structured programming, and to develop a set of IBM 360

assembly language macros which would facilitate the

application of structured programming control structures

to assembly language programming.

The first significant contribution to structured

programming was made by E. W. Dijkstra when he suggested

(3) that the GOTO statement may prove harmful to a program's

structure if the construct is used indiscriminately by the

programmer. Dijkstra suggested that avoiding the use of

the GOTO structure may significantly improve the logic of

most programs.

95

96

Since the time of Dijkstra's paper (3) a controversy

has developed concerning the use of the GOTO construct.

The question today is whether or not the GOTO statement

should be eliminated from programming (7). "GOTO-less"

programming is sometimes used synonymously with structured

programming, although the GOTO issue is by no means the

only concept involved in the development of a structured

programming method. Other concepts being discussed include

such issues as the proper methods for subroutine entry and

exit (7), and the conditions permitting abnormal program

termination (interrupts).

A second significant contribution to structured

programming made by Dijkstra is his development of the 'THE'

Multiprogramming System (2) which illustrates a technique

for system software design. This technique includes the

use of what Dijkstra termed "abstract resources" in system

design. These resources divided the system into layers or

levels of abstraction (both control and data structures)

which then were applicable to the definition of various

programmable modules.

Dijkstra's work has had a profound impact on the

development of structured programming, and most of the

literature on structured programming, at least in part,

reflects his philosophies.

97

Another important contributor to structured programming

is Harlan Mills of the IBM Corporation. Mills (5) and his

associates at IBM have developed the Chief Programmer Team

method for the production of large programs. This method

incorporates both a managerial and organizational approach

to program design.

The Chief Programmer Team defines in a very specific

manner the role of a chief programmer, a backup programmer,

and a programming librarian in a programming team. The

method also employs a well-defined system of program

documentation during program development.

Mills (5) describes his "top-down" approach to program

design. This approach includes the use of modular

programming, specific programming control structures, and

strict rules governing the entry and exit points of program

modules. Data structures in the top-down approach are

important only to the extent that they affect module

interfacing.

The concepts of the Chief Programmer Team and top-down

programming have contributed a possible solution to the

problem of defining a structured programming method for the

development of large programs.

An article by Bohm and Jacopini (1) is the basis for

structured programming control structure theory. They

showed that the logic of any program can be defined with

the use of only three types of control structures. These

98

structures include a sequential, a repetitive, and a

selective construct. The use of only these three control

structures eliminates not only the necessity of GOTO

statements, but also any other control structures which may

complicate program logic.

Other programming techniques which are associated

with structured programming include: modular programming,

open programming, compartmentalization, information hiding,

extensive program documentation, the use of indentation

and spacing in program code, and the use of meaningful

labels and variable names in program coding.

At this time there is no generally accepted definition

of structured programming. The literature suggests various

approaches to improving programming techniques, and it

remains to be seen just which concepts and techniques will

be included in a formal definition of structured programming.

In order to apply some of the structured programming

principles expounded in the literature, the author developed

a set of IBM 360 assembly language macros, described in

this thesis, to provide the assembly language programmer the

necessary and sufficient control structures defined by

Bohm and Jacopini (1).

The IBM 360 assembly language macros implemented include

a DO macro for repetitive constructs and a CASE macro for

selective control structures. A LEAVE macro was also

developed to provide an escape mechanism for abnormal

99

termination of a repetitive control structure. No macro

was developed for sequential program control since IBM

360 assembly language instructions are executed sequentially

when there are no instructions to the contrary.

These macros may be used to approximate structured

programming constructs in assembly language. It should be

remembered, however, that assembly language programs are

inherently more tedious to code and interpret than are

higher languages; consequently, structured programming

techniques may not be as easily applied to assembly

languages as they are to higher languages,

The presence of these macros within a program does not

imply that the program is well structured. Only when the

programmer takes care to apply the principles of structured

programming throughout his code and uses the macros in the

prescribed fashion will the control structures of his

program reflect the type of structuring which is character-

istic of structured programming.

In addition, a completely well-structured program would

presumably observe certain principles of structuring

restricting the access of program modules to data. It is

not clear that the data hierarchy concepts of Dijkstra (2)

will survive the test of time; in any case, the macros

developed in this thesis have not considered the problems

of data structures.

100

Critique

This investigation uncovered only one other attempt

(4) to implement similar control structures using

programmer-defined ALC macros. Kessler's (4) macros

included a DO and CASE macro but no LEAVE statement.

The most significant difference in the author's DO

macro and Kessler's is the specification of looping

conditions through keyword parameters, Kessler's (4) DO

macro is somewhat more flexible in that an UNTIL option

is available, but it is also more restrictive since some

conditional parameters must be specified in prescribed

registers. The parameters Kessler (4) uses are fewer in

number but substantially more complicated than those of

this author.

Kessler's (4) CASE macro has a completely different

implementation than the CASE macro of the author. Referring

to Figure 26, an example of Kessler's CASE macro, if

register Rx conatins a 5, 6, or 7, then Code A is executed.

If register R contains a 3, then Code B is executed. If

R does not contain a 3, 5, 6, or 7, then neither Code A

or Code B will be executed. Kessler's (4) CASE macro is

significantly simplier than that in this thesis, but because

it lacks conditional execution parameters, the programmer

will be required to include necessary conditional testing

procedures in his program. For instance, using the example

101

CASENTRY R
x

CASE 5,6,7

Code A

CASE 3

Code B

ENDCASE

Fig. 26--An example of Kessler's CASE macro

of Figure 26, the programmer would test a condition within

his program code. Depending upon the truth of the test,,

he would load a certain value into register R which would

cause the appropriate CASE to be executed, Since the

programmer is required to encode the testing procedure,

Kessler's (4) CASE macro is not limited to the simple

testing conditions of the CASE macro implemented in this

thesis. It appears then that the CASE macro of Kessler is

more flexible in terms of defining test conditions, but

Kessler's macro will require more programmer-generated

code than the CASE macro described in this thesis.

Conclusions

Besides developing an adequate set of structured

program control structures at the assembly language level,

there appears to be a need to impose some new discipline

of data structuring and access, especially at the assembly

language level of programming. These are only weakly

102

enforced by most input-output system calls. Multics (6)

is the outstanding exception with regard to file security,

but Multics per se does not enforce a modularity of

user program structure.

It is hoped that after further investigation a set of

principles will eventually be developed which will form

the basis of a structured programming method. Not only

would such a method improve the design and production of

computer software and programs, but it would also initiate

some semblance of uniformity in programming techniques and

program structure. If all programs were written using the

same basic set of programming principles, perhaps the

interpretation of program logic would become standardized.

At the present time it appears that any structured

programming method, if it is to be totally.accepted, will

have to be of a very general nature, encompassing only a

few flexible principles, since the software and programs

of today involve such a wide variety of programming

problems and applications.

CHAPTER BIBLIOGRAPHY

1. Bohm, C. and G. Jacopini, "Flow Diagrams, Turing
Machines and Languages with Only Two Formation
Rules, " Communications of the ACM, IX (May, 1966),
366-371.

2. Dijkstra, E. W., "The Structure of the 'THE' Multi-
programming System," Communications of the ACM, XI
(May, 1968), 341-356.

3. _, "GOTO Statement Considered Harmful,"
Communications of the ACM, XI (March, 1968), 147-148.

4. Kessler, M. M., *CONCEPT* Report 4, OS/360 Assembly
Language Block Structured Programming Macros, IBM.

5. Mills, H. D., Chief Programmer Teams: Principles
and Procedures, Report No. FSC 71-5108, IBM Federal
Systems Division, Gaithersburg, Maryland.

6. Organick, Elliot, I., The Multics System: An Examination
of Its Structure, Cambridge, Ma., The MIT7Press, 1972.

7. Special Interest Group on Programming Languages,
Special Issue on Control Structures in Programming
Languages, New York, New York, Association for
Computing Machinery. Vol. VII (November, 1972).

103

APPENDIX A

THE DO AND ENDDO MACROS

The Source Listing for the DO Macro

STMT SOURCE STATEMENT

I * THE FOLLOWING MACR EXP HANDS TO PRn!IUCE AN ITEATIVE
2 0 - 0 STATEMENT AND/OR AN ITER ATIVE D3 WHILE CONDITIY
3 * A DO LODP WILL BE GENERATED WHEN THE DA AMET E t DOr-
4 * L010'TS NON-NULL, AND WHEN THE LDDP DAAMETES HAVE
5 * BEEN SPECIFIED, THE LOOP PAAMETEnS INCLUDE AN IN-
6 * CREMENT, A LOWER L33P LIMIT AND AN UPPEP LOP LIM!T
7 * A DO WHILE CONDITION WILL BE GENERATED WHEN THE PA-
8 RAMETER WHILE' Q NON-NULL tAND WHEN THE CONDITION
9 PARAMETERS HAVE BEEN SPECIFIED. THE WHILE CONDITION

10 PARAMETERS INCLUDE A LEFT nPEAND, A LOGICAL OPERA-
11 * TR, AND A RIGHT OPERANDo
12
13 *
14 MACRO
15 00 EL ABEL= , CL)7WNU =, &BYNUM= , &H'GHNUM=, GL OWR EG=, C D)Lt O0p, X

EBYREG=, CHGHP EG=, &LDWLOC=, CBYLDC=, CHGHLOC=, WHILEE, X
&WOP=, WRE GA=&WR EGB=v&WL0CA=, &WLCB=, & WLITA=, CWLITB=

16 LC LL AB
17 &LAB SET A &SYSNDX
18 AGO *SKIP1
19 *
20
21 INITIALLY THE 'DOLOOP' PAPAMETEP IS TESTED TO DETEP-
22 * MINE THE PREIK4CE OF A DO LOOP CONDITIrN, IF IT IS
23 NULL A BRANCH TO THE 'WHILE' LABEL WILL TEST FOR
24 * THE PRESENCE OF A D WHILE CONDITIONO IF THE 'D-
25 LOOP' P40AeTER IS NOT NULL, THFN THE CONTENTS OF
26 * REGISTERS 8 THROUGH 11 ARE IMMEDIATELY SAVED; THESE
2T * REGTSTERS ARE USED AS 'WiRK PEGISTEPS' BY THE MACR'
28 * GENERATING THE 00 LOOP CIDEo
29

30
31 *SKIPI AF ('0DLO0' EQ '').WHILE
32 ST 8, SAVE5
33 ST 9,SAVF9
34 ST 10,SAVE10
35 ST 11,0AVE L
36 AG . SkI.2
37 *
38 *
39 * F A DO LOOP HAS BEEN SPECIFIED THE FLt WING SEC-
40 * TION OF CODE SEL ECTS THE LOWEP L'MIT OF THE DO LOP
41 * RANG. THIS LIMIT MAY BE SPECIFIED BY A LITERAL
42 * (LOWIUM), BY TE CTENTSO OF REG. STE (LOWPEG OR
43 * BY THF CONTENTS OF A LOCATION (LOWLDClo A NU"BE F
44 COMPAVISINS AqE MADE TO VEPIFY THAT THE SPEC0IED
45 * PARAMETER HAS BEEN CED WITH AN ACCEPTABLE VALUE 0
46 IF THE PAqAMETE. IS VALTD, THE LOWER LIIT IS LADED
47 * INTO PFGTSTER 10; THERWISE, AN ERROR MESSAGE IS

104

105

48 * PRINTED AND THE MACRO TERMINATES.
49 *
50 *
51 .SKIP2 ATF (1&LWNUM' EQ '').A
52 AIF (ICHGHNUM' EQ 'II).Al
53 ATF ('&BYNUM' EQ '').Al
54 AI F (CLOWNUM' LT ' HGRNUM').POS
55 ATF ('&LOWNJM' EQ &HGHUM).EPR16
56 AGr .NEG
57 .P9S AiF ('B8YNUM'(11) EQ '-').ERR17
58 AGO .A1
59 .NEG AIF ('&BYNUM' GT '0').ERR18
60 eAl LA 10,0
61 A 10,=F'LOWNUM
62 A^0 aC
63 .4 ATF ('&LOWREGt EQ ').8
64 AIF . (T&LOWREG N.. 'N'J.ER 24
65 ATF ('LOWREG' GT '15').ERR19
66 LR 10,&L@WREG
67 ASO .Ci
68 .8 AIF ('CLOWLOC' EQ ').ERRI
69 L 10,&LOWLOC
70 AGO *C2
71 .C ATF ('CLOWREG' NE ').ERR9
72 .CI ATF ('CLOWLOC1C NE '').ER9
73 Ar) .C2
74 *
75 *
76 * THE FnLLnWTNG SECTION OF CDE SELECTS THE UPPE L!m-
77 * IT OF THE DO LOOP RANGEo IT MAY BE SPECFIEEu [N THE
78 * SAME FASHION AS THE LCWLR LIMIT; THE CaDESP,"ON1.r
79 * PAR AMET ERS ARE HGHNJM, HGHR EG AMD HGH'C. THE CODED
80 * PARAMETER IS ALSO CHECKED FOR VALIDITY, AND THE UP-
81 * PEP LIMIT IS LOADED INT)EGTSTER lIt AN APPPDPRi-
82 * ATE EPPOR ME$SAGE WILL R GENE t'ATED FO ILLEGAL PA-
83 * RAmETEP VALUES AND THE MAC. WILL TEMTNATE.
84 *
85 *
86 oC2 AIF ('#HGHNUM' EQ. '').D
87 LA 11,0
88 A . 11,=F'&HGHNU '
89 A 70 F
90 .0 AIF ('HGHREG' EQ ')eE
91 ATF (T'CHGHREG N 'N').EPQ25
92 ATF ('CHGHREG GT '15').ERR20
93 LR)1,&HGHREG
94 AGO .F-1
95 AEI ('&HGHLOC' E '').ERR2
96 L 11,CHGHLOC
97 AGO .2
98 .F ATF ('&HGHREG' NE '').ERRLO
99 .eFI AIF ('CHGHLOC' NE).ERR10

100 AGO *F2
101 *
102 *
103 * THIS NEXT SE TIJN OF CDE SELECTS THE DO LOOP !N-10' * CEMENT FOR THE SDECTFlED PANGE. THE INCREMENT MAY
105 * BE SPECIFTED FY A LITERAL (8YNUM), BY PEGISTEP
106 * (BYEG) " BY LOCATION (BYLOC), THE INCREMENT IS107 * LOADED !NT REGISTER 9, , LLEGAL PARAMETER VALUES
108 * WILL TERMINATE THE MACRI.
109 '
110
III .F2 AF ('CDYNUM' EQ '').G
112 AIF ('&BYNUM' EQ '0'ER12
113 LA 9,0
114 A 9,=F'&BYNUM1

106

115
116 ,G
117
118
119
) 20
121 ,H
122
123
124 .J
125 Jl
126
127 *
128
129 *
130 *-
131 *
132 *
133 *
134 *
135 *
136 .J2
137
138
139
140
141
142
143
144
.45
146
147
148
149 *
150 *
151 *

.152 *
153 *
154
155 *
156 *
157 *
158 *
159 *
160 0SKIP3
161 LABEL
162
163
164
165
166
167
168
169
170
171
172
173
174 *
175 *
16 *
177 *

179
180*

AGO

A IG r)
A T F

A! F
L

AG)L
AGO

A I F
A GO

(IyO\Er; EQ E H
(T' &%Y~r G N\U '2').ER'28

T EGf. 1 YREG' G1T '15).E
', 6YP E G

('&3YLOC' EQ) EkP3
9, l y Lr)C
0J2
('&BYPEG' NE)
('C 8YLOC' NE ') F '(11
O J2

HAVI'G LOADED THE INCREENT, THE LOWER AYGE LIM!T
AND THE UPPER RANG: LIM T !NTO RUG!STE:S 9,10 AND 11
RE SECTIVELY, THESE EGQSTES A E STCRED !N A STACK.
REG':srEAS 8 THOUGH t ARE THEN LOADED WITH THEIR

N 4GI'AL C0NTENIS

ST
LA
ST
LA
ST
LA
ST
L
L
L
L
AGO

81, I ENTERR
9,STACK(8)
8,4(8)
10, STACK(8)
8,4(8)
S11,STACK(S)
8,4(81
8,P'lPTER
8,SAVF8
9, SAV'9
10,SAVE13
11,SAVEI1

o SKI 03

T HE FOLL "NG SATEENTS EP SENT T BHE ENNT G F
TIE ACTIJAL GENcATED D LOD% WHEN THE LOM'> HAS
BEEEM EXECUTED, A BANCH RACK 1T '&LA8EI ' 4TLL INIT-
IATE RETEST*NG OF THE UL OP C')NDITI-ONS AN0 POSSTRLE
REPVIATED EXECUTION 3F THE Lr3'P. TO TEST THE LCOP
THE W' KING REGISTER S (3 THROUGH 11) ARE STORED, AND
THE TEST PARAMETERS ARE LOADED0

AN OP
ST
ST
ST
ST
L
s
L
S
L
S
L
ST
AGO

8,SAVE3
9,SAVE9
10, SAVE 10
11,SAVFII
8, P 7 NTER
8,=F'41
11,STACK(8)
8,=F'4
10, STACK(8)

144$

9,STACK(3)
8, P)TNT ER
.SKI C4

THE CONTENTS OF REGIAST AoE COMPAFFI) A(ATMsT ZE0
TO DET!RV4NE W 7 NhTR NCRMENTYNG 5 YN THE P1ST vE0(NSGATDVE DPRECTIFJN; THCTS WYLL D:EC-LY AFfECT THEC M0 1 !ST0N OP REGISTERS 10 A'fl It WHTCH 4)r USED T2DE TEMINE WHEN THE LOOP TS SATISFIFO. PEG1STED 0

107

181 *
182 *
183 *
184 4'
185 *
186 *
187 *
188
189 .SKIP4
190
191
192
193
194 XLAB
195
196
197 *
198 *
199 *
200 *
201 *
202 *
203 *i
204 *
205 *
206 oSK P5
207 ZLA
208
209
210
211
212
213
214
215
216
217 *
218 *
219 *
220 *
221 *
222 *
223 *
224 .SKIP6
225
226
227
228
229
230 *
231 *
232 *
233 *
234 *
235 *
236 *
237 *
238 *
239 *
240 .SKTP7
241 YSLAB
242
243
244

245
246 W&LAB

J S C. PADED TO REGISTER l11 AND IF T TT S G rA TE THA"
REGISTER 11 FOR A POSITIVE INCREMENT 71 LESS THAN
REGISTER 11 FOR A NEGATIVE INCREMENT, THE PRO.,PAM
BRANCHES OUT OF THE DO L30P. IF TqE LOOP IS NOT
SATISFIED, CONTROL PASSES TO THE NEXT SECTION OF
CODE.

C
BL
CR
BH i
B
C
8L
AGO

9, ZE3O
X&LAB
10,11
Y CL AR
Z L A B
10,11
YCLAB
. SKI P5

WHEN THE DO LOOP IS NOT SATI SFIED, THE FOLLOWING
SECTION OF CODE ADDS THE INCREMENT TO REGISTER 10
(NHEPE THE LOWER RANGE LIMIT WAS INIT T ALLY LOADED)
AND STORES THE INCREMENT AND RANGE VALUES BACK INTO
THE STACK.

ANOP

L
ST
LA
ST
LA
ST
LA
ST
AGO

10, 9
8,PO NTER
9, STK(8)
8, 4 (39)
10,STACK(8)
8,4(8)
11,STACK(8)
8,4(8)-
8,POINTER
.SKIP6

THE ORIGINAL CONTENTS OF THE WORKING PEoISTERS A#E
RESTOPED AND THE PROGRAM BRANCHES TO THE BEGI NING
OF THE DO WHILE CODE.

L
L

L

A30

8,SAVE8
9,SAVF9
10, SAVEIO
11 SAVElI

WIL-AB
*SKTP7

WHEN THE-DO LOOP IS SATISFIED, A BRANCH FROM EITHER
STATEMENT 204 OR 207 TO TH FLLOWTNG CODE W*LL THEN
BE MADE, THE WORKING REGISTERS WILL BE LOADED WITH
THEIR ORIGINAL VAL'JES (THE DO LOOP PARAMETERS WILL
NIT BE STACKED) AND THE BRANCH TO ACLABEL' WILL
TERMINATE THE LOOP,

AN OP
L
L
L
L
8
EQU

8,SAVE8
9,SAVE9
10,SAVE10
1.1, SA VEli
ACLABEL
*

108

247 AGO .. SKVDP
248 *
249 *
250 *, THE FQLLO9WNG CODE TESTS FOR THE PRESENCE OF A 00
251 * WHILE CO2DITICN. I F A)0 LOIP WAS SPFC'FIED, BJT A
252 * WHILE COND T TION W AS lOT, A BRANCH Tr THE END O
253 * THE MACP 0OCCURSo IF A Df WHTLE ONDITTY' HAS BEEN
254 * SDECTFIED), THEN THE NAC'O P~r!CEEDS Tl 2EkERATE r CE
255 * T2 I PLE4ENT IT. IF NEITHER A DO t9LVP NOR DO WHILE
256 *- CONDTIOl HAS BEEN SPECIFIED, AN E PL MESSAGE I S
257 * PRTNTED AND THE MACRO TERMINATESo
258 *
259 *
260 oSKIPS A!F ('&WHILEo EQ 1).END
261 AGO.0
2(2 .WHTLE AIF (' WHILE' EQ '').ERR4
263 LA B EL ECU *
264 AGO.R
265 *
266 *
267 * TO TMPLEMENT THE D) WHILE CONDITION PEGTSTERS 10 AND
268 * 11 A E USED AS 'WORK REGISTERS'; THEEFO)E, THETP
269 * CONTENTS ARE INITIALLY SAVED.
270 *
271 *
272 .R ST 10,SAVEIO
273 ST 11,SAVEll
274 AGO .SKI>9
275 *
276 *
277 * THE F LLO ING INSTRJCTIONS LnAD THE LEFT ?PEPAk' OF278 * THE nO WHILE CONDITION INTO PEGYSTER 100 THIS "0F9-
279 AND MAY BE SPECIFIED IN A EGISTEP (WEGA), BY A280 * LOCATION (WLDCA) OR BY A LITERAL (WLITA). IF THE
281 SPECIFIED OPERAND IS NOT A VALID VALUE (SELF-
282 * DEFINING NUMERIC) WHEN A LITEP AL IS CODED, THEN AM
283 * ER "OcNESSAGE WILL BE PRINTED AND THE MACRO WILL
284 * TEIMINATE,
285 *
286 *
287 .SKIP9 AlP F('WEGA' EQ''),K
288 AlF (T'CWPEGA NE *N'),ERR27
289 AIF ('CWREGA' GT '15')oERR21
290 LR 10,&WPEGA
291 AGO
292 .K AT F ('WLDCA' EQ).L
293 L 10,C LOCA
294 A-GO i
295 .L AF (VEWLITA' F Q) ERRS
296 A!F ('EWLITB' NE ").ER15
297 LA 10
298 A 10,j=F'&1WLITA'
299 AGO .12
300 .M AIF ('EWLOCA' NE '')oERR13
301 .M1 AIF ('FWLITA' NE '').ERR13
302 AGO *M2
303 *
304 *
305 * THE FOLLOWING STATEMENTS LOAD THE IG HT OP : ANfl OF
306 * THE W- WHILE CONDITION INTO .GISTE 11 AND CO A E307 * IT TO REGISTER 10, THT -SP E AND MAY ALSO BE SPEC't-308 * IED IN A PEGISTER (NRE33), BY A LOCATT lN (WLCB)
309 * OR BY A LITERAL (WLIT3)0 IF THE SPEC FT f) PrANP310 * IS AN !NVALID VALUE WHEN A LITERAL IS CODED, AN
311 * ERPnr' MESSAGE WILL BE PrINTED AND THE MACRO EXPAN-312 * SION WILL BE TERMINATED.

109

313 *
314
315 .M2

31.6
317
318
319
320 .N
321
322
323 .0
324
325
326
327 .P
328 .P I
329 .2 2
330
331 *
332 *
333 *
334 *
335 *
336 *
337 *
338 *
339
340 *
341 *
342
343 aSKIP 0
344
345
346
?47
348
349
350
351 .EQUAL
352
353 oLESS
354
355 LESSERQ
356
357 0 GRTEQ
358
359 .GR T
360
361 0NTEQ
362
363 *
364 *

365 *
366 *
367 *

3 69 *
370 *
371
372 *
373 *
374 .0
375
376
377 T LA B
378

A! FA T F

ATF

AGO

L
AGJ

LA
A
AG0

AR F

AGO

(W&WEGB EQ '').N
(T'&WQEG93 NE 'N').ERQ28
('EWQEG CT '15'E)ER R22
11, r E G B

('IWL'C 3'EQ' n

('&WLITB' EQ '').ERR6
11,0-
11,F I&WLITB'
.P2
('&WLrC ' NE '').ERR14
('&WL TB' NE '').ER14
10, 1
.SKIP10

WHEN BOTH OPERANDS JF THE DO 4HTLE CODtT TON HAVE
BEEN LOADED, THIS NEXT CODE SEGEMET SELECTS THE
LOGICAL OPER ATJR USED TN THE COMPAPS!HO TF Ai' TL-
LEGAL OPERATOR HAS 3EEN SPEC:FTED OR TF N?) ODEPATr,
HAS BEEN SPECIFIED, THE MACRPO.WILL TERMINATE WITH AN
ERPOP MESSAGE; OTHERWISE, THE APPRDPP!ATE CnMPARISrTh
WILL BE MADE, AND TF THE DO WHILE CONDITION IS SAT-
ISFTED, A BRANCH T) TEPMIATE THE LOOP WILL OCCUPY.

A F
A T F
AT F
AT-F
Al F
Al FAF

A PF

AGO
A 0
BNL
AGO
BH

AL 0AGO

RY H
AG)
BE
AGO

(' WnP'
-('CWfP'

(' WAP'

(' &WAP'

.E0

TCLAB

F, CleiA P

.0
TCLAB

.0
T&L AB

T FIL A B

EQ
EQ
EQ
EQ
EQ
EQ
EQ

'')oEPT 7
'EQ')oEiJAL
'LT')aLESS
'LE')LESSEQ
'GE')GRTEQ
'GT')GT
'NE').NJTEQ

ONCF THE O WHILE CiN!OTTON HAS BEEN TESTED, THE
F L LOWIN CJDE SEGMENT EST')1ES THE WI K T kG PEGI S-
TERS, 10 C II, AND IF THE DI WHTLE CONDITN! S NOT
SAT!SFT ED, BPANCHE5 T2 THE ND OF THE ACPO WHFRE
THE L 0P WILL E EXEC'JTED AGAT N T F THE rOND! TION
HAS BEEN SATISFIED, A BRANCH TO THE 'ENDI?' MACRO
W!LL OCCUR AND THE L03P WILL BE TERMIN4TFDO

L
L
B
L
L

13,SAVE10
11, 4V E1
V&L A B
1)tSAVE 10
11, SAVE L

110

379 8 A&LABEL
380 V&LA EQU *
381 AGO .END
382 *
383 *
384 * THIS FINAL SECTION jr MACRp CDE RFPDESENTs THE E-
385 8*F -ESAGC-S GENEPATFJ DURING YAC' EXPANSVD,, E, -
386 * RORS INDICATE THAT THE MAC"0 CAN NT BEEXPADE TO
387 * PRODUCE EXECUTEABLE Cn'DE; CONISEOUENTLY, WHEN DE
388 * IS DETECTED, A MESSAGE .S P TNTED OUT AND ANCH
389 * TO THE 'ENDDD' MACIJ OCCU S. THE WPFKING REGISTERS
390 * WILL BE RESTORED AND THE 'DO' MACRO WILL NOT BE FUR-
391 * THEP EXPANDED.
392 *
393 *
394 .ERRI MVOTE *,'LWER DO LOOP PANGE NOT SPECIFIED'
395 a C&LABEL
396 AGO .EN D
397 *ERR2 M')TE .*,UDPER DO LnJP RANGE NOT SPECIFIED'
398 B C&LABEL
399 AGO .0END
400 .ERP3 MNOTE *,'f)O LOOP INCREMENT NOT SPECIFIED'
401 B . C&L 4BEL
402 ASO oEEN
403 *ERP4 MVJOTE *,'NP-90 OR DO WHILE CONDITION SET'
404 8 A&LABEL
405 AGO .EN
406 *ERR5 V40 T E *,'NF LEF T 0 P ER AND SPECIF TED ON DO WHILE OND!TION'
407 B B&LABEL
408 AGO - IEND
409 .ERP6 M\17)TE *,N RIGHT OPERAN3 SPECIFIED ON D) WHILE CONDITION'
410 B BvLABEL
411 AG 1 E f
412 *ERR7 NOTE *,' 14 WHILE OPERATOR NOT SPECIFIED'
413 R B&LABEL
414 A O .END
415 .ERR8 M OTE *, 1T NVALT D DO WHILE OP ERATOR SPECI FI ED'
416 B B&LABEL
417 aG .END
418 .ERP9 MNOTE *,'NOPE THAN ONE LWER DO LOOP RANGE SPECIFIED'
419 8 CgLABEL
420 AGO .END
421 *ERR10 MNOTE *,I'AlP E THAN ONE UPPER DO LDP RANGE SPECIFIED'
422 B CrLABFL
423 AO .,N
424 .ERR 1 MNCTE ' E THAN ONE D L v TNCREMENT SPECrF Er'
425 BCE E43O A Cr)B

42T *ERR12 y NTE *,'ZEp1 IS INVALID D3 LO9P I CREMENT'
428 B C&LABEL
4B9 AS r .O141
430 .ERR13 'NOTE ,'M-vE THA ONE LEFT D WHILE DPERAN D SPFECIF!
431 a 3LA3EL
432 AG .*EF0
433 *ERl14 MNOTE *,' 4R E THAN ONE RIGHT DO WHILE OPEPAND SPECIFIED'
434 B BQLA EL
435 ASO *END
436 .ERRL5 M4OTE *, 'ODO WHILE CONDITION CONTAINS TWO LITER AL OPEPANDS'
437 B BELAREL
138 AGO .END
439 .ERR16 MNTE *,'00 LrOP HAS SPECIFIED RANGE OF ZERO'
440 AO .4Al
441 .ERR17 MNOTE *,'NBGATTVE INCREME NT INVALID FOR SPECTFTED DO LOOP'
442 B C&LADFL
443 A371.E N
444 *ERR18 MN9TE *,*POSITIVE INCREMENT INVALID FOR SPECIFIED DO LOOP'

111

445
446
447 .ERR19
448
449
450
451 .ERR20
452
453
454
455 .ERR21
456
457
458
459 .ER422
460
461
462
463 .ERR23
464.
465
466
467 .ERR24
468
469
4I0
471 .ERR25
472
473
474
4T5 .ERR26
476
477
478
479 .ERR27
480
481
48?
483 .ERR28
484
485
486
487 .END

B

MNOTE
MN OTE
B

M4 OT E
MN 0T E
B
AGO)
M NOTE
MMOTE

AGO
NOTE

MNOTE
B

AGO
MNIT E

4 %0 TF
MN WE

B
MNOTE

AG9
M Y- 0 T E

8
AGO

MMOTE

M OTE

B

AGO
M 4D

CELABEL
. EN D
*,'INVALID

C EL ABEL
. END
*,'INVALID
* ,I LOOP'
CML ABEL
.END
INVALIDLTD
*,'WHILE'
BEL ABEL
o END
*, INVALID
*, 'WHILE'
B&L A BEL
. END
INVALIDLTD

CCLADEL
. EN)

NUMBER FOR ''LOWREG'' SPECIFIED IN DO'

NUMBER FJR ''HGHREG'' SPECIFIED IN DO'

NUMBER FOR ''WREGA'' SPECIFIED IN DC"

NUMBER FOR ''WREGB'' SPECIFIED IN D17

NUMBER F3R ''BYREG'' SPECYFT ED IN DO'

*,'''LOWREG'' SPECIFIED TN DO LOOP IS 40T A SELF-'
*,DEFINING NUMER C'
C&LABEL
.END
*,1'''HGHREGlI SPECIFIED IN DO LOOP IS NOT A SELF-'
*, 'DEFNING NU4ER IC'
CELABEL
. END
*,I#'BYG'I SPEClF ED IN D LOOP IS NDT A SELF-'
*,'DEFINING NUAERTC'
C L ABEL
* EN!)
*,'''WREGAWI SPECIFIED IN D3 WHILE IS NOT A SELF-'
*,')EF NING NU1ERI '
B&LABEL
* END
*, ''WREGBIl SPECIFIED IN DO WHILE IS NOT A SELF-'
*,0DEFTNING NUMEPI '
BELABEL
*END

The Source Listing for the ENDDO Macro

STMT SOURCE STATEMENT

THE ENDDI MACRO PR-)VDES THE RFTUPN BRANCH FOR AN
-ITEPATTVE DO LOP B O.DO WH1LE C CNOJTTfN. IT IS RE-
QUIRED WHENEVER A DJ MACRO S USED, A'4B THE NVAE AS-
SIGNFD TO THE 'LABEL' PARAYETEP SHOULD BF THE SAME
AS THAT GIVEN TO THE 'LABEL' PARAMETER TN ITS COP-
RESIOrNDING DO MACR3o IF A SPECIFIED DC' LDOP IS NPT
EXECUTED BECAUSE OF AN ERPCR CONDITID9, A BtZANCH TO
THE ENDDO MACPJ WILL OCCUD. THW W)RKTiNG REGISTEPS
WILL BE RESTORED AD THE MACPC' TERMINATED, WHEN A
DI MACQO HAS BEEN EXECUTED P OPEQLY, IT WILL RESTORE
THE WORKING PECI STERS AND, UPON COMPLETIONt BRANCH
T1 THE END OF THE ENDDO MACPCO WHERE THE PROGRAM WILL
CONTINUE WITH SEQUENTIAL CODE EXECUTION.

489
4913
491
492
493
494
495
496
497
498
499
500
501
502
503

*

*
*
*
*

*
**
*
*
*

*k
3k

41
*k

504
505
506
507 C&LABEL
508
509 B&LABEL
510
511 A&LABEL
512

MACRO
E'900

L
L
L
L
EQU
ME ND

&LABEL=
-&LABEL
8, SAVE
9,SAVE9
10,SAVE10
11,SAVElI

Sample Program A Illustrating
the DO and ENDDO Macros

STMT SOURCE STATEMENT

962
963 FRISBEE,
979 STATE
985
986
987
988
989
990
991
992
993
99 4
995
996
997
998 *
999

1011 *
1012 *
1013
1029
1030
1031
1032
1033
1034
1035
1036
1037
1044 *
1045 *
1046
1058
1059
1060
1061
1062
1063
1064
1065
1066 *
1067 *
1068
1130
1131
1132
1133

DRTNT
ENTER
OP EN
LA
LA
LA
LA
LA-
L A
LA.
LA
LA
LA
LA
LA

S V.AP

NOGEY'
1-2, SAVEAPEA
(DUMPAREAOUTPUT)
2,0-
3,0
4,0
5,0
6,0
7,0
8,0
9,0
13,0
11,0
14,0
15,0

TD=1 ,DCB=0UMPAREA,PDATA=REGS

D3 WHLF=RW;EGA=4,WOP LTWLITB=10,LABEL=ONE
A 3,=F 1'
A 4,=F'1'
A 5,=F'j'
A 6,=F !,I
A 7,=F' I
A 8,=F'1'
A 9,=F'1'
A 19,= '

E40IDf L)ABEL=4E

SNIAP-
LA
LA
LA
LA
LA
LA

LA

' I0=2,DCB=DUMPAREAPDATA=REGS
3,0
4,0
5,0
6,0
7,0
8,0
9,0
1010

LIWN'U"=lHGHNUM=30, YNUM=4tDOLODP=SLABEL=TWO
A 3,=F'2
A 4 =42
A 5,=4'2'
A 6.=F'2

112

A 7,=F'2'
A 8,=F'2'
A 9,=F21
A . 10,=F'21

ENDDI LABEL=TWP

1134
1135
1136
1137
1138
1145 *
1146 *
1147
1159
1160
1161
116?
1163
1164
1165
1166
1167 -
1168 *
1169

1243
1244
1245
1246
1247
1248
1249
1250
1251
1258 *
1259 *
1260
1272 *
1273 *
1274
1279

I 0=3, DC=DUMPAaEA, PDATA=REGS
3,0
41,0
5 , 0
6,0
7,0
8,0
9,0
10,0

D LIWN'M=3,BYLOC=Y,HG HREG=4,DOLOP=7,WHILE=NN,
LABEL=TH FE, WrP=GTWLITA=7, REGB=15

A- 3,=F'3'
A 4,=F'3'
A 5,=F'3'
A 6,=F'3'
A- 7,=F'3'
A 8,=F'3'
A 9,=F?3;
A 10v=F'3'

EDD LABEL=TH7EE

SNAP

EX I T
CL OSE

SAVEAPErA o!,
OS

ZE90 DC
SAVE D S
SAVE9 OS
SAVEJO DS
SAVE11 D S
POINTER DC
STACK DS
Y DC
DUMP AR E A D C B

E4D

REGS AT ENTRY TO SNAP

REGS 0-7

ID=4, DCB=DUMPAREA, PDATA=REGS

OIJMPA FA

18A C0)

IF
1F
1F
IF
IF'0'
10OF
IF' I
0DNA ME=IT CAM,SODRG=P S,RECFM=VBA,

MACRF=W,8LKSIZE=882,LRECL=125

=F' 10'
=F'11
F' 3.'

=F 4

-F'?2'

ID = 001

00000030 9001B398 00000000 00000000
00000000 00000000 00000000 00000000

113

SMA P
LA
LA
LA
LA
LA
LA
LA
LA

x

1285
1286
1287
1288
1289
1290
1291
1292
1293
1.94
1295

1346'
1347
13 8
13 49
1350
1351
1352
1353

x

REGS 8-15

END OF SNAP

00000000 0000003 00000000 00000000

50018820 0001BCOO 00000000 00000000

PEGS AT ENTRY TO SMAP

REGS 0-7

REGS 8-15

END OF SNIAP

000 00?40

00000004

00000004

50018820

REGS AT ENTRY TO SNAP -

REGS 0-7

PEGS 8-15

END OF SNAP

000002A0

00000010

00000010

50018820

80018904 00000000

0000000A 0000000A

ID = 002

000000A

0000000A

0000000A 00000004 00000000

0001BCOO 00000000 00000000

ID 003

00000010

00000010

A001BA58 00000000

00000010 00000010

00000010 00000010 C000000O

OOO1BCOO 00000000 '00000000

REGS AT ENTRY TO SNAP ID 004

REGS 0-7 000002A' A001BB04 00000000 00000000

00000C00 00000000 00000000 00000000

RESS 8-15 00000000 00000000 00000000 00000000

50018820 0oQLBc00 00000000 00000000
END OF SNAP

114

115

Program A with Expanded Macros

STMT SOURCE STATEMENT

962 FRISBEE
963+FPTSBEE
964+
965+
966+
967+
968+
969+
970+
971+
972+
973+
974+
975+
976+
977+
978 START
979+ .
980+START
981+
982+
983+
98

988
989
990
991
992
993
994
995
996 *
997 *
998
999+

1000+
1001+
1002+
1003+
1004+
1005+
1006+
1007+
1008+IHB0003
1009+
1010 *
1011 *
1012
1013+ONE
1014+
1015+
1016+
1017 -
1018+
1019+
10?0+

1021+
1022+

ENTER
DS
ENTRY
USING
BALR
B
DC
BC TR
BCTq?
ST M
LR
ST
LA
ST

L R

USING

DDN 1
CN OP
B4L
DC
DC
Svc
L A
LA
LA
LA
LA
LA
LA
L A

L A

L A
LA
LA

S4AP
CNOP
BA L
DC
DC
DC
DC
DC
DC
DC
0D

DI~

ST
ST
LP
LA
A -

CR
P>N L
L
1.

ID=1 ,DCB=DUMPAREAPDATA=REGS
0,4
1, T 0003 B ANCH AROUND PARAM LIST
ALH(.) ID NUMBER
AL1(0)
AL1(130) OPTION FLAGS
ALI(32) OPTION FLAGS
A(DUMPAREA) DCB ADDRESS
A(0) TCB ADDRESS
A(0) ADDRESS OF SNAP-SrDT LIST
OH
51

WM!L E=R,WREGA=4,WDPLT, WLITB=10,LABEL=DNE
*

10,SAVE 10
11,SAVEI1
10,4
11,0

10 ,1 0"
T4
10, SAV-10
11, S VEll

12,SAVEAREA
OH
FRISBEE DECLARE NAME ENTRY
*,12 OECLAE BASE ADDRESSIBILITY.
15,0 (4I1TIAL ADDrESSIBILITY)o
12(t15) BANCH AROUND ID FIELD
AL1(7),CL7'FPTSBEE' TD LENGTH AND ID
15,0 (RESET INITIAL ADDRESSIBTLITY
15,0 ABSOLUTE ENTRY POINT),
1412,2(13) SAVE REGISTERS
12,15 SETUP BASE PEGISTER.
13,SAVEAQ EA+4 CHATN BACK
0,SAVEADEA CHAIN FORWARD
0,8(0,13)
13,0 SET UP SAVE AREA POINTER
SAVEAREA,13 AND ADO)RESSABILITY

(DUMPAREA,OUTPIJT)
Q0,4- Al G" LIST TO 5ULL43RD
1,*+ LOAD EG 1 V/LI T A0DR,
AL1(143) OPTION YTE
AL3(DU\ 2 APEA) DCB ADDRESS
19 ISSUE OPEN SVC

2, 0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0
11,0
14,0
15,0

1023+
1024+T4
1025+
1026+
1027+V4
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037+
1038+CONE
1039+
1040+BCNE
1041+
1042+AONE
1043 *
1044 *
1045
1046+
1047+
1048+
1049+
1050+
1051+
1052+
1053+
1054+
1055+1HB0006
1056+
1057
1058
1059
1060
1061
1062
1063
1064
1065 *
1066 *
1067
1068+
1069+
1070+
1071+
1072+
1073+
10 74+
1075+
1076+
1077+
1078f-
1079+
1080+
1081+
1082+
1083+
1084+
1085+
1036+
1087+*
1088+

8 V4
L 10,SAVE10 -
L 11,SAVE11
a AONE
EQU *

A 3, =F 1
A 4,=I 1 t

A 5,=F 1.1 -A
A 6,=F1'
A 7,=P'1
A 8,1=F'1

- A 9,=FfI'
A 10,=F 1'

ENDDO LABEL=ONE
B ONE
L 8,SAVE8
L 9,SAV39
L 10,SAVE10
L 11,SAVE11
EQU *

SMAD !D=2,DC3=DUMPAREAPDATA=REGS
CNOP 0,4
BAL 1,H30006 BRANCH AROUND PARAM LIST
DC ALI(2) ID NUMBER
DC AL1(0)
DC AL1(130) OPTION FLAGS
DC AL1(32) nPTTFn FLAGS
DC A(D'JDAREA) DCB ADDRESS
DC A(G) TCB ADDq SS
V. A(0) ADDRESS OF SNAP-SHOT LIST
OS OH
SVC 51
LA 3,0
LA 4,0
LA 5,0
LA 6,0
LA 7,0
LA 8,0
LA 9,0
LA 10,0

D) ML ,NUM1HGUM=30,YNU=4DL0)P=SLASEL=TWO
ST 8,SAVE8
ST 9,SAV:9
ST 10,SAVE10
ST 11,SAVEll
LA 10,0
A 10,=F1'
L A 11,0
A 1i,=F'30'
LA 9,(
A 9#=F 040
L 8,00!NTER
ST 99STACK(8)
LA 8,4(8)
ST 10,STACK(8)
LA 8,4(8)
ST 11,STACK(8)
LA 8,4(8)
ST 89,PJ1NTER
L 8,SAVE8
L 9,SAVC9
L 10,SAVF10

116

1089+ -
1090+TWO
1091+
1092+
1093+
1094+
1095+
1096+
1097+
1098+
1099+
1100+
1i 1+
1102+-
11034-
1104+
1105+
1106+
1107+X7
1108+
1i09+Z7
1110+
1111+
1112+
1113+
1114+
1115+
1116+
1117+
11 18+
1119
1120+
1121+
1122+
I 123+Y7
1124+
112 5
1126+
1127+
1128+W-
1129
1130
1131
1132
1133
134

1135
1136
1137
1138+
1 139+C TWO
1140+
1141+BTWO
1142+
1143+ATWO
1144 *
1145 *
1146
1147+
1148+
1149+
1150+
1151+
1152+
1153+
1154+

117

L -

ST
ST
ST
ST
L
S
L
S
L
S
L
ST
C
BL
c S
BH
BL
C R
BL
Ar
LA
ST
LA
ST
LA
ST
LA
ST
L
L
L
L
a
L
L
L
L

EQU

8

L

L
L
L
E U

SNAP

BAL
DO
DC
DC
DC
DC
DC

11, SAVEI--
8, :SAV8
9,SAVE,:,
10,SAVE10
11, SA V~11
8, DrINTER
8 , =F 41'
11,STAC K(8)
8,=F'4-
10, STACK(8)
8,=F'4'
9,STACK(8)
8, PC)! N T ER
9, ZERO
X7
10,l11
Y7
17
10 ,11

Y7

10,9
8,POtI4TER
9, STACKS()
8,4(8)
10,STACK(8)
8,4(8)
11,STACK(B8)
8,4(3)
8, POT "ER
8,SAVE8
9,SAV.9
10, SAVE 10
11,SAVE ll

W7
8, SAVES
9, SAV E9
10,SAVE10
11, S AVE 11
ATWO

A 3,=F'2'
A 4,=F'2'
A 5,=F '2'
A 6,=F'2'
A 7,=F2'
A 8,=F'2'
A 9,=F'2'
A 10,=F'2'
L ABrEL=TWO

TWO
8,SAVE8
9,SAVE-9
10 SAVElO
11,SAVE11

ID=3,DCBDUMPAREAPDATA=REGS
0,4
1,iH80009 BOANCH AROUND PARAM LIST
ALI(3) TO NUMBER
AL1(01
AL1(130) OPTION FLAGS
AL1(32) OPTIOrN FLAGS
A(D'JU'AREA) OCB ADDRESS
A(O) TC ADDRESS

1155+
1156+1HB0009
1157+
1158
1159
1160
1161
1162
1163
1164
1165
1166 *
1167 *
1 68

1169+
1170+
1171+
1172+
1173+
1174+
1175+
1176+
1177+
1178+
1179+
1180+
1181+
1182+
1183+
1184+
1185+
1186+
1187+
1188+
1189+THREE
1190+
1191+
1192+
1193+
1194+
1195+
1196+
11.97+
1198+
1199+
12 00+
12 01+
1202+
1203+
1204+
1205+
1206+XIO
1207+4
1208+Zl1o
1209+
1210+
1211+
1212+
1213+
1214+
1215".
12164
1217
1218+
1219+

DC
OS
SvC

L A
LA
LA
LA
LA
LA
LA
LA

ST
ST
ST
ST
LA
A
LR
L
LA
ST
LA
ST
LA
ST
LA
ST
L
L

1.
L
ST
ST
ST
ST
L
S-
L
s
L
S.-
L
ST
C
BL
CR
B4
B

BL
A
LA
ST
LA
ST
LA
ST
LA
ST
L
L
L

A(01 ADDRESS OF SNAP-SHT LIST
CH
51

3,0
4,0
5,0
6,0
7,0
8,0
9,0
100

LOWNUM=3, BYL OC=Y ,H 'HR EG=4, DO LD,'P=7, WH L E=!N,
LAREL=TH8EEWOP=GTWLITA=7,WREGB=15
8,SAVEB
9, SAVE9
10,SAVE10
11-SAVEII
10,0
10,=F'3'
11,4
9,Y
a, POIN TER
9,STACK(8)
8,4(8)
10,STACK(8)
8 ,4 (8)
llSTACK(8)
8,4(8)
8,P 0!ITER
8, SAVE8
9,SAVE9
10, SAVE10
11, SAVF l1
8,SAVES
9,SAVE9
10 , SVEIO
11,4SAVEI1
8, PnTNTER

1lSTACK(8,
8,F*4t
10, STACK(8)
8,=F'4'-
9,STACK(8S
8, '>J!NTEP
9,ZERO
X10
10,11
Y10
ZiO

13,11
Y10
10,9
8, POINTER
9,ST K (8)
8,4(8)
10, STACK(8)
8,4(8)
11,STACK(8).
8,4(8)
8 , P01NJT ER
8, SAVy8
9, SAVE9
10,SvEl10

11&

x

1220+
1221+
1222+Yt10
1223+
1224+
1225+
1226+
1227+WIG
1228+
1229+
1230+
1231+
1232+
1233+
1234+
1235+
1236+
1237+
1238+T 10
1239+
1240+
12 41+V10
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251+
1252+CTHREE
1253+ .
1254+BTHREE
1255+
1256+ATHREE
1257 *
1258 *
1259
12604
1261+
12 62+
1263+
1264+
1265+
1266+
1267+
1268+
1269+1HB0012
1270+
1271 *
1272 *
1273
1274+
1275+
1276+
1277+
1278
1279+
1280+
1281+
1282+
1283+

L
5
L
L
L
L
8
EQU
ST
ST
LA
A
L k
c k
BNH
L
L

L
L
B
EQU

E 4 DO
B
L
L
L
L.

EOIU

SAP
CNop
BAL
DC
OC
DC
DC

DC
DC
Dc
DS
SVC

EXIT
L
LM
MVI
R

CL)SE
C '4OP
BA L
DC
OC
SvC

11,SAV511
W10
8,SAVE1
9,SAVE9
10,SAV E10
l, SAVEll
THREE

10,SAVE 10
11,SAV4W
10, 0
10,=F'7'
11,15
10,11
T10
10, SAVE 10
11,SAVE 1L
VIG
10,SAVEIO
Ii. S A V El
ATHREE
*

A 3,=F'3'
A 4,=F'3'
A 5,=F'3'
A 6,=F'3'
A 7,=F131

A 8,=F'3'
A 9,=F'3'
A 10,=F'3'
LABEL=TfHR EE

THREE
8,SAVEB
9,SAVc9
10, SAVE10
11,SAVE11-

*

T O=4,DCB=DUMPAREAPDATA=REGS
0,4
1,1H30012 WPANCH AROUND PAR AM LIST
AL (D4) D NUMBER
AL1(0)
ALI(130) COTTON FLAGS
AL1(32) ?jPTITN FLAGS
A(DUMPAREA) DCB ADDRESS
A(0) TCB ADDRESS
A(0) ADDRESS OF SNAP-SHDT LIST
OH
51

13,4(,13) PCP UP SAVE AREA
14,l12t2(L1) RESTORE REGISTERS
12(13),X'FF' FLAG EXIT
14 RETURN

DJMPARE A
04 AtLT GN LIST TO FULLUjRD
l,*+8 LrAD PEGI W/LIST ADDR
ALl(128) PTION BYTE
AL3(O 'JPAFA) DC3 AODRES
20 ISSUE CLOSE SVC

1284 SAVEAREA DC

119

18A (0)

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

ZEPO
SAVE
SAVE
SAVE10
SAVE11
POINTER
STACK
y
DUMPAREA

1296+*
1297+*
1298+DUMPAREA

1300+*

1302+
1303+

1305+* .

1307+
1308+
1309+
1310+
1311+

1313+*

1315+
1316+
1317+
1318+

1320+*

1322+
1323+
1324+
1325+

1327+*

1329+
1330+
1331+
1332+
1333+
1334+
1335+
1336+
1337+

1339+*

1341+
1342+
1343+
1344+-
1345
1346
134-t
1348

DC
DS
DS
DS
DC
D C
DS
DC
DCB-

OF

1F
1 F
1 F

DD IA'E=TEAMDSJRG=PS, RECFM=VBA,
MACRF=W,BLKSI ZE=882,LRECL=125

DATA CONTROL $LOCK

OF-'0' RIGIN ON WORD BOUNDARY

DIRECT ACCESS DEVICE INTERFACE

0C BL16'O' FDADDVTBL
DC A(0) KEYLEDEVTTRBAL

COMMON ACCESS METHOD INTERFACE

DC
DC
DC
DC
DC

DC
DC
DC
DC

DC
DC
DC

DC
DC
DC
DC
DC
DC
D*.oc

DC

DC

DC

D D
DC
END

ALl(S) BUFNO
AL3(1) BUFC8
AL2(0) UFL
8L2'0100000000000000' DSORG
AMI) TOBAD

FOUNDATION EXTENSION

BL1'00000000' BFTEKBFLN,HIAPCHY
AL3(1) EnDAD
BL1'0101)100' RECFM
AL3(0) EXLST

FOUNDATION BLOCK

CL8'TFAM' DDMAME
BL1'0)000O01' QFLGS
BL1'000130000' IFLG
BL2'0000000000100000* MACR

BSAM-BPAM-QSA4 INTERFACE

BL3'20100000' RER1
AL3M1) CHECK, GERR, PEkR
AMt) SYN'AO
H1O' CEND, CTND2
AL2(882) BLKSIZE
F'O' WC l, WCPL, OFFSR, OFFSW
A(1) T RA
ALl(0) NCP
AL3(1) EDBR, EOBAD

BSAM-BPAM- INTERFACE

A(M) EORW
H1O' DIRCT
AL2(125) LRECL
A(1)-CNTRL, NOTE, PtINT

=F'10'
=Ftl'
=F'30'

120

x

00

1349
1350
1351
1352

=F 141
=F'2'

cF'71

Sample Program B Illustrating a
DO Macro Coded Incorrectly

STMT S09RCE STATEMENT

962 FRISaEE
963+FPISBEE
964+
965+
966+
967+
968+
969+
970+
971+
972+
973+
974+
975+
976+
977+

.97 START
979+ -,
980+START
981+
982+
983+
984
985
986
987
988
989
990
991
992
993
994
995
996 *
997
998
999+

1000+
1001+
1002+
1003+
1004+
1005+
1006+
1007+
10013* 1HI-B0003
1009+
1010
1011
1012
1013+0NE

ENTER
D S
Eq TRY
USING
BALR
B
DC
BCTR
8CTR
STM
LR
ST
LA
ST
LR t
USING

CN OP
BAL
)C

DC
SV C
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA

S'4AP
CNDP
BAL
DC
DC
DC
DC
DC
DC
DC
D c

0 s
SVc

DU
E*U

12,SAVEAREA
0H
FRISBEE DECLARE NAME ENTRY
*,12 DECLART BASE ADDRESSIBILITY.
15,0 (INITIAL ADDPESSIBILITY)o
12(4l5) WR'ANCH AROUND ID FIELD
AL1(f),CL7'FR!SBEE' ID LENGTH AND ID
15,0 (RESET INTT AL ADDRESSIBILITY
15,0 ABSOLUTE ENTRY POINT).
14,12,12(13) SAVE REGISTERS
12,15 SETUP BASE REGISTER.
13,SAVEAPEA+4 CHATN BACK
0,SAVEADEA CHAIN FORWARD
0,8(0,13)
13,0 SET UP SAVE AREA POINTER
SAVEARE A,13 AND ADDRESSABILITY

(0UMPAPEAtUTPUT)
0,4 -AIGN LIST TO FULL9JRD
1,*+8 LOAD REGI W/LIST ADDR.
AL1(143) OPTION BYTE
AL3(DUMPAPEA) DCB ADDRESS
19 TSSUE OPEN SVC

2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0

, 11,0 .
14,0
15,0

I=1,DCB=DUMPAREAPDATA-REGS
0,4
1,1HB0003 BRANCH AROUND PARAM LIST
ALI(1) ID NUMBER
AL1(0)
ALI(130) OPTiON FLAGS
AL1(31) OPT!O, FLAGS
A(DUMPAREA) DCB ADDRESS
A(0) TCB ADD ESS
A(0) ADDRESS OF SNAP-SdDT LIST
OH
51

*
WHiLER,WREGA=4,WOP LTLABEL=DNE

121

1014+
1015+
1016+
1017
1018+
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028+
1029+CONE
1030+
1031+BONE
1032+
1033+AONE
1034 *
1035 *
1036
1037+
1033+
1039+
1040+
1041+
1042+
1043+
.10'4+
1045 4
1046+IHB0006
1047+
104$ *
1049 *
1050
105L +
1052+
1053+
1054+
1055
1056+
1057+
1058+
1059+
1063+

1061
1062
1063
1064
1065
1066
1067
1063
1069
1070

ST 10,SAVE10
ST 1I, SAVEIl
LR 10,4

*,NO RIGHT OPERAND
3 BONE

END DO
B
L
L
L
L
EQU

A 3,=F'I'
A 4,=FI11
A 5,=F'1'
A 6,=F'1'
A 7,PjI
A 8, =F"I
A 9,=F'1'
A 10,=1' *
LABEL=ONE

04 E
8,SAVE8
9,SAVE9
13,SAVE10
IlSAVEll
*

SNAP

C3PC9BAL
DC
DC
DC
DC
DC

DC

SVc

EXIT
L
LM
MV I
BR
CLOSI
CNOP
BAL
DC
DC
SVC

SAVEAREA DC
DS

ZEFO DC
SAVE DS
SAVE9 OS
SAVE ODS
SAVEll DS
POINTER DC
STACK DS
DUMPAREA DCB

10 7?+*
1073+*
1074+DUMPAREA DC

1076+*

SPECIFIED ON 00 WHILE CONDITION

ID=2 ,DCB=DU'4PAREAvPDATA=REGS
0,4
1,IH30006 BRANCH AROUND PARAM LIST
AL1(2) ID NUMBER
At- (3)
AtL(130) qPTAON FLAGS
ALl(32) PTT'N FLAGS
A(DJM4APEA) OCB ADDRFSS
A(O) TCB ADDR ESS
A(0) AL)DCESS OF SNAP-SHOT LIST
OH
51

13,4(,13) PqP UP SAVE ARIEA
14,12,12(13) RESTORE REGISTERS
12(13),X'FF' FLAG EXIT
14 RE TUT N

E DUMPAPEA
0,4 ALIGN LIST TO FULLWJRD
1,*+8 LQAD PEG1 W/LIST ADDR
AL(128) OPTION BYTE
AL3(DJMPA'PA) DCB ADDRESS
20 ISSUE CLOSE SVC

18A(0)
SOF
IF'O'
IF
IF
IF
IF
IF0 0
IOOF
DDN4ME=TFAMDS0RG=PSRECFM=VBA,

MACRF=W ,BLKSIZE=882,LRECL=125

DATA CONTROL BLOCK

OF'3' 0nIGIq ON WORD BDJNDARY

DIRECT ACCESS DEVICE INTERFACE

122

x

1078 +
1079+

1081 +*

1083+
1084+
1085+
1086+
1087+,

1089+*

1091+
1092+
1093+
1094+

1096+*

1098+
1099+
1100+
1101+

1103+*

1105+
1106+
1107+
1108+
1109+
1110+
111 +
1112+
1113+

BLI'00000000' PREP
AL3(1) CHECK, GERR, PERR
A(1) SyVIAD
HO' CINDI, CIND2
AL2(882) BLKSIZE
F')' WCIC, WCPL, CFFSR, DFFSW
A(L) I BA
AL1(0) NCP
AL3(1) ECBt EOSAD

1115+* 1 BSAM-BPAM INTERFACE

1117+ D' A(1) FOBW
1118+ DC H'' DIRCT
1119+ DC AL2(125) LRECL
1120+ D0 A(1) CNTRL, NOTE, POINT
1121 END
1122 =Fv 1

Sample Program C Illustrating a
DO Macro Coded Incorrectly

STMT SURCE "STATEENT

962 FRISgEE
963+FRISBEE
964+
965+
966+
967+
968+
969 +
970+
971+
972+

.ENTER
DS

US ING

DC
BC TR
8C TR
STM
LR

12,SAVEAREA
OH
FRISBEE DECLARE NAME ENTRY
%,12 DECLAr. BASE ADDRESSIBILITY.
15,0 (I1!TIAL ADDPE5S131 LTTY),
12(t15) 3LAN"CH APOJ4D ID FIELD
AL(7) ,CL7'FPiS3EE' ID LENGTH AND ID
LBO) (PESET INITIAL ADT)ESSIBILITY
15, A3S9LUTE ENTRY POIT). .
14l,1?,12(13) SAVE , EGTSTERS
12,15cpETU BASE -EGISIER.

123

Dc BL16'0' FDAD,DVTBL
DC A(0) KEYLEDEVT,TPBAL

C.MON ACCESS METHOD INTERFACE

DC AL1(0) BUFNf
DC AL3(1) JFCB
DC AL2(0) 3UFL
DC BL21010O0000O0000jj' DS9RG
DC A(1) IBAD

F9UNDATI1Q EXTENSION

DC 6L 1'0000000' BFTEKBFLNHIARCHY
DC AL3L1) EDAD
DC BLI'01010100' RECFA
DC AL3(0) EXLST

F0UNDATIOA BLACK

DC CL8'TEAM' DONAME
DC BL'00000010' OFLGS
DC BL,1'00000000' IFLG
DC BL2O000000000jOj' MACR

BSAM-BPAM-QSAi INTERFACE

DC
DC
DC
DC
DC
DC
DC
DC
DC

973+
974+
975+
976+
977+
978 START
979+ .
980+START
981+
982+
983+
934
985
936
987
988
989
990
991.
992
993
994
995
996 *
997 *
998
999+

1000+
1001+
1002+

104

1006+
1007 +
108+IH30003
1009+
1010 *-
1011 *
1012

1013+
1014+
1015+
1016+
1017+
1018+
1019
1020 +
-1021
1022
1023
1024
1025

1027
1028
1029
1030+

1031+C TWO
1032+
1033+BYWO
1034+
1035+ATW0
1036 *

ST
LA
ST
UP
Us NG
OPEN
CNOP
BAL
DC,
DC
Svc
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA

CN OP
8AL
DC
DC
DC
DC
DC
DC
DC
DS
Svc

13, SAVEAPEA+4- CHAT BACK
0, SAVEA:'EA CHAIN FJ;WAP4
0,8(0,13)
13,0 SE-T UP SAVE AMLA PJINTER
AVEAREA, 1.3 AND ADJ ESSA8ILITY

(DUMPA RFA,OJTPUT)
0,4 ALIG'I LIST TO-FULL4JRD
1,*+8 LOAD REGI W/LIST ADDR.
AL(143) OPTION BYTE-
AL3(DUMPA'EA) DCB ADDRESS
19 ISSUE rPEN SVC

2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0
11,0
14,0
15,0

SNAP IfO=1, DCB=DUMPAREA, PDA TA=R EGS
0,4
11 ! 0BJ0)3 BqANCH ARJUN) PARAM LIST
ALICl) ID NUMBER
ALI(0)
AL(130) OPTION FLAGS
AL 1(32) OPT ION FLAGS
A(UUPA)E) CB ADDRESS
A(0) TC ADDRESS
A(0) ADDRESS OF SNAP-SHOT LIST
5H
51

DO L.WNUM1,LOWREG=5,H1GHNU=30,BYNUM=1,DOLOOP=Wt
LABEL=T4O

ST 8,SAVES
ST 9,SAVE9
ST 10,SAVElO
ST .rSAVE11
LA 10,0
A 10,=F'I

*,MIRF THAN ONE LOER 0 LOOP RANGE SPECIFIED
B CTWC

A 3,=F'2'
A 4,=F21
A 5,=F21
A 6,=F'2'
A 7,=F'2'
A 8,=F#2'
A 9,=Ft2'
A 10,=F'2'

ENDDI A 8L=TW 0
8

L

L
L
ECU

TWO

8, SAVEa
9, SAVE9
1), S AVE10
11, SAVE LI

*

124

x

1037 *
1038
10"19+
1040+
1041+
1042+
1043+
1044+
1045+
1046+.
1047+
1048+! OHB0006
1049+
1050
1051 *
1052
1053+
1054+
1055+
10 56+
1057
1058+
1059+
1060+
1061+
1062i

1063
1064
1065
1066
1067
10616
1069
1070
1071
1072

CM P
3AL
DC
DC
DC
DC
DC
DC
DC
D r

SV C

EXIT
L
LM
MV I
BR
CLOSE
c P 0P
BAL
DC
DC
SVC

SAVEAPEA DC
DSs

ZERO DC
SAVE DS
SAVE9 DS
SAVEIO DS
SAVFll DS
P I TER DC
STACK Ds
DUMPAREA DC5

1074+*
1075+*
1076+0UMP AREA

1078+*

1080+
1081+

1083+

1085+
1086+
1087+
1088+
10,99+

1 091+*

1093+
1094+
1095+
1096+

1098+*

DC

SNA P ID=2,DCB=DUAPAREA, PDATA=REGS
0,4
1,1H300)6 BRANCH ARJUNJ PARAM LIST
AL I2) !D NUM. ER
ALI(0)
ALI(130) OPTION FLAGS
AL1(32) GPTTON FLAGS
A (mJ AVA) LDCB ADJRE SS
A(0) TC3 ADDqESS
A(0) ADDRESS OF SNAP-SHOT LIST
o
51

13,4(,13) PQIP UP SAVE AREA
14,12,12(13) PEST rEL REGISTERS
1;(13),X'FF' FLAG EXIT
14 RE TUN

DJMDAREA
0,4 AL. GN LIST TO FJLLWJR0
1,*+8 L"A PEGi /LST ADOR
ALI(123) PTIQN YT E
AL3(DUMPAREA) DCB ADDRESS
20 ISSUE CLOSE SVC

13A (0)
OF
1F'0'

IF
iF
IF
1F'0'
100 F
DONAME=TEAM DS0,RG=PSRECFM=VBA,

MACRF=W,BLKSIZE=882,LRECL=125

DATA -CONTROL BLOCK

OF'0' ORIGIN ON WOR BJJNDARY

DIRECT ACCESS DEVICE INTERFACE

DC BL16')' FDADDVTBL.
DC A(0) KEYL F, DEVT, TBAL

CoevM N ACCESS METHOD INTERFACE

DC
DC
DC
DC
DC

DC
DC
DC
DC

AL 1(0) BUFNJ
AL3(1) 1JFCB
AL2(0) 9UFL
BL2'0100000000000000' DORG
A(1) '0TBAD

FOUNDATION EXTENSION

BLI'00000000' BFTEKBFLN,HIARCHY
AL3(.)1)AD
BL' 3101010)' RECF4
AL3(0) LEXLST

FOUNDATION BLOCK

125

x

1105+*

1107+
1108+
1109+,
1110+
1111+
1112+
1113+
1114+
1115+

1117+*

1119+
1120+
1121+
1122+
1123
1124
1125

1100+
1101+
1102+
1103+

Sample Program D Illustrating a
DO Macro Coded Incorrectly

STT SOURCE STATEMENT

962 F"TBEE
963+FRI-5BEE
964+
965+
966+
967+
968+
969+
970+
971+
972+
973+
974+
975+
976+
977+
978 START
979+
983+START
981+
982+
983+
984
985
986
98 7
988
989
990
991
992

ENTER 12,SAVEAREA
0S 0d
ENTRY FlISBEE DECLARE NAM" ENTRY
USING *,12 DECLARE BASE AJDPESSIBILITY.
CALR 15,3 (INTTIAL ADDRESSI3ILITY).
B 12(,15 BRANCH APOJ4D 10 FIELD
DC AL1(7),CL7#FPTSOEE' ID LENGTH AND ID
BCTR 15,) (RESET INITIAL ADDRESSIBILITY
BCTR 15,0 ABSDLJTE ENTRY P i ntT.
STM 14,12,12(13) SAVE REGISTERS
LR 1215 SETUH BASE REGTST.R,
ST 13,SAVE AEA-4 CHAIN BACK
LA 0,SAVEA, EA CHAIN FjRWARL)
ST 0,8(0,13).
LR 13,0 SET UP SAVE AREA PAINTE.
USIIG SAVEAREA,13 AND ADU)(ESSA 1LITY
oPEN (DUMPAREA,OJTPUr)
CNOP 0,4 ALIGN- LIST O FULLWORD
BAL 1,*+8 L OAD REG* W/LIST ADDR.
DC. ALI(143) OPTION BYTE-
DC AL3(D1MPAR.EA) DCB ADDRESS
SVC 19 ISSUE OPN Svc
LA 2,0
LA 3,0
LA 4,0
LA 5,0
LA 6,0
LA 7,0
LA 8,0
LA 9,0
LA 10,0

DC
DC
DC
DC

DC
DC
DC
DC
DC
Dc
DC
DC
DC

126

CL8'TEAAM' DDN\ME
BLI'00000 01,' FLGS
BLO000000I ' IFLG
BL2'000000000100j0 ' 14CR

BSAM-BPAM-QSAM INTERFACE

BLI'000003' RER1
AL3(1) CHECK, GEPR, PERRY
A(1 SYNAD
H'' CIN'DI, CIND2
AL2(882) BLKSIZE
F'' WCP9, WCPL, OFFSR, OFFSW
A(1) 1DBA
ALI(0) NCP.
AL3(1) ErBR, EQ AD

BSAM-BPAM INTERFACE

A(1) E03W
H'0' D!RCT
AL2(125) LPECL
A(1) CNTRL, NOTE, PJINT

=F'l'
= F f2

DC
DC
DC
DC
END

127

9939 c)
994

995
996
997 *
993 *
999 *

1000
1001+
1002+
1003+
1004 +
1005+
10)6+
1007+
1008+-
1009+
1010+IHB0003
1011+
1012 *
1013 *
1014

1015+
1016+
1017+ -
1018+
1019+
1020+
1021
1022
1023+
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033+

1034+CTHREE
1035+
1036+31HRE
107+
1038+ATHREE
1039 *
1040 *
1041
1042+
1043+
1044+
1045+
1046+
10 471
1043+
1)49+
1050+
1051+IHB0006
11)52+
1053 *
1054 *
1055
1056+
1057+

LA
LA
LA

CNOP
BAL
DC
DC
DC
fC
DC
DC
DC
DS
SVC

11,0
14,0
15,0

SNA? . ID=1,DCB=DUMPARE A ,PDATA=REG
0,4
liH30u03 BRANCH AROUND PARAM LIST
ALl(1) ID N:P3BER
AL L (0
ALI(130) OPTION FLAGS
AL1(32) PTY]N FLAGS
A(MUMPARFA) DCB ADDRESS
A(O) TCB ADDRESS
A(0) ADDRESS OF SNAP-SH3T LIST
OH
51

S

DO LO'WNUM=3, BYLOC=YHGHREG=24, DOLODP=2, LABEL=THREE,
WHILE=NN WOP=GTWL I TA=7, WREGB=15

ST 8,SAVE8
ST 9,SAVE9
ST 10, SAVE10
ST ll,SAVEll
LA 10,0
A 10,=F'3'

*,INVALI1) NUMBER FOR 'HGHREG' SPECIFIED IN DO
*, LOOP

S CTHREE
A 3,=F'3'
A 4,=F'3#
A - 5,=F'3#

ENDDO
B -

L
L
L
L
EQU

cn "
BAL
DC
DC
DC
DC
DC
DC
)C
DS
SV C

EX IT
L
LM

A 6,=F'3'
A 7,=F'3'
A-. 8,=F'3'
A 9,=F'3'
A 10,=F'3'
LABEL=THREE

THREE-

8, SAVE8
9, SAVE9
10, SAVE 10
11, SAVE 11

*

SN AP 7D=2, DCSB=DUMPA4REA rPDA T A= RFG
0,4
1, tH300 06 BRANCH AROUND PARA M LIST
ALL(2) ID FUER
AL1(0)
AL(10) OPTION FLAGS
AL1(32) PTI(N FLAGS
A(DU AREA) CB ADDRESS
A(O) TC ADDR E SS
A(0) ADOQESS OF SNAP-SHOT LIST
o0

S

13,4(,13) OP UP SAVE AREA
14,12,12(13) 1-ESTOt REGISTERS

x

12(lJkvX'FF'.FLAG EXIT
14 ETU I'

DUMPAlEA
0,4 ALIGC1 LIST TO FULL40RD
1,*+3 LOAD QEG1 W/LISF ADDR
ALI(123) OPTION BYTE
AL3(DJMPAtEA) DCB ADDRESS
20 ISSJE CLOSE SVC

1066 SAVEAREA DC
-06- - DS
1068 ZERO DC
1069 SAVE8 DS
1070 SAVE9 DS
1071. SAVE10 DS
1072 SAVELl DS
1073 POINTER DC.
1074 STACK DS
1075 Y DC
1076 OUMPAREA DCB

1078+*
1079+*
1080+DUMPAPEA DC

1082+*

10844- DC
1035+ DC

1087+*

1089+ DC
1090+ DC
1091+ DC
1092+ DC
1093+ DC

1095+*

1097+ DC
1098+ DC
1099+ DC
1100+ DC

1102+*

.1104+
1105+
1106+
1107+

1109+*

1111+
1112+
1113+
1114+
1115+
1116+
1117-+
1118+
1119+

DC
DC
DC
DC

D r
DC
DC
DC
DC
DC
DC
DC
DC

-13A(0)

1 3'(0)OP

1F
IF
1F
1F
1F'0'
10OF
IF'1'
DODNAME=TEAM, DSURG=PS , RECFM=V BA,

MACRF=WtRLKSIZE=882,LRECL=125

DATA CONTROL BLOCK

OF'0 ORIGIN-ON WORD BDJNDARY

DIRECT ACCESS DEVICE INTERFACE

BL16'3' FDADDVTBL
A(O) KEYLEDEVTTBAL

C-MMON ACCESS METHOD INTERFACE

AL1(0) BUFNO
AL3(1) BUFCS
AL2(0) BUFL
BL2'010000000000030' OSORG
A(1) 103AD

FOUNDATION EXTENSION

BL'00000D0o' IBFTEKBFLNHIARCHY
AL3(I Efl3A,
BLl'0101010)' RECFA
AL3(0) EXLST.

FrUNDATICN BLOCK

CL8'TEA ' DDNAWE
BLI'0000C010' OFLGS
BL10000000' IFLG
BL2'000000 00001000J0' 4ACR

RSAM-BPAM-SAA IN ERFACE

BLI00000000' RERI
AL3(1) CIECK, GERR, PF KR
A(I) SYSAD
H'0' CINDI, CINO2
AL2(882) BLKSIZE
F'O' WCpn, WCPL, OFFSR, OFFSW
A(1) 1034
ALI(t) tNCP
AL3(1) ErBR, EOBAD

BSAM-BPAM INTERFACE

10 5IS+
1059+
1060
1061+
1C62f
1063+
1064+
1065+

IiV T
R

CL 3 SE
CN P
BAL
DC
DC
SVC

128

X

129

1123+ C A(1) EOBW
1124+ . DC HO1 L-DIRCT
1125+ DC AL2(125) LRECL
1126+ DC AM) CNTRL, NOTE, POINT
1127 END
1128 =F#3-

APPENDIX B

THE LEAVE MACRO

The Source Listing for the LEAVE Macro

STMT SOURCE STATEMENT

THE LEAVE MACRO PROVIDES A MEANS OF ABNORMALLY TER-
MINAT NG A LOOPING STJUCTUREo IT MAY PNVIKE A CON-
DITIDNAL OR UNCYNDJIT>)NAL BRANCH F DM WITHIN A LOOP.
CONDITION PAIAAETERS, WH CH MAY O'Q MAY NOT BE T -
CLUDED, AQE SPECIFIED IN MUCH THE SAVE MANNER AS A
D' WHILE COND!TIO, THE 'CON!D' PA AMETER TS MADE
NIN-NULL WHEN A C04D TIONAL LEAVE IS DESTPED, AND
THE 'LABEL' PARAMETER SPECIFIES THE DESTINATIN OF
THE BRANCH WHICH SHOULD NORMALLY BE TO THE END F
THE L7PTING STRUCTUE LEAVE STATEMENTS SJIOULD NOT
BE USED FOR BACKWARD BRANCHINGo

&LABE4kL=, CC9ND=,&n.PR AT OR=,9® A=, fLQCA=t<TA=,&PEGR=t
&LOCB=, v&LIT B=

&LAB
& SY SN DX
.SKIP

INITTAL .Y THE 'COND' P AMETER IS TESTED TO DETER-
MINE IF THE LEAVE STATEMENT IS CONDITM)NAL 3P UN-
CrNDITIONAI. IF UNCONDITTIN At , THEN A BRANCH TO
'LABELl WILL OCCUR% 'LABEL' MUST BE SPECIFIED
EITHER IN ANOTHER MACR OR IN A PROGRAM T%'STRUC-
TTONO

x

514 *
515 *
516 *
517 *
518 *
519 *
520 *
521 *
522 *
523 *
5?4 *
525 *
526 *
527
528

529
530 ULAB
531
532 *
533 *
534 *
535 *
536 *
53T *
538 *
539 *
540
541 *
542 vSKIP
543
544
545 *
546 *
547 *
548 *
549 *
550 *
551 *
552 .A
553
554
555 *
556

557 *

559 *
560
561 *

WHEN THE LEAVE STATEMENT TS CONDITIONAL,
10 AND DA (WORKING REGISTERS) ARE SAVED.
BE USED TO TEST THE LEAVE CONDITION.

REGISTERS
THEY WILL

10,SAVE .0
11,SAV'iI
. B

THE FOLLOWING SECTY34 OF CODE DETERMINES THE LEFT
ODERAND OF THE LEAVE CONDITION. IT MAY BE SPEC-
IF ED BY A REGISiER (R.EGA), A LOCATION (L CA) CR BY
A LITERAL (LTTA)o THE 1PERAND IS LOADED INTO PEG-
ISTER .10 ILLEGALLY SPECIFIED DPEqANDS WILL GEN-

130

MACRO
LEAVE

LCLA
SE TA
AGO

Al F
B
AGO

('&CONDI NE ''.A
A FL A BEL
. STOP

ST
ST
AGO

131

562 *
563 *
564 *
565 *
566 .8
567
568
569
570
571.C
572
573
574*.0
575
516 .RETUF
577 -
578
579 .E
580*E1
581
582 *
583 *

'584 *
585 *
586
587 *
588 *
589 *
590 *
591 *
592 *
593 *
594.E2
595
596
597
598
599 *F
600
601
602 .G
603
604
605
606 .9
607 .1
608 .H12
609
610 *
611 *
612 *
613 *
614 *
615 *
616 *
617 *
618 *
619 .
620
621
622
623
624
625
676
627 *EQUAL

RATE A MACRO ERROR CONDITION AND THE LEAVE MACRO
WILL NOT BE EXECUTED.

Al F
Al F
AIF
LR.
AGO
AIF
L
AGO
AIF
ATF
LA
A
AGO
AIF
AIF
AGO

('&RPEGA' EQ ')qC
(T'&FEGA ME IN# I.1EA1
('&PFGAf GT s15.').ERR2
10,®A
.E
(P&LOCA' EQ ').D
10,,&LOCA
.E1
('OLITA' EQ '').ERR3
(PLIT8' NE '').ERRe4
10,0
10,=FO&LITA -

('&LOCA' NE ' .ERR5
(V&LITAI NE II).ERR5

- .E2

THE RIGHT OPERAND IS DETERMTNED IN THE NEXT SECTION
OF CODE. IT TOO MAY BE SPECIFTFD BY PFGISTER
(REGB), BY LOCATION (LOCB) OR BY A LITERAL (LITS).
THE RIGHT PPERA4D IS LOADED INTI REGISTER 11 AND
COMPARED TO REGISTE 10 (LEFT OPECANDlo IF THE
RIGHT OPERAND HAS BEEN ILLEGALLY SPECIFIED , AN
ERROR MESSAGE WILL BE PRINTED AND'THE MACRO WILL NT
BE EXECUTED.

ATF
ATE
AIF
LR
AGO
AIF
L
AO
AIF
LA
A
AGO
AtF
AtF
CR
AGO

(VV'EGB' EQ '').F
(Tt®B NE 'N').Elk6
('VREGB' GT 151).ERR7
ll,&PEGB
.91
(#ELOCB' EQ ').G
1lCLOCB

(I&LITB' EQ '*).ERRs
11,0
11,=F'&LITB'
.H2
(#LnCB' NE '').ERR9
('&LITB' NE 1).ERR9
10,11
.1

THE FOLLOWING CODE SEGMENT DETERMINES THE LEAVE
CONOTInN OPERATOR AND GENERATES THE APPROPRIATE
BRANCH INSTRUCTION. A MISSING OR ILLEGAL OPERATOR
WILL GENERATE -AN ERROR MESSAGE AND THE MACRO WILL
NOT BE EXECUTED.

AIF
ATF
ATF
ATF
AT F
ATF
ATF
AGO
851E

('E1PRATOR9 EQ
('V PRATOR' EQ
(IUOPRATOR' EQ
(P&OPPATOR' EQ
('ICPRATOR' EQ
(tCOPRATOM EQ
(0&OPRATOR- E0
.ERPII
A&LAB

* IERR10
IEQ').EQUAL
'LT')*LESS
'LEI).LESSEO
'GE'l.GRTEQ
IGT).GRT
ONE').Q0TEO

RN

132

628
629 0 LESS
630
631 .LESSEQ
632
633 *GRTEO
634
635 .GRT
636
637 oNOTEQ
638
639
640 *
641 *
642 *
643 *
644 *
645 *
646 *
647 *
648 *END
649
650
651 ASLAB
652
653
654 *
655 *
656 *
657
658 *
659 *
660*
661 *
662 *
663 *
664 AERR1'
665
666
667
668 AER2
669
670
671
672 .ERR3
673
674
675
676. oERR4
677
678
679
680 .ERR5
681
682
683
684 eERR6
685
686
6B7
688 *ERRY
689
690
691
692 AE
69 3

AC)
BNL
AGO
BI
A o"' i
BL
A GO
BN H
AGO
BE

-A3 00

. ENID
A&L A B
.END
A&LAB
* END
A&LAB
. END
ALA B
. EN)
ASLAB
*END

THE NEXT SET OF INSTRUCTIONS PESTORES EG!STERS
10 AND 11 AFTER THE LEAVE CONDITION HAS BEEN TESTED.
IF THE COMDIT!JN IS TRUE, A BRANCH Tr 'LABEL' WILL
OCCUR; OTHERWISE, THE PROGPAM WILL .CONTINUE SE-
Q'JENT!AL EXECUTION.

L
L
L.
L
L
AGQ

10, SAVEIO
II, SAVE I
ARLABEL
10,SAVE10
11, SAVE
. STOP

MN CTE
MNOTE
B
AGO
MNOTE
MN OTE
B
AGO
MN OTE
MNOTE
B
AGO
M' OTE
MV TE
AS3G
AGO
MNOT-E
MNOTE
B
AGO
MN)TE
MOTE
B
AG
MNCJTE
MN OTE
B
AGO
MNO T E
'AN TE

THIS LAST SECTION OF C DE TS THE SET OF ERROR MES-
SAGES ANY ONE OF WHICH MAY BE GENERATED IF THE
MACP D' S SYMOLIC PAR AMETEPS HAVE BEEN INCORRECTLY
SDECIFIE) WHEN AN ERROR MESSAGE S P TNTED, THE
MACRO TERMINATES (EXCEPT TN THE CASE OF Al , ERP4
MESSAGE), NEVER GENERATING A PROGRAM BRANCH,

*,'''REGA'' OF LEAVE CONDITION IS NOT A SELF-'
*,'DEFINING NUMERIC'
ASLAB
.END
*.,I'EGA'I OF LEAVE CONDITION DOES NOT SPECTEY
*,'A VALID REGISTER NUMBER'
ASLAB
.ENO
*,'LEFT OPERAND OF LEAVE CONDITION WAS NOT SPECI-'
*,'FIED'
ASLAB
* END
*,?TWO LITERALS HAVE BEEN SPECTIFED IN A LEAVE CON-'
*,'DITION'

*RETIPN
SEND
*,1M9!E THAN ONE LEFT OPERAND SPE~JFIED FOR A LEAVE'
*,ICDNDITION
A&LAB
*END
*,'''PEGB'I OF LEAVE CONDITION IS NOT A SELF-'
*,'DEF!NING NUMBER C'-

. ENO
*,''REGB OF LEAVE CONDITION DOES NOT SPECIFY A'
*,'VALID REGISTER NJMBER"
A LAB
eENo-

4, 'NO RIGHT OPERAND HAS BEEN SPECIFIED FOR A LEAVE'
*,'coODITJI7N'

133

694
695
696 .ERP9
697
698
699
700 *ERRlO
701
702
703
704 .ERRI1
705
706
707 .STOP

B

M4NCTE
MN 'TE
B

M9J TE
MN STE
8
AGO
MN OT E
B
AGO
MEND

A&LAB
.END
*,'MnPE THAN ONE RIGHT 3PERAND SPECIFIED FOR A'
*,'t.EAVE CONDITION'
A&LAB
oEND
*,"''PRATOR 9

I FDR LEAVE CONDITION HAS MOT BEEN'
SPECIFIEDFI'

A&LAB
.END
*,'ILLEGAL OPERATOR SPECIFIED FOR A LEAVE CONDITION'
A&LAB
*END

Sample Program E Illustrating'
the LEAVE Macro

STMT SOURCE STATEMENT

962
963 FRISBEE
979 START
985
986
987
938
989
990
991
992
993
994
995
996
997 *
998 *
999

1011 *
101.2 *
1013
1076
1077
1078
1091
1092
1093
110 *
1101*
1102

1115 *
1116
1179
1180
1182
1183
1190 *
1191 *
I192
1204 *
1205 *
1206

PRINT
ENTER
OPEN
LA
L A
LA
L A
L A
LA
L A
LA
LA.
LA
LAP
LA .

SNAP

NOGEN
12,SAVEAREA
(DUMPARA,0TPUT)
2v0
3, o
4, (
5, 0
6,0
7,0
8, 0
9,0
10,0
11,0
14,0
15,0

ID=1,DCB=DUMPAREAPDATA=REGS

DO L OWNUM=I, BYNUM= , Hmi NUM=100 ,DOLDOP= A, L ABEL= Z
A 4,=F 1.11
A 5,=FI11
LEAVE LABEL=Z,LITA=7,0PRAT1P=EQp EGB=4,COND=F
A 6,=Ft'l
A 7, =F1'

ENDDO LABEL=Z

SN A P T0=2,DCB=DUMP ARE AtPD A T! A=REGS

DO LOWNUM=1,BYNUM=-,HuHNUM=100 DOLDOP= XLABEL=X
A 14,=pFf
LEAVE LABEL=X
A 15,=F'I"

ENDDr LABEL=X

SN AP

EXIT

ID 3,PC3 =DMP ARE At PDA TA= REGS

CL')SE DUMPAREA

SAVEAREA DC 1 A(O)
DS

ZER) DC 1 0'
S f% V Ds - iF
SAVE9 D5 IF
SAVE10 DS 1
SAVEll DS 1F
P O 1 TER OC. F0
STACK DS 10OF
OUMPAREA 0CB DONAME=TEAMDSORG=PSREC FM=V BA,

MACRF =W,8BLKSIZE=882,LRECL=125
E4D)

=F100
-P34'
=F# 71

KEGS AT ENTRY TO SNAP

REGS 0-7

REGS -15

END OF SNAP

00000030 90018888 00000000

00000000 00000000 00000000

00000000

50018S20

00000000

3001BB24

ID = 001

00000000

00000000

00000000 00000000

00003000 00000000

PEGS AT ENTRY TO SNAP

REGS 0-7 000002A0 80018908 00000000.

00000007 00000007 00000006

ID 002

00000000

00000006

REGS 8-15

END OF SNAP

00000000

5001B820

00000000 00000000 00000000

0001824 00003000 00000000

134

1211

1217
1218

29

122
122

1225
.1226

1277
1278
1279
1280
1281

x

REGS AT ENTRY TO SNAP

REGS 0-7

REGS 8-15

ID = 003

000002A0 AOOIBAF8 00000000 00000003

00000007 00000007 00000006 00000006

00000000 00000000 00000000 00000000

5001B820 0001BB24 00000001 00000000

END OF SNAP

Program E with Expanded Macros

STMT SOURCE STATEMENT

962 FRTSBEE
963+FRISBEE
964+
965+
966+
967+l
968 +
969+
970+
.971+
972+
973+
974+
975+
976+
977+
978 START
979+-*
980+START
981+
982+
983+
984
985
986
987
988
989
990
991
992
993
994
995
996 *
997 *
998
999+

10 0+
1001+
1002+
1003+
1004+
1005+
1006+
1007+

ENTER 12,SAVEAREA
DS OH
ENTRY FRISBEE DECLARE NA4E ENTRY
US!NG *,12 DECLARE BASE AODRESSIBILITY.
BALR 15,0 (INITIAL ADDOESSTBILITY).
B 12(,15) B ANCH AROJ.ND 10 FIELD
BC AL(T) , CL7'FRITSBEE' ID LENGTH AND ID
BCTR 150 (QF SET INITIAL ADDR ESSIBILITY
BCTR 15,0 ABSOLUTE ENTRY POINT),
STM 14,12,12(13) SAVE REGISTERS
LR 12,15 SETUP BASE REGISTER.
ST 13,SAVEAPEA+4 CHAIN BACK
LA 0,SAVFAREA CHAIN FORWARD
ST 0,8(.0,13)
LR 13,0 SET UP SAVE AREA POINTER
USING SAVEAREA,13 AN ADORESSABILITY
.PEN (DJMPA 0EAt0TPJT)
CMOP 0,4 ALIGN LIST TO FULLWRD
BAL 1,*+8 LOAD PEGI W/LIST ADDR.
DC ALl(143) OPTION BYTE
DC AL3(DUMPAREA) DCB AL) RESS
SVC 19 ISSUE OPEN SVC
LA 2,0
LA 3,0
LA 4,0
LA 5,0
LA 6,0
LA 7,0
LA 8,0
LA 9,0
LA 10,0
LA 11,0
LA 14,0
LA 15,0

S4 A ID=1,9CB=UMPAR EA,PDATA=REGS
CNOP 0,4
BAL 1,TH30003 BRANCH AROUND PARAM LIST
DC ALI(1T) D) NUM3ER
DC ALI(0)
DC Al(130) OPTION FLAGS
DC ALI(32))PTITO FLAGS
DC A(0UM4AREA) DCB ADORE SS
Dc A(0) TCB ADDRESS
DC A(0) ADDRESS OF SNAP-SHOT LIST

135

1008+! H80003
1009+
1010 *
1011 *
1012
1013+
1014+
1015-
1016+
1017+
1018+
10194+
1020+
1021+
1022+
1023+
1024+*
1025+
1026+
1027+
1028+
1029+
1030+
1031+
1032+-
1033+
1034+
1035+
1036+7-
1037+
1038+
10394
1040+
1041+
1042+
1043+
1044+
1045+
1046+
1047+
1048+
1049+
1050+
1051+
1052+
1053+X4
1054
1055+Z4
1056+
1057+
1058+
1059+
1060+
1061+
1062+
1063+
1064+
1065+
1066+
1067+
10,8+
1 O9+ V4
1V04+
1071+.
1072+
1073+

DS
SVc

00
ST
ST
ST
ST
LA
A
LA
A
LA
A
L

ST
LA
ST
LA
ST
LA
ST
L
L
L
L
ST
ST
ST
ST
L
S
L
S
L
s

L
ST
C
BL
CR
BH
8
BLCR

BL
AR
LA
ST
LA
ST
LA
ST
LA
ST
L
L
L
L
8
L
L
L
L3
a

0 -i
51

LOWNUM=1,.BYNUM=1,HGHNUM=100DOL3CP= ALABEL=Z
8, SAVE
9, SAVE9
10,SAVEIO
11, SAVEll
10,0
10 ,=F l 1
11,0
1 L,=F'100
9,0

91 =F I It

8,POINTER

9, STACK (8)
8,4(8)
10,STACK(8)
8,4(8)
IL, STACK(8)
8,4(3)
8 POINTER
8,SAVES
9,SAVE9
10, SAVE 10
11,SAVEll
8,SAVE8
9,SAVE9
10,SAVEIO
11, SAVE 1I
8, POV'4TER
8,=F' 4
11, STiACK(8)
8 t= Pt 464

10,STACK(8)
8,=F'49
9,STACK(8)
8,POINTER
9, ZERO
X4

10,11
Y4
Z4
10,11
Y4

10,9
8,POINTER
9,STACK(8)
8,4(8)
10, STACK(S8)
8,4(8)
11,STACK(8)
8,4(8)
8,P3INTER
8,SAVES
9, S AVE9
13,SAVE 10
ILSAVEll

W 4

8, SAVF8
9,'SAVE9
10,SAVE10
llSAVEII
AZ

136

EQU *1074+W4
10 75
10 76
1077
1078+
1079+
1080+
1081+
1082+
1083+
1034+
1085+
1086+
1037+
1088+A5
1089+
1090
1091
1092
1093+
1094+CZ
1095 +
1096+BZ :
1097+
1090+AZ
1099
110) *
1101
1 102 +
1103+
110 (t
1105+
1106+
1107+
1108+
1109+
11.10+
1111+IHB00C7

1112+
1113 *
1114 *
1115
1116+
1117+
1110 8
1119+
1123+
112 4
11221+
11234+
11244+
L11254+
1126+
1127+*
11284+
1129+
11304+
11314+
11324+
1133+
1134+

113 64+
1137+
1138+
1139 +X
1140+

ST
ST
LA
A

Lk
CR

N E
L
L
a
L
L .

EM 000
B
L
L
L

L
EQU

SMAP
CND0
SAL
Dc
DC
DC
DC
DC
DC
DC
Sc

SVC

DC
S T
S T
ST
ST

L A
A
LA
A
L AA
LA

S T
L A
ST
L A
ST
LA
ST
LA
L
L
L
ST
ST

137

A 4, =f '
A 5,=Ff It
LEAVE LABEL=Z,LITA=7,0PRAT3 R=EQ, REGB=4,COND=F

1I, SAVE 10
11, SAVEIl
10,0
10,=Ff7'
11,4
10,11
As
10,SAVE10
L1, SAVEIl
A Z
10,SAVE10
11, S AVEI I-

A 6,=Fl'l
A 7,=F 1
LABEL=Z

z
8,SAVE8
9, SAVJ9
10,5 ElO
1I, SAVEII
*

I0=2,DC8=DUMPAREAPDATA=REGS
O,4
lTHB0007 BSAN'CH AROUND PARAM LIST
AL 3(2) :D NPmBER
ALl (0
AL1(130) 00T!ON FLAGS
ALl(32) OPTION FLAGS
A(DU DAPFA) OCB ADDRESS
A(0) TC ADDRESS
A(O) ADDRESS OF SNAP-SHOT LIST
OH
51

LWNUM=1,BYNUM=1,HGHNUM=100tDoLoP=XLABEL=X
8,SAVE8
9,SAVE9
10, SAVE 10
11,SAVEIl
ID,0
10,=F'1'
11,0
ll,=F 100'
9,0
9,=FO 1
8, P0INT ER

9,STACK(8)
8,4(3)
10, STACK(8)
8,4(8)
11, STACK(8)
8,4(8)
8 , PO T NITE R
8,SAVE8
9,SAVE9
10,SAVE10
11 , S A VE Il
8,SAVEO
9,SAVE9

1141+
1t 42+ 1
1143+
11444+
1145+
1146+
1147+
11 3 +I
1i11)4-
15 1+

1 1 +

1152+
1153+
1154+
1155+
115$+X8
1157+X
1158+Z
1159+
1160+
1161+
1162+
1163+
1164+
1165+
1166+
1167i+
1168+
1169+
1170+
1177 L +

1173 +

1175+
1176+
1It (+W8

78
1.179
1180+
1181.
1182
1183+
11 84-C X
1185+
1186 +B X
1197

11-)2 A
1190 *
1191
1192+
1193+
1194+
1195+-
11.96+
1197+
1190+
1199+
1200+
1201+1HBol011
1202+
1203 *
1204 *
1205
1206+

ST
ST
L
S.-
L
s
L

SrL
ST .

-c
3L
C
B
BL
CR
BL
A
L
S T
LA
S T
LA
ST
L A
ST
L
L
L
L
B
L
L
L

B
IEQLJ

10 , SAVE 10
Ii, SAV Et
8, PiTNT E9
8,=F441 -
11,STACK(8)
8,=F '4
10,STACK(8)
8 , F'4 6
9,STACK(3)
8 P I T14T l -R,
9, ZERO
X8
10,11

Y U

10,11
Y8
10,9
8 , POIT E P
9, STACK (8)
8,4(8)
10,STACK(8)
8,4 (8)
11, STACK(8)
8,4(8)
8, P9 NT ER
8, SAVES
9,SAVE9
10, SAVE 10
11, SAVEI11
W8
5, SAV E8
9, SAVE9
10, SAVE10
11, SAVEII
AX
*

B AX

E00DD0
B
L
L
L
L
EQU

SN AP

BA L
DC
DC
DC
DC
DC
DC
DC
F' S
SVC

EXIT
L

A 14,=F'l'
LEAVE LABEL=X

A 15,=F'l'
LABEL=X

x

8,SAVE8
9, SAVE
10, SAVE10
IA, SAVElI

I [=3 ,OCB=UMPAREA,PDATA=REGS
0,4
1,tH30011 BRANCH AROUND PARAM LIST
AL1(3) ID NUMBER
AL(0)
ALl1130) OPTION FLAGS
ALI (32) OPTION FLAGS
A(MIPA', FA) CB ADDRESS
A(0) TCfI ADDRESS
A(O) ADDRESS OF SNAP--SHb LIST
OH
51

13,4(,13) POP UP SAVE AREA

13 8

-

1207+
1203 +
1209+
12110
1211+
1212+
1213+
1214+
1215+

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

L M
MV I
BR
CLOSE
CNOP
RA L
DC
DC
SVc

SAVEAREA DC
OS

ZERO
SAVE98 Ds
SAVE9 DS
SAV;*10 DS
SAVEII DS
POINTER DC
STACK DS
DUMPAREA DC8

122T+*
1228+*
1229+DUMPAPEA DC

1231+*

1233+
1234+

12364*

1238+
1239+
1240+
1241+
1242+

1244+*

1246+
1247+
1248+
1249+

1251+*

1253+
1254+
1255+
1256+

1258+*

1260+
1261+
1262+
1263+
126 '4+
1265+
12 6+
1267+
1268+

14412,12(13) RFSTORt RGISTERS
12L3),XF' FLAG EXIT
14 RETURN

DUMvPARE A
0,4 ALTGN LIST TO FULLWJRO
,*+3 LOAD R(Gl W/LIST ADDR

AL(128) OPTON BYTE
AL3(DU'APAREA) DGB ADDRESS
20 ISSUE CLOSE SVC

13A(0)
OF
IFIOR
JY
IF
IF
1F
IF'0'

DoNAME=TEAM, DSORG=PSRECFM=VBA,
MACRF=W,BLKSIZE=88ZLRECL=125

DATA CONTROL- BLOCK

OF'O' ORIGIN ON WORD BOUNDARY

DIRECT ACCESS DEVICE INTERFACE

DC . BL16'0' FDADtDVTBL
DC A(O) KEYLE,DEVTTRBAL

COMMON ACCESS METHOD INTERFACE

DC
DC
DC
0
DC

DC
DC
DC
DC

DC
DC
DC
DC

DC
DC
DC

DC

DC
DC

r) r
DC

ALI(0) BUFNS
AL3(1) BUFCB
AL2(0) BUFL
BL2'0100000000000000' DSORG
A(1) 10BAD

FOUNDATION EXTENSION

BL100000000' BFTEKBFLNHIARCHY
AL3(1) EODAD ,
BL1'O010103' RECFM
AL3(0) EXLST

FOUNDATION BLOCK

CLS'TEAM' DONAME
RLI'000CO010' CFLGS
BL'000000D ' FLG
BL2'0000000000100000' MACR

BSAM-BPAM-QSAM INTERFACE

BLI'00000000' R;:'1
AL3(1) CHFCK, GEgR, PERR
A(1) SYNAD
H' ' CIN L, C ND2
AL2(8 2) BLKSIZE
F'O' WCPO, WJPL, OFFSR, OFFSW
AMI) 1034
ALI(0) NCP
AL3(1) EDPt EOBAD

BSAM-BRAM INTERFACE

139

x

A(1) E0GW
H'0' DIRCT
AL2(125) LPECL
AMI) CNTPL, NOTE, POINT

-F' I'
F'100'

=F #41
=F'7'

Sample Program F Illustrating. a
LEAVE Macro Coded Incorrectly

STMT SOURCE ST 4TEMENT

962 FRISBEE
963+FRISBEE
964+
965+
966+
967+
968+
969+-
970+
971+
972+
973+
974+
975+
976 +
977+
978 START
979+ .
980+START
981+
982+
983+
984
985
986
987
988
989
990
991
992
993
994
995
996 *
99T *
998
999

1000+
1001+
10')2+
1003+
1004+,
1005+
1006+
1007+
1008+IHB0003

EY TER
DS
ENTRY
US I NG
BALR
B
D
BCTR

STM
LR
ST
L A
ST
L R
USING
OP EN
C0P
BAL
DC
DC
Svc
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA -
LA
LA

CN Op
BA L
DC
DC
DC
DC
0c

DC
DC
DC
0S

1?,SAVEAREA
OH
FRISBEE DECLARE NAME ENTRY
*,12 DEkLARE BASE AJDRESSTBILITYo
15,0 (Ik'ITIAL ADOPESSIBILITY).
12(,15) BP NCH AROUND ID FIELD
ALI(7),CL7'FR!SBEE' ITD LENGTH AND ID
15,0 (PESET INITIAL ADDRESSIBILITY.
15,0 ABSLUTE ENTRY POINT),
14,12,12(13) SAVE kEGISTERS
12,15 SETUP BASE PEGISTER.
13,SAVEA'7E-A+4 CHA TN BACK
0,SAVEAPEA CHAIN FORWARD
0,8(-0,13)
13,0 SET UP SAVE ArEA POINTER
SAVEAREA,13 AND ADDR.ESSABILITY

(DUMDAREA ,OUT PUT)
0,4 -ALIGN LIST TO FULL40RD
[,*+8 LOAD QEG1 W/LIST ADDR.
AL1(143) OPTION BYTE
AL3(DUMPAREA) DCB ADDRESS
19 ISSUE OPEN SVC

2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0
11,0
14,0
15,0

SNAP ")=1,DCB=4UMPAREAPDATA=REGS
0,4
1,iTH30003) BRANCH AROUND PARAM L ST
ALI(1T) ID NUMBER
AL 1(0)
AL(130) OPTION FLAGS
ALl(32) OPTION FLAGS
A(DUMPAREA) OCB ADDaESS
A(O) TCB ADDRE SS
A(0) ADDRESS OF SNAP-S,4JT LTST
0t

DC
DC
DC
DC
END

1272+
1273+
12274+
1275+
1276
1277
1278
1279
1280

140

141

1009+ SVC 51
1010 *
1011 *
1012 DDJ 24W'IUM=1,BYNUM=1, H^-iNUM=100,D3L0OP=A,LABEL=Z
1013+ ST 8,SAVE8
1014+ ST 9,SAVaE9
1015+ ST 1OSAVEI0
1016+ ST 11,SAVEl1
1017+ LA 10,0
1018+- A 101,=F
1019+ LA 11,0
1020+ A ll,=F'1001
1021 LA 9,0
1022+ A 9,=F 'l
1023+ L 8,PniNTEP
1024+ ST 9,STACK(8)
1025+ LA 8,4(8)
1026+ ST 10,STACK(8)
1027+ LA 8,4(8)
1028+ ST Ii, STACK(8)
1029+ LA 8,4(g)
1030+ ST 8, 1PO!NTER
1031+ L 8,SAVE8
1032+ L 9,SAVE9
1033+ L 10, SAVF10
1034+ L- 11,SAVEll
1035+7 ST 8,SAVE8
1036+ ST 9,SAVE9
1037+ ST 10,SAVE10
1038+ ST 11,SAVEll
1039+ L 8,POINTER
1040+ S 8,=F'41
1041+ L l1, STACK(8)
1042+ S 8,=F'4'
1043+ L 10,STACK(8)
1044+ S 8,=F'4'
1045+ L 9,STACK(8)
1046+ ST 8,P0INTER
1047+ C 9,ZERD
1048+ BL X4
1049+ CR 10,11
1050+ BH Y4
1051+ B Z4
1052+X4 C 10,11
1053+ BL Y4
1054+74 A 10,9
10 SS+ L 8,1 0') TTE
1056+ ST 9,STACK(8)
1057+ LA 8,4(3)
1059+ ST 10,STACK(8)
10 59+ L A 8, 4(P)
1060+ ST 11V STCK(8)
1061+ LA 8,4(3)
1062+ ST 8,PNINT-EI
1063+ L 8,SAVE8
1064+ L 9,SAV79
1065+ L 1QSAVEJ0
1066+ L 11,SAVEil
1067+ a W4
1068+Y4 L 8,SAVra
1069+ L 9,SAVEB9
1070+ L 10,SAVE10
1071+ L 11,SAVElU
1072+ B AZ
1073+W4- EQU *
1074 A 4,=F' p

142

1075
1076
107-1+
1078+
1079
1030
10 1+
1082+
1083+
10 f i4+-
1085+A5
1086+
1087
1033
1089
1090+
1091 +C
1092+
1093+BZ
1094+
1095+A Z
1096 *
1097 *
1098
1099+1
1100+
1101+-
1102+
1103+
1104+
1105+
1106+
1107+
1108+1HB0007
1109+
1110 *
1111 *
1112
1113+
1114+
1115+
1116+
1117
1118+
1119+
1120+
1121+
1122+

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

A 5,=F'1'
LEAVE LABEL=ZPREGA=-5,t PRAT3R=EQ, REGB=4,C0ND=V

ST 10,SAVE10
ST 11, SVE11

*,'(EGAw OF LEAVE CONDITION IS NOT A SELF-
*,DEFTINIG NUMER IC

8 A5
L 10,SAVEIO
L 11, SAVE1.1
8 AZ
L 13,SAVE10
L 11,SAVEI1

ENDDO
8
L
L
L
L
EQU

RAL
DC
DC
DC
DC
DC

DCDCs
OS
SVc

E X T
LM
L M
MVT
BR
CLOSE
CM)P
SAL
DC

SV C

SAVEAREA DC
DS

ZERO
SAVF,8
SAVE9
SAVE10
SAVE 1
POINTER
STACK
DUMPAREA

0c
DS
DS
DS
DS
DC
DS
D B

1134+
1135+*
1136+DUMPAREA DC

1138+*

A 6,=FIll
A, 7,=F1'
LABEL=Z

Z
8,SAVE8
9, SAVE9
19,SAVE10
1 ISAVEll

SN A D I 0=2, DCB=DUMPAREA, PDATA=REGS
0,4
I1TH30007 BRANCH AROUND PAPAM LIST
ALI(2) ID NUMBER
AL(0)
ALI,(130) OPTION FLAGS
ALl(3) OPTION FLAGS
A(MUMPAREA) DCB ADDRESS
A(0) TCB ADOPESS
A(0) ADDRESS 3F SNAP-SHOT LIST
OH
51

13,4(,13) POP UP SAVE AREA
14,12,12(13) ESTORE REGISTERS
12(13),X'FF' FLAG EXIT
14 RETURN

DJMD)EA
0,4' ALIGN LIST TO FULLW3RD
1r++3 LOAD REGI W/LIST ADDR
ALI(128) rPTT2N BYTE
AL3(Z JYA A) DCB ADDRESS
23 ISSUE CLOSE SVC

18A(0)
OF

iF
1F -
iF
IF
IF'10#
100F
DDNAME=TEAMDSJRG=PSvECFM=VBA,

MACRF=WtBLK SIZE=882, LRECL=125

DATA CONTROL BLOCK

OF'0' ORIGIN ON WORD BOUNOARY

DIRECT ACCESS DEVICE INTERFACE

x

WC BL16''j' FDADDVTBL
DC A(0) KEYLEDEVTTRB3AL

COMMON ACCESS METHOD INTERFACE

1140+
1141+

1143+*

1145+
1146+-
1147+
1148+
1149+

1151+*

1153+
1154+
1155+
1156+

1158+*

1160+
1161+
1162+
1163+

1165+*

1167+
1168+
1169+
1170+
1171+
1172+
1173+
1174+
1175+

1177+*

1179+
1180+
1181+
1182+
1183
1184
1185
1186

DC
DC
DC
DC
DC

Sample Program G Illustrating a
LEAVE Macro Coded Incorrectly

STMT SAUPCE STATEMENT

962 FR SBEE
963+FRISBEE
964+
965+
966+
967+
968+
969+
970+
94-+

E NTrER
DS
EJ TRY
Ui S T 4 -
BALR
B

fC TR
STM

12,SAVEARFA
04
FRISBEE 0ECLAE NAME ENTRY
*,42 0ECLARE ASE ADDDESSIBILITY.
15,0 (INTTTAL ADfDRESSL3TILXTY).
12(4l5) fV ANCH AROJ4D ID PTELD
AL1(7),Cl 'F rISBF ' ID LENGTH AND ID
15,0 (RESET INITIAL ADY ESSIBILITY
15,0 AGYDLUTE ENTRY P rnT)., .
14,12,2(13) SAV5E REGISTERS

14 3

ALI(0) BUFNO
AL3(1) BUFCB
AL2(0) BUFL
BL2'0100000000000000' 0DSORG
AM) TOBAD

FOUNDATION EXTENSION

BLI'000000001 BFTFKBFLNHIARCHY
AL3(1) EODAD
BL01010100' RECFM
AL3(0) EXLST

FOUNDATION BLOCK

CLS'TEAM' DDNAME
BLP00000010' CFLGS
BLP'0000000)' !FLG
BL20000000000100000' MACS

BSAM-BPAM-QSAM INTERFACE

BLL'00000000' ER1
AL3(1) CHECK, GEPR, PERR
A(l) SYNAD
H'0' CINDI, CTND2
AL2(882) L5LKSIZE
F'o' WCPO, WCPL, DFFSP, OFFSW
A(1) TOBA
ALICO) NCP
AL3(1) EOBR, EBAD

BSAM-BPAM IN TERFACE

AMlI EOBW
H'0' DIRCT
AL2(125) LRECL
A(1) CNTI.L, NOTE, POINT

=F14.0

DC
DC
DC
DC

DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
END

972+
973+
974+
975+
976+
977+
978 STAPT
979+
980+START
981+1
982+
983+
984
935
986
987
988
989
990
991
992
993
994
995
996 *
997 *
998
999+

1000+
1001+1
1002+
1003+
1004+
1005+
1006+
1007+
I'> 3+IHB0003
1009+
1010 *
1011 *
1012
1013+
1014+
10 15+
1016+
1017+
1018+~
1019+
10 20+
1021+
1022+
1023+
1024+
1025 +
1026+
1027+
1028+
1029+
10 0+
10 31+
1032+
1033+
1034+
1035+Z
10 36+
1037 +

LR 0
ST
L A
ST
LR P
US ING
OP EN

BAL
DC
DC
SvC
L A
L A
LA
LA
LA
LA
LA
L A
LA
LA
L A
LA

CNIOP
BAL
DC
DC
DC
DC
DC
DC
DC
DS
SvC

DD
ST
ST
ST
ST
L A51-4

AL A
A
LA

L A

S TLA
ST
L A
ST
LA
ST
LA
L
L
L -

ST
ST
ST

12,15 SETUP RASE EG!STER
13, SVEAEA+4 CHAIN ACK
0, SAVEAD EA CHAIN FJ7 WA O
0,8(0,13)
13,0 SFT UP SAVE AREA POINTER
SAVEA.r A, 13 AND ADDESSAB!LITY

(JMPA DE ABOUT PUT
0,4 ALTIN L ST TO' FLLA0RD
1,*+8 LOAD RE%1 W/LIST ADOR.
ALI(143) ?PTYT JN BYTE
AL3(DJMPAPEA) DCB ADDRESS
19 ISSUE OPEN SVC

2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0
11,0
14,0
15,0

SNAP TD=1,DCB=DU4PAREA,PDATA=REG
0,4
1,tHB0003 BRANCH AROUND PARAM LIST
ALI(1) Tfl NUMBER
ALl (0)
ALI(130) 7PTTON FLAGS
AL 1(32) GPT r'N FLAGS
A(DUMAEA) DCB ADDRESS
A(0) TC5 ADDESS
A(0) ADDRESS F SNAP-SHO T LIST
OH
51

S

L2WNUM=1,BYNUM=1,HHNJM=100,D0L2OP=ALABEL=Z
8, SAVE
9,SAVE9
10, SAVE10
11, SAVEIl

L0, =F '1'
11,0
Ilt, =F 'tOO '
9, 0
9,=F' 1'
8,PDINTEP
OSTACK(8)
8,4(3) -
10,STACK(8)
8, 4(3)
11, STACK(8)
8, 4(3
8, P)T^ ATE
8, S AVE8
9, s IV F9
lOSAVEIO
1I, SVFlI
8, SAVEI
9, A 11 W9
10, SAVElD

144

145

1018+ ST 11,SAVI11
1039+ L 8,POINTER
1040+ S 8,=F--44
1041+ L 1lSTACK(8)
1042+ S 8,=F#4#
1043+ L 10,STACK(8)
1044+S 8,=F'41
1045+ L 9,STACK(8)
1046+ ST 1,PO!N TE r
1047+ C 9,ZE9
1048+ BL X4
1049+ CR 10,11
1050+ RN Y4
1051+ B Z4
1052+X4 CR 10,11
1053+ RL Y4
1054+Z4 AQ 10, 9

1055+ L 8,POT1TER
10%6+ ST 9,STACK(8)
1057+ LA 8,4(8)
1058+ ST 10,STACK(8)
1059+ LA 8,4(8)
1060+ ST 1lSTACK(8)
1061+ LA 8,4(8)
1062+ ST 8,POtNITF
1063+ L- 8,SAVE8
1064+ L 9,SAVE9
1065+ L 10, SAVE10
1066+ L 11,SAVEl
1067+ 8 W4
1068+Y4 L 8,SAVE8
1069+ L 9,SAVE9
1070+ L 10,SAVEIO
1071+ L 11,SAVEI1
1072+ B AZ
1073+W4 EQU *
1074 A 4,=Fvj'
1075 A 5,=F'1'
1076 LEAVE LABEL=Z,0PRATOR=EQREGB=4,CCND=K.
1077+ ST 10,SAVEIO
1078+ ST 11,SAVEII
1079 *,LEFT PERAND OF LEAVE CONDITION WAS NOT SPECI-
1080 *,FIED
1081+ 8 AS
10,2+ L 10,SAVF10
1083+ L 11, SAVEl
1084+ B AZ
1085+A5 L 10,SAVE10
1086+ L 11,SAVEI1
1087 A 6,=Fl1'
1088 A 7,=F'll
108q ENODO LABEL=Z
1090+ 8 z
1091+CZ L 8,SAVE8
1092+ L 9,SAVF9
10934+[Z L 10,SAV10
1094+ L 11,SAVE11
1095+AZ EZU *
1096 *
1097 *
1098 SNAP !D=2,DCBDUMPAREAPDATA=REGS
10 9+ CVOP 0,4
1100+ BAL 1,IHB0007 BoANCH AROUND PARAM LIST
I101+ DC ALI(2) ID NUAIER
1102+ DC AL1(0)
1103+ DC AL1(130) OPTION FLAGS

1104+
11054
1106+
1107+
1108+IHBOO0T
1109+
1110 *
1111 *
1112
1113+
1114+-
1115+
1116+
1117
1118+
1119+
1120+
1121+
1122+

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

SAVEAREJ

ZERO
SAVE8
SAVE9
SAVE 10
SAVEll
P0 INTER
STACK
DUMPARE

DC

DC
Dc
DS
Svc

EXIT
L
L
MVi
B 1
CLOSE
CM OP
BAL

DC
SVC

A DO
)S
DC
DS
DS
DS,
DS
Dc
DS

A DCB

1134+*
1135+*
1136+DUMPAREA DC

AL1(3Z) OPTION FLAGS
A(DJPAREA) Dc ADDRESS
A(0) TCB ADDRESS
A(0) ADDRESS OF SNAP-SHJT LIST
0H
51

13,4(,13) POP UP SAVE AREA
14,12,42(13).RESTORE REGISTERS
12(13),X'FF' FLAG EXTT
14 RETU N

DU -vPARE A
0,4 ALIGN LIST TO FULLWJRD
bt*+8 LOAD REGI W/LIST ADDR
AL1(128) CPTI.ON BYTE
AL3(DUPAREA) DCB ADDRESS
20 ISSUE CLOSE SVC

194(0)

IF'0'
IF
1F
iF
iF
19' 0'
100F
DDN&ME=TEAMDSORG=PSRECFVM=VBA,

MACR F=W,BLKSIZE=882,LRECL=125

DATA CONTROL BLOCK

OF'0' ORIGIN ON WORD BOUNDARY

DIRECT ACCESS DEVICE INTERFACE

D BIL16'0' FDAD,DVTBL
DO A(O)- KEYLEDEVTTRBAL

COMMON ACCESS METHOD INTERFACE

DC ALI(O) BUFN3
0C AL3(1) JFCB
D AL2(0) 3UFL
DC BL2'0100000000000000' DSORG
C A(1) IOBAD

FOUNDATION EXTENSION

DC BLI'0000000' BFTEKBFLNHTARCHY
DC AL3(1) EODAD
DC BLI'01010100' RECFM
Dc AL3(0) EXLST

FOUNDATION BLDCK

DC CLB' TEAA' ODNAME
DC BLI'00300010' OFLGS
DC BLI'03000000' TFLG
OC BL20000003000100000' MACR

BSAM-BPAM-QS4AM INTERFACE

146

X

1138+*

1140+
1141+

1143+*

1145+
1146+
1 1 47 +
1148+4-
1149+

1151+*

1153+
1154+
1155+
1156+

1158+*

1160 +
1161+
1162+
1163.-

1165-+*

0'
DC
DC
DC

DC
DC
DC

1167+
1168+
116C)+
1170+
1171+
1172+
1173+
1174+
1175-+

117+4*

1179+
1180+-
1181 +
1182+
1183
1184
1185
1186

BLPO0O000030' PER1
AL3(1) CHECK, GEPR, PEIR
A(1) SY P!AD
H101 C1M31, CTND2
AL2(382) BLKSZE .
Foo' ACPrl, WCPL, CFFSR, OFFSW
A (1) 108A
ALI(0) NCP
AL3(1)E') fRlR, EDBAD

BSAH-BPAM INTERFACE

A(1) EOBW
H'0' MRCT
AL2(125) LRECL
A(1) CNTRL, NOTE, POINT

=F'10
=F11001
=F#41

Sample Program H Illustrating a
LEAVE Macro Coded Incorrectly

STMT SOURCE STATEMENT

962 FRTSBEE
963+FRISBEE
964+
965+
966+
967+-
968+
969+
970+
971+
972+
973+
974+
975+
976+
977+
978 START
979+
930+START
981+
982+
983+
984
985
986
987
998
989
990
991
992
993
994
995
996
997

ENTER 12,SAVEAREA
DS 0H
E j TOY FRI SBEE DEC LARE NAME ENTRY
USING *2 DECLARE SASE AJDRESSIBILITY.
BALR 15,0 (4ITTTAL ADDESSIBILITY).
B 12(,15) B ANCH AROUND I) FIELD
DC ALl(7),CL7'FrTSBEE' ID LENGTH AND ID
BCTR 15,0 (RE-SET INITIAL ADDlESSIBILITY
BCTR 15,0 ABSrLUTE ENTPY POINT),
STM 14,12,12(13) SAVE REGISTERS
LR 12,15 SETUP BASE REGISTER.
ST 13,SAVEAPEA+4 CHAIN BACK
LA 0,SAVEAPEA CHAIN FDaWARD
ST 0,8(0,13)
LR 13,0 SFT UP SAVE AREA POINTER
US4NG SAVEAREA,13 AND ADDAESSABILITY
OPEN (YMPAPEAvOJTPJT)
CNOP 0,4 ALIGN LIST TO FULL RD
BAL 1t*+8 LOAD EGI W/LIST ADDR.
DC AL1(143) OPTION BYTE
DC AL3(DUMPAREA) DCB ADDRESS
SVC 19 ISSUE OPEN SVC
LA 2,0
LA 3,0
LA 4,0
LA 5,0
LA0
LA 7,0
LA 8,0
LA 9,0
t A 101 ,0
LA 11,0
LA 14,0
LA 15,0

I D-1 ,DCB=DUAPAREAtPD4TA-REGS

147

DC
DC
DC
DC
END

998 SNAP

999+
1000+
1001+
1002+
1003+
1004+
1005+
1006+
1007+
1008+IH80003
1009+
1010 *
1011 *
1012
1013+
1014+
1015+
1016+
1017+
1018+
1019+
1020+
1021+
1022+
1023+
1024+
1025+
1026+
1027+
1028+
1029+
1030+
1031+
1032+
1033+
1034+ ,
1035+Z
1036+
1037+
1038+
1039+
1040+
1041+
1042+
1043+
1044.4-
1045+
1046+
1047+
1048+
1049+
1050+
1051+
1052+X4
1053+
1054+Z4
1055+
1056+
1057+
1058+
1059+
1060+
10 1+
1062+
1063f+
10-544-

C\ OP 0,4
BAL
DC
DC
DC
DC
DC
DC
DC
DS
SvC

D)
S T
ST
ST
ST
LA
A

LA
A
LA
A
L
S T
LA
ST
LA
ST
LA
ST
L
L
L
L
S T

ST
ST
ST
L
sr
L

L

L

S T

C R

CR

AR
L
ST
LA
ST
LA
S T
LA
S T
L
L

1,HB0003 BANCH AROUND PARAM LI ST
ALI(1) 0 NINBER
AL 1(0)
Al(130) OPTION FLAGS
ALL(32) OPTTCN FLAGS
A(DUMPAA) DC8 ADDRESS
A(0) TCB ADDRESS
A(0) ACDPESS OF SNAP-SHOT LIST
OH
51

LOWNUM=1,3YNUM=1,HGHNUM=100,DLDOP=A,LABEL=Z
8,SAVE8
9,SAVE9
10,SAVE10
11,SAVEIl
10,0
10,=F'1'
11,0
1l=F'1001
9,0
9,=F'l
8, P01 NTER
9%STACK(8)
8,4113)
10, STACK(8)
8,4(8)
11,STACK(8)
8,4(3)
8,POINTER
8, SAV'8
9, SAVE%
10,SAW10
11, SAVEll
8, SAVE
9, SAVE9
10,. AVE 10
11, .AV -11
8, POTNT ER
8, =F41
l, STACK(8)
8,=F' 4'
10,STACK(8)
8,=F'4'
9,STACK(8)
8, POINTER
9,ZER)
X4
10,11

Y4
Z4
10,11
Y4
10,9
8,POINTER
9,STACK(8)
8,4(8)
10, STACK(8)
8,4(81
11, STACK(8)
8,411) 3
8,P0INTER
8, SAVE
9,SAVE9

148

1065+
10+
1067+
1068+Y4
1069+
1070+
1071+
1072-
1073+W4'
1074
1075
1076
1077+
1078+
1079+
1080+
10 81+

1083

1086+
1087+
1088+A 5
1089+ -
109)0
1091 -
1092
1093+
1094+ CZ
1095+
1096 + R Z
1097+
1098+A Z
1099 *
1100 *
1101
1102+
1103+
11044+
11054+
1106+
1107+
1108+
1109+
1110+
1l1141HBO0007
1112+
1113 *
1114 *
1115
1116+
1117+
1118+
1119+
1120
1121+
1122+ 4
1123+
1124+
1125+
1126 SAVEAREi
1127
1128 ZE0
1129 SAVF8
1130 SAVE9
1131 SAVE10

L
L
a1
L
L
L
L

3EQU

S T
S T
L A
A
L R
c R

8
L
L

L
L -

EN DDO
B
L
L
L
L
:Qu

CNOP
BAL
DC
DC
DC
DC
DC
08
DC
OS
SVC

EXIT
L
LM
MV I
BR

CLOSE

SAL
DO
Dr,
SVC

A DC
DS
DC
Ds
DS08

lotsAVE10
II, SAVEl
W4
8, SAVE
9,SAVE9
10,SAVE 10
11, SAVE 11
AZ

A 4,=F'l1'
A 5,=Ft1,
LEAVE LABEL=Z,LITA=7,OPRATDR=QQ,REGB=4,COND=T

10, SAVE10
lloSAVEll
10, 0
10,=F17'
11, 4
10,11
*,ILLEGAL OPERATOR SPECIFIED F.R -A LEAVE CONDITION
A5
10, SAVE 10-
11,SAVEll
AZ
10,SAVE10
11,SAVEll-

A 6,=F'1'
A 7,=F*1'
LABEL=Z

Z
8, SAJVE8
9, SAVE9
10, SAVE 10
11, SAV~11

*

SNAP ID=2, FCB=DUIPAREAPDATA=REG
0,4
1,IHB0007 BRANCH ARJUN) PARAM LIST
ALI(2) ID NUMBER
A L I(0)
Al(130) OPTION FLAGS
AL1(32) OPTION FLAGS
A(DUMPA'EA) DCB ADDRESS
A(3) TC8 ADDRESS
A(0) ADDRESS OF SNAP-SADT LIST
0H
51

S

13,4(,13) P")P UP SAVE AREA
14,12,12(13) RESTORE REGISTERS
12(13),X'FF' FLAG EXIT
14 RETURN

D JMDAREA
0,4 ALIGN LIST TO FUL'LWJRD
lt3 LOAD REGl W/LIST ADDR
AL(12) PT10N BYTE
AL3(D)PPA EA! DCB ADDRESS
20 ISSUE CLOSE SVC

18A(0)
OF
iF' 0'
11
IF
JF

149

150

1132 SAVEll OS D
1133 POINTER DC 1F''
1134 STACK DS 100F
1135 DUMPAREA DCB DD'AME=TEAMDS)RG=PSRECFM=VBA, X

MACRF=W, BLKSIZE=882,t RECL=125

1137+* DATA CONTROL BLOCK
1138+*
1139+DUMPAPEA DC OF'0 ORIGIN ON WORD BOUNDARY

1141+* DIRECT ACCESS DEVICE INTERFACE

1143+ DC BL16*'0 FDADDVTBL
1144+ DC A(0) KEYLEDEVTTRBAL

1146+* COMMON ACCESS METHOD INTERFACE

1148+ DC AL1(0) BUFN0
1149+ DC AL3(1) 1UFCB
1150+ DC AL2(0) BUFL
1151+ DC BL2'0100000000000000' DSORG
1152+ DC AU1) IBAD

1154+* FOUNDATION EXTENSION

1156+ DC BLL'00000001' BFTEKBFLN,HIARCHY
1157+ DC AL3(1) E0dAD
1158+ DC BL1'01010100' RECFM
1159+ DC AL3(0) EXLST

1161+* FOUNDATION BLOCK

1163+ DC CLS'TEAM' ODNAME
1164+ DC BLL'00000010' OFLGS
1165+ DC BLLO0O0000001 !FLG
1166+ DC BL2'00000000010000)' MACR

1168+* BSAM-BPAM-OSA INTERFACE

1170+ DC BL1'00000000' RER1
11714 DC AL3(1) CHECK, GERR, PERRY
1172+ DC A(1) SYNAD
1173+ DC H'0' CINDI, CIND2
1174+ DC AL2(882) BLKSIZE
1175+ DC F'0' CPO, WCPLt, OFFSR, OFFSW
1176+ DC A(1) IOBA
1177+ DC AL1(0) NCP
1178+ DC AL3(1) EOBR, EOBAD

1180+* BSAM-BPAM INTERFACE

1182+ DC- AM) EOBW
1183+ DC H'Ol DIRCT
3184+ DC AL 2(1?5) LRECL
1185+ DC AMi) CNTRLr NOTE, POINT
1186 END
1187
1188 =F"1001
1189 . F'4'
1190 =F-70

APPENDIX C

THE CASE, ENDCASE, ELSE, AND ENDELSE MACROS

The Source Listing for the CASE Macro

STMT SOURCE STATEMENT

709 *
710 *
711 *
712 *
713 *
714 *
715 *
716 *
717 *
718
719

7 2)0
721 L A B
722
723 *
724 *
725 *
726 *
727 *
728
729 *
730.SKIP 1
731
732
733 *
734 *
735 *
736 *
737
738 *
739 *
740 *
741 *
742
743
744 .SK IP2
745
746
747
748 *RETURN
749
750
751 .A
752
753
754
755
756

MACPR
CASE

LCLA
SE TA
AGO

ST
ST
AGO

Al F
AT F

AT F
LA
A
AGO
AT. F

AT F
A T F
AL F

AG 0

THE CASE MACRO PROVI DES A SEt.FCTTVF CnNTP2L STPUC-
TIJRE FOR ALC. A CONDITTON IS SPEPTFT ED WHEN Cr'D!NG
THE MACCD, AND DUPING PRnGRAM EXFCUTIDN, IF THE
CONDITION IS TRUE, PROGRAM INSTrUCT TnkS F'LLOWDNG
THE CASE STATEMENT (UP TO THE 'ENDCASE' MACRO) WTLL
BE EXECUTED, IF THE CONDITION IS FALSE, AN IMMED-
TATE BRANCH TO THE 'ENDCASE' MACPD WILL OCCUR.

&LABEL=,&LITA=,®A=,&L OCA=,OPPATR=, SL!TB=,tREGB=,
LOCB=

&LAB
&SYSNDX
.SKIP1

TJ TEST THE CASE CONDITION PEGISTEPS 10 AND 11 ARE
USED AS WOPK AREAS; CONSEQUENTLY, THE CONTENTS OF
THESE REGISTERS ARE INITIALLY SAVEDo

X

10,SAVE10
11, SAVEl
*SKIP2

THE LEFT OPERAND OF THE CASE CONDTTICN IS DETEP-
MINED TN THE F LLn4 NG SECTVN OF C0DE TT MAY BE
SPECIFIED BY A LITERAL (LTTA), BY REGT STEP (REGA) rt
BY LnCATT(N (LOQA). ITS VALUE IS LOADED INTO PE-
ISTEP 10o IF THE LEFT OPERAND HAS BEEN ILLEGALLY
SPECTFIED, AN ERROD MESSAGE WILL BE OUTPUT, AND THE
CASE CONDITION WILL BE ASSUMED FALSE.

('&LITA' EQ').A
('CNEGA' Nr ').ERR1
('EL CA' NE).ERk1
('&LITB' NE '').ERR2
10,0
10,=F'ELITA'

('*PEGA' EQ '').B
locaOCA' NE '').ERL
(T'REGA NE 'N')oERR3
('EREGA' GT #15').EkR4
10,®A
.c

151

152

757 .8
758
759
760 *
761 *
762 *
763 *
764 *
765 *
766
767 *
768 *
769 *
770 *
771 .C
772
773
774
775
776
777 .D
778
779
780
781
782
783 oE
784
785
786 *
787 *
788 *
789 *
790 *
791 *
792 * .
793 *
794 *
795 *
796 *
797 .F
798
799
800
801
802
803
80
805
806 EQUALA L
807
808
809 *LESS
810
811
812 LESSERO
813
814
815 .GRTEQ
816
817
818 .GRTER
819
820
821 NOTEQ
822

AT F
L
AGO

('fLOCA' EQ '').ERR5
10, &LOCA
.c

THE NEXT SECTION OF CODE DETERMINES THE RIGHT OPER-
AND, AND LOADS IT INTO REGISTER 110 IT MAY BE SPEC-
IFIED IN THE SAMF ANNER AS THE LEFT OPERAND WITH
THE RESPECTIVE PARAMETERS BEING LITB, FGB AND LOCB.
A MISSING OR ILLEGALLY SPECIFIED PARAMETER WILL
CAUSE THE GENERATING OF AN ERROR MESSAGE, AND THE
CASE CONDITION WILL BE ASSUMED FALSE.

A! F
AT P

L A
A
Al F

Al F

A! F

LR

AGF
Al F

L
AGO

('&LITB' EQ ').D
('®B' NE ').ERR6
('&LOCB' NE '').ERR6
11, 0
ll,=F'f.LlTB*

('®B EQ ').E
('&LfCB' NE '').ERR6
(T'&PEGB NE 'N').ERR7
-('®B' GT 115').E R8
11,&PEGB

('&L C' EQ I').ERR6
11, LOCB
.r-

THE NEXT SECTION OF CODE COMPARES THE LEFT AND RIGHT
OPERANDS AND GENERATES AN APPQrPIATE BR ANCH I -
STRUCTION BASED ON THE VALUE OF THE SPECIFIED LOG-
ICAL OrERkTOR. IF THE IPERAATOR IS ILLEGAL O MISS-
ING FRcM THE PARAMETER LIST, AN EtROR MESSAGE WILL
BE OUTPUT, AND THE CASE CONDITION WILL BE ASSUMED
FALSE.

C,
Al F

A! FAI F
ATF

4 FA T FP

AT FATEl

AGB9LE

BI L
8
AO

BL

BAGOBL

AGO

BF

BE[3O

10,11
('UPPATOR'
('I& PRATOR'
('COPPATOR'
('&OPQATOP'

'COPPATOR'
(' CPRATOR'

CCL A BCULAB
. EN 0
BULAR
C FL A
aEND
BFLAA
CFL A
SL.END
BCLAB
CCLAB
.END
B&LAB
C&LAB
*END
BCLAB
C&LAB

EQ
EQ
EQ
EQ
EQ
EQ
EQ

' ').ERR9
'LT')oLESS
'LE').LESSEQ
EQ'). EQJAL

'GE').GRTEQ
'GT')GQTER
'NE).NDTEQ

153

823
824 *
825 *
826 *
827 *
828 *
829 *
830 *
831 *
832 *
833 0 END
834 CL AB
835
A36
337 C&LAB
838
839
840 *
841 *
842 *
843
844 *
845 * -
846 *
847 *
848 oERRL
849
850
851 EPRP2
852
853
854 oER-) 3
855
856
85T .ERR4
858
859
860 .E5RR
861
862
863 .ERR6
864
865
866 ERRT
87 7
868
369 .E 8R
87Q - -
871
872 .ERR9
873
874
875 *ERRI 0
876
877 *STOP

ACO *END

THE FOLLOWtNG SET OF INSTRUCTIONS PFSTORES THE 9RIG-
INl. CONTENTS OF THE WORKING PEGISTEPS AND CAUSES
EIHER THE EXECUTION OF POIGPAM !NSTr-UTTlNS (IF
THE CASE CONDIT ION IS TRUE) (P A B! ANCH TO T1HE 'END-
CAS' MACR (IF THE CASE CONDITION IS FALSE).

ANOP
L
L
8
L
L
AGO

MNOTE
MNOTE
A GO
MNOTE
MMOTE
A I
MNOTE
MNOTE
AGO
MN TE

\1 T E
A NOTE

MT NT E

AGTE
MNOTE
AGOMN OTE

MN0T E
AGOMNOTE
MNOTE

AGO
MN TE
MNOTEA G 0

MNOTEA ITE0
AGO
ME 0

10 , SAVE10
11, SAVE11
&LABEL
10, SAVE10
11, SAVE11
. STOP

BELOW ARE THE ERROR CNDITTONS WHICH THE MACRO MAY
DETECT. WHENEVER AN ERROR COMDITIjN I AISED, A
MESSAGE IS PRINTED AND THE CASE CONDIT TON TS SET TO
F AL SE.

*,'MORE THAN ONE LEFT D1ERAND SPECIFIED FOR CASE'
*, t CONDITVON'.
. END
*,'MOrE THAN ONE LITERAL SPECIFIED IN CONDITION'
*,' STATEMENT'
.RETURN
*,'''REGA'' SPECIFIED IS NOT A SELF-DEFINING I
4* 'NUMERIC'
. END
*,''PEGA'' DOES NOT SPECIFY A VALID REGISTER'

*,'N LEFT DPERAND HAS BEEN SDECIFYED FOR CASE'
*, 'CONDITION'
.END
*,'MORE THAN ONE RIGHT OPERAND SPECIFIED FOR CASE'
*,'CONDITION'
.END
*,'*IREGBSI SPECIFIED IS NDT A SELF-DEFINING'

ItINU MER C'
.END
,'''QEGB'' DES NOT SPECIFY A VAL T D REGISTER'

*,'NUMBER'
. END
*, 'O 9 ATR FOR CASE CONDITIN HAS NOT BEEN'
*,VSPEC!FlED'

.END
*, 'ILLEGAL OPERATOR SPECIFIED FOR A CASE CONDITION'
.END-

The Source Listing for the ENDCASE Macro

STMT SOURCE ST ATEMENT

879 * THE FNDCASE MAC R0 P VIDES THE BSRANCThING LfCATTON
880 * FOR A CASE MACRO WHOSE CONDITION IS FALSEo IT ALSn

154

881 *
882 *
883 *
884 *
885 *
886 *
887 *
888 *
889 *
890 *
891 4(

892 *
893 4

8944'
895
896
897
898 *
899 *
900 *
901 *
902 *
903 *
904 *
905 *
906 .SKIP 1
907
908
909
910
911 *
912 *
913 *
914 *
915 *
916 4

917
918 hEPRR1
919
920
921 .ERR2
922
923
924 oERR3
925
926
927
928 *
929 *
930 *
931 *
932 *
933 OPTION1
934 .OPTION2
935 &LABEL
936

MARKS THE ENDr OF THE 1R AM INST UCT!yl'S Tfl r TN-!
CLUDED WTTHIN THE GASE STATEMEtT. THE EDrtSE MACqO
MAY BE SPECI ED 'IN 2NE OF TWO M2OES. THE FTP ST
MODE (V TION=1) WILL CASE A BPANCH TO A SPECIFTED
LVCATTOi 'LAB' IF TIE CASE CNTDITTHN WAS TRUE (THI S
WILL PER".1T THE PRJGRAMNEP Tl BYPASS ADDTTTC)NAL CASE
STATEMENTS WHICH F3LLDW IN LIM'E). THE SEClND mODE
(PTlON=2) CAUSES EPRIGAM CONTROL TO BE PASSED TO
THE NEXT I.NSTPUCTIJN (THTS WTLL PE MIT THE TESTING
OF SUCCESSIVE CASE STATEMENTS). 'LABEL' SHOULD BE
SPECIFIED WITH THE SAME VALUE AS THE 'LABEL' PAkAM-
ETER IN THE CORRESPONDING CASE MACRO.

MACRO
E 4OCASC
AGO

COPTI-ON=,CLABEL=,SLAB=
. SKI P1

THE FOLLOWING STATEMENTS DE.TEOMINE THE ODTIIN TO
USE. IF THE PARAMETEk HAS NOT BEEN SPECIFIED PR IF
IT 1AS BEEN INCORECTLY SPECIFIED, A MESSAGE IS
PRINTED AND OPTION=i IS ASSUMED 0

AT F
Al F
AT F
A! F
AGO

('&OPTION' EQ '1')OOPTIONI
optionTON' EQ '2').aPTION2
(C I1PT ONt EQ '').ERR1
(TICOPTION NE 'N').ERR2
* .RR3 1

BELOW ARE THE ERPO MESSAGES GENERATED BY
EACH ONE REFERS TO THE 'OPTION' ARAMETER
IT TO BE SET TO ONE.

MONTE
MN2JTE

MN ITE
MNOTE
AGO
MNOTE
MN OTE
AGO

BA Q

EQU
MEND

THE MACPD.
AND CAUSES

*,'W'flPTTON'' NOT SPECIFIED FOR ENCASE (OPTION'
*,*SET TO ONE)'
oOPTIONl
*,'''DPTTN'' SPECIFIED IS NOT A SELF-DEFYNING'
*,eNUMERC (OPTION SET TO ONE)'
.OPT!ONI
*,'''onTION'I SPECIFIED IS AN ILLEGAL NUMERIC VALUE'
*,'(PTIJN SET TO ONE)'
.OPTION.

THE FOLLOWING STATEMENTS INCLUDE THE BRANCH AND/OP
'LABEL' INSTPUCTIONS GENERATED BY THE MACRo.

CAB

The Source Listing for the ELSE Macro

STMT SOURCE STATEMENT

938 * THE ELSE MACRL IS MERELY A MACRO DEFINITION NAMF TO
939 * DENITE THE BEGINNING OF THE ALTERNATIVE SET OF IN-

153

STRUCTIONS TO 3E EXECUTED WHEN ALL OF THE PROCEED-
ING CASE STATEMENTS HAVE FAILED. AN 'ENDELSE' MACPD
SHOULD ALWAYS BE SPECIFIED WHEN THE ELSE MACRO IS
USED.

MACRD
ELSE
ME ND

The Source Listing for the ENDELSE Macro

ST MT SOURCE STATEMENT

(50 * THE ENDELSE MACRO GENERATES A LABEL TO WHICH A SET
951 * OF CASE STATEMENTS WILL BRAwNCH WHEN ANY O ALL HAVE
952 * HAD 'TRUE' CONDITIONS. IT ALSD MARKS THE END OF
953 * THE SET OF INSTRUCTIONS ENCOMPASSED BY THE ELSE
954 MACRO.

MACRO
FNDELSE
EQU
MEND

A 8=

Sample Program I Illustrating the CASE,
ENDCASE, ELSE, and ENDELSE Macros

STMT SOURCE STATEMENT

962
963 FRISBEE.
979 START
985
986
987
988
989
990
991
992
993
994
995
996
997
998 *
999 * .

1000
1012 *
1013 *
1014
1028
1029
1030
1031
1032
1033

PRINT
EN TER
OPEN
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA .
LA
LA

SNAP

CASE

NOGEN
12,SAVEAREA
(DUMPAREAOUTPUT)
2,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0
11,0
14,0
15,0

ID=1,DCB=DUMPAREAPDATA=REGS

LABEL=ALITA=0,aPRAToR=NEREGB=15
A 4,=F'ls
A 5,=Fols
A 6,=F'lt
A 7,=F'l'
A 8V=F# *
A 9t=F' '

940 *
941 *
942 *
943 *
944 *
945 *
946
947
948

955 *
956 *
957
958
959 &LAB
960

156

1034 ENDOASE OTT T1C=1,LABEL=ALA3=HERE
1037
103t *
1039 CASE LABEL= ,tPE-GA=14,CP A TR=EQLITB=o
1053 A 4,=F'2'
1054 A 5,-F'2'
1055 A 6,=F'2'
1055 A 7,=F'21
1057 A 8,=F'2'
1058 A 9,=F*2'
1059 E CASE OPTrION=1,LABEL=b,LA=HERE
1062 *
1063 *
1064 CASE LOCA=XtLC8=YLABEL=C,0PRATOR=LT
1077 A 4,=F'3'
1078 A 5,=F#3'
1079 A 6,=F'31
1050 A 7,=F3'
1081 'A 8,=F'3'
1082 A 9,=F'3'
1083 ENCASE OPTI0N=1,LABELC,LA=HERE
1086 *
1087 *
1088 ELSE
1089 A 4,=F'4'
1090 A 5,=F'4'
L091 A 6,=F'40
1092 A 7,=F'4 .

1093 -A 8,=F'4'
1094 A 9,=F'4'
1095 ENDELSE LAB=HERF
1097 *
1098 *
1099 SNAP ID=2,DCB=DUMPAREAPDATA=REGS
1111*
1112 *
1113 EXIT
1118 CL OSE DUMPAREA

1124 SAVEAREA DC 13A(0)
1125 DS OF
1126 ZEpO DC sf
1127 SAVE8 DS IF
1128 SAVE9 DS IF
1129 SAVFO DS . IF
1130 SAVEII OS IF
1i31 POINTER DC IF0
1132 SACK DS lOOF
1133 x DC 1F"4
1134 Y DC 1F'8e
1135 UMPAREA DCB DONAME=TEAMDSOR.G=PSRECFM=VBA, x

MACRF=WBLKSIZE=882,LRECL=125
1186 END
1187 =F'Ov
1188 =F610
1189 =F120
1190 =F#31
1191 =F#44

REGS AT ENTRY TO St

PEGS 0-7

RE GS 8 -15

END OF SNAP

NAP ID -001

00000030 900188C 00000000 00000000

00000000 00000000 00000000 (0000000

00000000 00000000 00000000 00000000

50018820 000189c8 00000000 00000000

ID = 002
REGS AT ENTRY TO SNAP

000002A0 A001899C

00000032 00000002

00000000 00000000

00000002 00000002

PEGS 8-15 00000002 00000002 00000000 00000000

50018820 000189C8 0000DO00 00000000

END OF SNAP

Program I with Expanded Macros

ST MT SOURCE STATEMENT

962 F"! SBEE
963+FRI SBEE
964+
965 +
966+
96 +
98

969+
)70+
971+
972+
973+
974+
975+
976+
9774+
978 STA T
979+
980+START

932 +
983+
984
985

ENTER
0 s
EN TPY
U S I NO
3,LR
B

BCTR
ST M.
LR
ST
L A
ST
LR
USING
J N P
C)P EN

94L
DC
DC.
Svc
LA
LA
LA

12, SAVE APEA
OH
PRISBF DECLARE NAME ENTRY
*12 0ECLAQE BASE AJDV< SSIE9 IL ITYo
15,9 (IITTTAL ADD 3TSI TL T Y).
12(15) BANCH A90J 1 F7L) F:ELD
ALI(7),CL7'FRI SB fE' iD L ENGT H AND ID
15,0 (,ESET INITIAL ADJ ESSIBILITY
15,0 ABSOLUTF ENTPY P9INT).

14,1?v12(13) SAV REGTERS
12,15 SETUP BASE PEST.-,
13,S;VEAr E A+4 CHAIN ACK
0, SAVEAKEA CHAIN F~ RWA D

0,8 0 , 13)
13,0 SET UP SAVE AREA PJINTEP
SAVEAREA,13 AND AD3)ESSAiLITY

(OUVAPAEA,nJTPUT)
0,4 ALIG LIST TO FULL el
1,. *+ LfA- E31 W/LIST AL)DR
AL1(143) 0PT!.N BYTE
AL3(D0JMPAQEA) DCB ADDRESS
19 ISSUE OPEN SVC

2,0
2,0
3,0

157

REGS 0-7

987
988
98')
990
991
992
993
994
995
996
997 *
998 *
999

1000+
1001+
1002+
1003+
1004+
1005+
1006+
10 07+
1008+
1009+1HB0003
1010+
1011 *
1012 *
1013
1014+
10 1+
101. +
1017+
1018+
1019+
1020+
1021+
1022+B4
1023+.
1024+k4
1025+C4
1026 *+

10?7
1028
1029
1030
1031
1031
1033
1034+ -
1035+A
1036
1037
1038
1039+
1040+
1041+
10 42+
1043+
1044+
1045+
1046 +
1047+6
1043+
1049+
1050+C6
1051+
1052
1053

LA
LA
LA
LA
LA
LA
LA
LA
LA
LA

CN OP
BAL
DC
DC
DC
DC
DC
DC (
D C
DS (

CA SE
ST
ST
L A
A
L R'
C R

BE

L
L

L
L

ENDCASE
B - HE8 R
:QU *

CA SE
ST
ST
L R
LA
A
CR
BNJE
8 -
L
L
L
L
L

4 ';0
5,0
6,0
7,0
8,0
9,0
10,0
11,0
14,0
15,0

T)Th=1,DCB=DUMPA"%EA,PDATA=REGS
0,4
1,IHB0003 BRANCH AROUND PARAM LIST
AL() 10 NUMBER
AL1(0)
ALI(130) OPTION FLAIS
ALI(32) OPTION FL AGS
A(DUMPAIEA) DCB ADORE SS
A(O) TCB ADDRESS
A(O) ADDRESS OF SNAP-SHOT LIST
OH
51

LA8EL=ALTTA=0, 0PRA TOR=NE,REGB=15
10, SAVE10
llSAVElI
10 , 0
10,=F'0'
1 , 15
1 ,ol
84
C4
10,SAVE10
11, SAVElI
A
10,SAVE10
It, SAVE l1

A 4,=Ft'1
A 5,=F'1'
A 6,=F I'
A 7,=FjI -
A 8,=F' '
A 9,=F'.l1
OPT iON=1,LABEL=ALA3 =HERE

LA3EL=B,PEGA=14,OPRA T3R=EQ,L ITB=0
10, SAVE10
l1,SAVEIlI
10, 14
11,0
ll,=F'O$
10,.11
86
C6
10, SAVE10
SI ,SAVE I1
B
10, SAVEO
1, SAVEll

A 4,=F'2'
A 5,=F'2'

158

I 054

1056
1057
1058
10594-
10604-8
1061 *
1062
1063
1064+
1065+
1066'+-
1067+
1068+
1069+
1070+
1071+B8
1O72+
1073+
1074+C8
1075+
1076
1077
1078
1079
1080
1081
1082
1083+
1084+C
1085 *
1086 *
1087
1098
1089
1000
1091
1 02
1093
1094
1095+HERE
1096 *
1097 *
1098
1099+
1100+
11 0 1+
1102+
1103+
1.104+
1105+
1106+
1107+
1108 +IHB)0 12
1109+
1110 *
till *
1112
1113+
1114+
1115t,
1116+
1117
1118+
1119+
1120+

A 6,=F ' 2'
A 7,=F'2'
A 8,=F'2
A 9,=F'21

EVOCASE)TION=,LABEL=3,LA8=HERE
B HERE.
EQU *

CA SE
ST
ST
L
L
CR
BNL
S.
L
L
B
L
L

EB DC AS
B
EQU

ELSE

E4DELS
EQU

SN AP

BAL
DC

DCD C
DC

C r

DC!C s
SvcSVC

E X I T
L
L '
MV I
BR
CL O SE

BAL
DC

LOC A=X, LOCB=YLABEL=C,PRATOR=LT
10, SAVE10-
11, SAVEII
10,X
1.1,Y . .

10,11
B8
C8
10, 54 VE 10
11, SA VEIl11,SAVEll
C .
10, SAVE 10
I1,SAVEll

A 4,=F'3'
A 5,=F'3'
A 6,=F'31
A 7,=F'3'
A 8,=F'3'
A 9,=F"3'

E OPTIfN=1,LA8EL=C,LA3HERE
HERE
*

*

A 4,=F'41
A 5,t=F 141
A 6,=F'4'
A 7, =F 141
A 8,=F'4'
A 9,=F'4'
LAB=HERE

1 D=2,1DC'B=DUMP ARE APDATA=REGS
0, 4
1,I HB0012 brANCH A2,UND P AR A L I ST
AL1(2) ID NUMBER
A L 1(0)
ALI(130) OPTION FLAGS
ALI(32) OPTION FLA3S
A(DUMPARCA) DCB ADDRESS
A(0) TCq ADDRESS
A(0) ADDRESS OF SNAP-Si T LIST
OH
51

13,4(t13) POP UP SAVE AREA
14, 12, 12(13) P ESTORE REG SISTERS
12(13),X'FF' FLAG EXIT
14 PE TURN

DUMP ARE A
0t 4 ALT GN L I ST TO FJLL43RD
lt*4-8 L'A) REGI W/LIST ADDR
AL(128) OPTION BYTE

159

DC AL 3(D'JPA E A) DCB AUDRE S S
SVC 20 ISSUE CLOSE SVC

SAVEAREA DC
DS

Z ER DC
SAVE DS
SAVF9 DS
SAVE0 D DS
SAVEII DS
POINTER DC
STACK DS
X DC
Y DC
DUMPAREA DCB

1136+*
1137+*
l138.+DUMPAREA DC

1140+*

1142+
1143+

1145+*

1147+
1148+
1149+
1150+
1151+

1153+*

1155+
1156+
1157+
1158+

1160+*

1162+
1163+
1164 +
1165+

1167+*

11. 69 +
1170+
117 L
1172+
1173+
11744+
1175+
1176+
1177+

1179+*

11 Ci+
11 8+
1183+-
1184+

DC
DC

DC
DC
DC
DC
DC

DC
DC
DC
DC

DC

DC
DC

DC

DCDC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC r

18A(0)
OF
IF'0'
1F
IF

IF
IF'O

100FP
IF'14'
IP' 8'
DDNAME=TEAM, DSDRG=PS,RECFM=VBA,

MACRF=WBLKSIZE=882,LRECL=125

DATA CONTROL BLOCK

OF'O' ORIGIN ON WOP B:JJNDARY

DIRECT ACCESS DEVICE INTERFACE

BL16'O' FDADDVTBL
A(O) KEYLE,DEVT,TTR3AL

COMMON A CCESS METHOD INTERFACE

ALl(S) BUFN!
AL3(1) BUFC3
AL2(0) BFiDL
BL2'0100000000000000' DSORG
A(1) IOBAD

FOUNDATION EXTENSION

BL'0T0000000' lF TEKBFLNHIARCHY
AL3(1) EOJAD
BL1'OL1Q1O0' RECFM
AL3(0) EXLST

FOU DATIONF , BLO CK

CL ' T E A9' DOAME
BL I'JO0001Dc' CFLCGS
8L 1'010 00J' TLTG
BL 2'C000 o oooA0100000' ACR

BS-A-BPAM-QSA'A INTERFACE

BL1'O00000000' RE1
AL3(1) CHECK, GERR, PERRY
A(I) sYI\AD
H'S' CTNDfl, CTND2
AL?(882) LKSIZE
F'O' WCPO, WCPL, OFFSR, OFFSW
A(1) IDBA
AL(0) NCP
AL3(1) EDBR, EDBAD

RSAM-FBPA' INTERFACE

A (I) OCBW
H'O' -IRCT
AL2(125) LRECL
A(1) CNTRL, NOTE, PD NT

1121+
1122+

160

1123
24

1126
1127
1128
1129
1130
1131
1132
1133
1134 x

END1185
1186
1187
1188
1189
1190

=F '0'
F,41

=F*2

=F'4'

STPT SOURCE STATEMENT

962 FRISBEE
963+FRISBEE
964+
965+
966+
967+
968+
969+
970+
971+
9724
973+
974+
975+
976+
'977+
978 START
979+ -
980+START
981+
93#+
983+
984
985
986
987
988
989
990
991
993
993
994
995
996 *
997 *'
998'997+
999+
1000+
1001+
100(2+
1003+
1004+
1005+
100 4.
1001+
1008+80HB003
1009+
1010 +

1012

EN T ER
DS
EN TRY
US ING
BALR
3
DC
BCTR
BC TR
STM
LR
ST
LA
ST
LR

OP EN

BAL
DC
DC
SVC
LA
LA
LA
LA
LA
LA
LA
LA
LA
L A
L A
LA

CNOP
BAL
DC
DC
DC
DC
DC 0
DC
DC
DS
SVC

12, SAVEAO.EA
OH
FRISBEE DECLARE NAME ENTRY
*,12 DECLAPP BASE A)DrE SSIBILITY.
15,0 (INITIAL ADDPESSIBILITY).
12(4l5) BRANCH ARNVND ID FIELD
AL1(7),CL7'FRiS&EE' 1 LENGTH AND ID
15,0 (RESET INITIAL ADJRESSIBILITY
15,0 ABSOLUTE ENTP.Y PINT).
14,12,12(13) SAVE REGISTERS
12,15 SETUP BASE RE3ISTERo
13,SAVEAREA+4 CHAIN BACK
0,SAVEAREA CHAIN FJRWARD
0,8(0,43)
13, SFT UP SAVE AREA POINTER
SAVEA EA,13 AMD ADJESSABILITY

(BUMPAREA,UJT PUT)
0,4 ALIGN LIST TO'FULLWDRD
1,.*+8 LOAD REGI W/LIST ADDR.
AL1(143) 0TION BYTE
AL3()UMPAREA) DCB ADDRESS
19 ISSUE OPEN SVC

2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10, 0
11, 0
14,0
15, 0

SNAP ID=1,DCB=DU\IPAREA,PDATA=REG
0,4
1,H3003 BRANCH AR5UN' PARAM LIST
ALI(1) ID NU'2ER
AL1(0)
ALI(130) OPTION FLAGS
AI(32) 0TIfN FLAGS
AM(DUAAE A) DCB ADJR ESS
A(0)ICB ADOPESS
A(3) ADDPFSS OF SN4P-SH3T LIST
OH
51

S

LABEL=ALITA' OsLPRAT OR=NEREGB=15

161

CA SEF

162

1013+ ST 10,SAVElo
1014+ ST 11,SAVE1.
1015+ LA 13,0
1016+ A 10,=F'0
1017+ LR 11,15
1018+ CR 10,11
1019+ BE B4
1020+ B C4
1021+84 L I0,SAVE10
1022+ L 11,SAVE11
1023+ B A
.10e4+C4 L 10,SAVE10
1025+ L 11,SAVE11
1026 A 4,=F'1'
1027 A 5,=F'1'
1028 A 6,=Fgl1
1029 A 7,=F'l*
1030 A 8,=F 1 '
1031 A 9,=F1'l
1032 E CASE OPTI0N=4YLABEL=ALAB=HERE
1033 *, 0aTION' SPECIFIED IS AN ILLEGAL NUMERIC VALUE
1034 *,(OPTIN SET TO ONE)
1035+ 8 HERE
1036+A EQU *
1037 *
1038 *
1039 CASE 'LABFL=BREGA=14,0PRATOR-EQ,LITB=0
1040+ ST 10,SAVE10
1041+ ST 1LSAVE11
1042+ LR 10,14
1043+ LA 11,0
1044+ A l1,=F'04
1045+ CR 10,11
1046+ BNE 86
1047+ B C6
1048+86 L 101SAVE10
1049+ L 11,SAVE11
1050+ B B
1051+C6 L 10,SAVE10
1052+ L 11,SAVE11
1053 A 4,=F'2'
1054 A 5,=F'21
1055 A 6,=F'2'
1056 A 7,=F'2'
1057 A 8,=F'2'
1058 A 9,=F'2'
1059 ENDCASE 'PT1IN=1,LABEL=3,LAd=HERE
1060+ 8 HERE
1061+ EQU *
1062 *
1063 *
1064 CASE LOCA=XLOCB=YLABEL=C,OPRATOR=LT
1065+ ST 10,SAVEIO
1066+ ST 11,SAVE11
1067+ L 10,x
1069+ L 11,Y
1069+ CR 10,11
1070+ BNL 8
1071+ B Ca
1072+BB L 10,SAVE10
1073+- L -11,SAVE1l
1074+ 8 C
1075+C8 L 10,SAVE10
1076+ L 11,SAVEII
1077 A 4,=F3'
1078 A 5t=F'30

1079
1080
1081
1082
1083
1084+
1085+C
1036 *
1087 *
1088
1089
1090
1D91
1092
1093
1094
1095
1096+HERE
1097 *
1098 *
1099 *
1100 *
1101
1102+
1103+
119 4+
1105+
1106+
1107+
1108+4
1109+
11101+
lll+IHBOO12
1112+
1113 *
1114 *
1115
1116+
1117+
1118+
1119+
1120
1121+
1122+
1123+
1124+
1125+
1126 SAVE AE
1127
11 1 AE, O
1129 SAVE3
1130 SAVE9
1131 SAVEI0
1132 SAVFII
1133 PCTN T ER
1134 STAC
1135 X
1136 Y
1137 DUMPARE

A 6,= '31
A 7,=F'3'
A 8,=F13'
A 9,=F'3 #

ENDCASE PTION=1,LABEL=CLA3=HERE
B HERE
EQU

ELSE
A 4, =F#41
A 5,=F'4'
A 6,=F'4'
A 7,=F94'
A 8,=F'41
A 9,=F'4'

ENDELSE LAB=HERE
EDU *

CNOP
BAL
DC
DC
DC
DC
DC
DC
DC
DS
SVC

EXIT
L
LM
'VI
B;Z
CL' SE
CNOP
BAL
DC
DC
SV C

A DC
D S
DC
Ds
o S
OS
D
DC
DS
DC
DC

A DCB

1139+*
1140+*
1141+DUMPAREA DC.

1143+*

SNAP ID=2,DCB=DUIPAREAPDATA=R EG
0,4
1,TH30012 RP4NCH AROUND PARAM LIST
ALI(2) ID NUMBER
ALI(0) .
AL1(130) OPTION FLAGS
ALI(32) OPTION FLAGS
A(D)JMDAREA) DCB ADDRESS
A(0) TCB ADDRESS
A(0) ADDRESS OF SNAP-SHJT LIST
OH
51

S

13,4(,13) POP UP SAVE AREA
14,12,L2(13) RESTORE REGISTERS
12(13),X'FF' FLAG EXIT
14 RET'UY N

DU(>PAPEA
0,4 AL1G' LT.ST TO FULL40RD
1,*+8 LrAD REGI W/LIST ADDR
ALI(128) OPTION BYTE
AL3(D'MPAREA4) DCB ADDRESS
20 ISSUE CLDSE SVC

18A(0)
SOF:
IF' 0'
IF
I F
I F

IF'0'
100 F
IF t411 F 184
IF' 8'
DDNAME TFAMDSO 4PS,RECFM=VBA,

MAC RF=W,BLKSIZE882 LRECL=125

DATA CONTROL LOCK

OF'0' 00TGPI 0N W0 DJ'49NA Y

D!IECT ACCESS DEVICE INTERFACE

163

X

1145+
1146+

1148+*

1150+
1151+
1152+
1153+
1154+. -

1156+*

1158+
1159+
1160+
11.61+

1163+*

1165+
1166+
1167+
1168+

1170+*

1172+
1173+
1174+
1175+
1176+
1177+
1178+
1179+
1180+

1182+*

1184+
1185+
1186+
1187+
1188
1189
1190
1191
1192
1193

STMT SOURCE

962 FPISBEE
963+FR*ISBEE
964+
965+
9664+
967+
968+-
969+

DC BL16'O' FDADDVTBL
DC A(3) KEYLE,r)EVT,TR3AL

CO K-ON ACCE SS' ETHOD INTERFACE

DC AL1(0) BUFNO
DC AL3(1) BUFC3
DC AL2(0) BUFL
DC BL2'01000000000000' DSORG
DC A(1) ICBAD

FOUJDATION EXTENSION

DC
DC
DC
DC

DC
DC
DC
DC

BL 1' 000 00000' BFT EK, BFLN ,HI ARCHY
AL3(1) EnDAD
BL1'01010100' PECFM
AL3() EXLST

FOUNDATION BLOCK

CL8'TEAM' DDNAME
BLl'000000LO' OFLGS
BLIO0D00000' IFLG
BL2'0000000000100030' MACR

9SAM-BPAM-QSAM INTERFACE

DC BL1'00000000' ER1
DC AL3(1) CHECK, GERR, PErR
DC -A(1) SYNAD
DC HC' CINDi, CIN02
DC AL2(882) BLKSIZE
DC F'1' WCP0, 4CPL, OFFSR, OFFSW
DC A(1) I0BA
DC AL(0) NCP
DC AL3() EOBR, EOBAO

BSAM-BPAM INTERFACE

DC A 1) E0BW
DC H'' DIRCT
D AL21125) LRECL
DC A(11 CNTRL, NOTE, POINT
END

=F''
=F'1'
=F'2

=F#41

Sample Program K Illustrating a
CASE Macro Coded Incorrectly

ST ATEEN T

ENTER 12, SAVEAREA
DS 04
ENTRY FRISBEE flECLARE NAvE ENT Y
USING *,12 DECLAP E BASE ADDrESSIBILITY.
BALR 1SO (INT TIAL ADDPESSIBILITY)o
8 12(,15) FfNCH AROUND 11) FIELD
DC ALI(7),CL7'FISBEE' ID LENGTH AND ID
BCTR 15,0 (RESET INITIAL ADDRESSIBILITY

1,64

970+
971+
9724-
973+
9744+
975+
976+

977+
978 START
979 f-
980+STAR r
9,91+

982+

983+

984

985

986

988

989

990 .

992*
993

994
995
996

997

998
999+

1010 0+
1001+
1002+

101)3+
1004+
1005+

1006+.
10,17+
1008+IH80003
1009+
1010 *
1011 *
1012
1013+
1014+
1015+
1016+
1017+
1018+

1020+
1021+B4
1022+
1023+
1024+C4
1025+
1026
1027
1028
1029
1030
1031
1032

1103+

1034+A
1035 *
1036 *

BC TR
S T

L A
ST
L R
US IN
T) EN
c N,)
BAL
DC
DC
SVC
LA
LA
LA
LA
LA
LA
LA
LA
LA
L A
L A
L A

cN OP
BA L
DC
DC
DC
DC
DC
DC
DC
DS
Svc

CASE
ST
ST
LA
A
L R
CR
BE
L
L.
L .

k

4G
SI

SNAP ID=1,DCB=DUMPAREA,PDATA=REG
0,4
1,KIH0003 BRANCH AROUND PARAM LIST
AL(1) ID NUMBER
A11(0)
AL1(130) OPTIrON FLAGS
ALI(32) OPT!CN FLAGS
A(DUMkAREA) DCB ADDRESS
A(0) TCB ADDRESS
A(0) ADDRESS OF SNAP-SHOT LIST
O0
51

S

LABEL=A,LITA=0,10PR4TDR=NEREGB=15
10, SAVE 10
11,SAVLEII
10,0
10,=F'O'
11,10

B 4
C4
10,SAVEIO
11, SAVE

B A
L l0,SAVEO
L l1, SAVEll

A 4,=F 'll
A 5,=F ll
A 6,=F'I
A -7t=F'll
A 8,=F'1'
A 9,=Ftlf

ENDCASE 0PTION=1,LABEL=A,LAB=HERE
B fIERF
EQU

165

15,0 9SOLUTE EITPTY PDINT).
1.4,12,i2(13) SAVE ;EGTSTERS
12,15 SETUP BASE REGISTER.
13,SA\VE.ADEA+4 CHAIN BACK
0, SAVEAP EA CHAIN Fl.KWARD
0, 08(3, 13)
13,0 SE T UP SAVE A"EA POINTER
SAVEAPEA13 AND ADJR'ESSABILITY

(DUAPA F AOUTPUT)
0,4 'AL2GN LIST TO FULLA3RD
1,+8 LOAD QEGL W/LIST ADDR.
AL(143) OPTION BYTE
AL3(DUMPAREA) DCB ADDRESS
19 ISSUE OPEN SVC

2,0
3,0
4,0
5,0
6,0
71,0
8,0
9,0
10,0
11,o
14, 0
15, 0

1037
10 8+
1039+
1040
1041
1042+B6

1048+
1044+
1045+C 6
1046
1047
1048
1049
1050
1051
1052
1053
1054+
1055+B
1056 *
1057 *
1058
1059+
1060+
1065+
1062+
1063+
1064+
1065+C
1066+ 8
1067+
1068+
1069+PC 8
1 C,70+

1071
1072
1073
1074
1075
1076
1077
1078+
1079+C
1080 *
1081 *
1082
103
1084
1005
1086
1087
1088
1089
1090+HERE
1091 *
1092*
1093 *
1094 *
1095
1096+
1097+
1098+
1099+
1100+
1181+
1102+

ELSE

EN DELSE
EQU *

A 4,=F'4'
A 5,=F'4'
A 6,=F'41
A 7,=F'4'
A 8,v=Ft4'
A 9,=F'4'

LAB =HERE

SNA A YD=2,DCB=DUMPAREAPDATA-REGS
CNOP 0,4
BAL 1, -130012 BRANCH ARJUIND PARAM LIST
DC ALI(2) If)NUABER
D. AL1(0
DC ALL(130 PPT1I F-LAGS
DC ALI(32))PTlCN FLA;S
DC A(DUMPAREA) DC ADUDRESS

166

CA SE LAOEL=B,P EGA=14, DPR ATDR= EQL IT A=0
ST 10, S VE10
ST 11,sAVE I

*,4ORE THAN ONE LEFT OPERAND SPECIFItED FOP CASE
*,CONDT T1I n

L 10,SAVE10
L lIISAVEI1

L 10,SA VE10
L 11,SAVEII

A 4,=F'2'
A 5,=F'2'
A 6,=F'2'
A 7,=F'2'
A 8,=F'2'
A 9,=F'2'

ENCASE OPTION=1,LABEL=3,LAB=HERE
HERE

EQU *

CASE Lr)CA=X,LOCB=YLABELC, OPRATOR=LT
ST 10,SAVE10
ST 11,SAVEII
L 12,X
L Il,y
CR 10,11
BNL 68
B C8
L 10,SAVEIO
L 11, SAVE I
B C
L 10,SAVEIO
L 11,SAVElI

A 4,=F 3'
A 5,=F'3'
A 6, =F'3
A 7,=F'3'
A 8,=F'3'
A 9,=FI3'

ENCASE 0WTION=I,LA8EL=CLAB=HERE
a HERE
EQU *

1103+
1104+
1105+IHB0012
1106+
1107 *
11.08
1109
1110+
1111+
1112+
1113+
1114
1115+
1116+
1117+
1118+-.
1119+

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

DC
DC
OS
SVc

EXI T
L
LM
MV I
B R
CLOSE
CN OP
BAL
D C
DC
SvC

SAVE AREA C
DS

ZERO DC
SAVE DS
SAVE9 OS
SAVE 0 DS
SAVE.1 OSD
POINTER DC'
STACK DS
X DC
Y DC
DUMPAREA DCB

1133+*
1134+*
1135D+UMPAREA DC

1137+*

1139+
1140+

1142+*

1144+
1145+
1146+
1147+
1148+

1150+*

1152+
1153+
1154+
1155+

1157+*

1159+
1160+
1161+
1162 +

1164+*

1166+

DC
DC

DC
DC
DC
DC

DC
DC
DC
DC

DC
DC
DC
DC

A(,) TCB ADDR SS
A(O) ADDRESS OF SNAP-SHOT LIST
0H
51

13,4(,13) POP UP SAVE AREA
14,12,12(13) RESTCYE REGISTERS
12(13hX'FF' FLAG EXIT
14 RETURN

DUPARE A
0,4 ALTGN LIST TO FULL4JRD
1,*+8 LOAD REGL W/LIST 4DOR
ALI(128) OPTION BYTE
AL3(DUMPAREA) DCB ADDRESS
20 ISSUE CLOSE SVC

18A (0)
OF
1F'0'
1F
1F
1F
1F
IF'0
100F
IF' 4'
1F'8'
DONAME=TEAMDSORG=PS, - ECFM=VBA',

MACRF=W,BLKSIZE=882,LRECL=125 3

DATA CONTROL BLOCK

OF'0' ORIGIN ON WOR(D BJJNDARY

DIECT ACCESS DEVICE INTERFACE

BL16'0' FDADDVTBL
A() KEYLEDEVTTTR3AL

COMMON ACCESS METHOD INTERFACE

ALI(O) BUFNO
AL3(1) BUFCB
AL 0BFL
BL 2'OD0000000000000' DSORG
A (1) 10BAD

FOUNDATION I EXTENSION

BL1'0000000' fBFTEKBFLN ,HIARCHY
AL3(1) ErDAD
BLI'31010100' RECF1
AL3(0) EXLST

F0UNIDATION BLOCK

CL8'TEAM' DDIAME
BL'000000L' CFLGS
BLI'000000' !FLG
BL2'0000000000100000 4ACR

RSAM-BPAM-QSAM INTERFACE

DC BL1'00000000' RER

167

x

DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
EN D

AL3(1) CHECKi, GERR, PEk
A (1) SYNAD
H'0 CINDI, CIND2
AL2(882) BLKSIZE
F'0' WC , WCPL, OFFSR, OFFSW
At1) 1034
AL1(0) NCP
AL3(1) EDBR, EQBAD

BSAM-BPAM INTERFACE

A (1) EOBW
H'0 DIRCT
AL2(1*25) LRECL
AM) CNTRL, NOTE, POINT

=F1'
I It5 =F'21

17 86 E3'Bill =F '

Sample Program L Illustrating a
CASE Macro Coded Incorrectly

STMT SOURCE STATEMENT

*962 FFISBEE
963+FRISBEE
964+
965+
966+
967+
963 +
969+
970+
971+
972+
973+
974+
975+
976+
977+
978 START
979+
980+START
981+
982+
983+
984
985
986
987
988
989
990
991
992
993
994
995
996 *
997

ENTER 12,SAVEAREA
DS 0H
ENTRY FRISBEE DECLARE NAME ENTRY
USING *,12 DECLARE BASE ADDRESSTBILITY.
BALR 15,0 (INITIAL ADDRESSIBIL!TY).
B 12(t15) BPANCH ARS'JND ID FIELD
DC AL(7),CL7'FRIS3EE' ID LENGTH AND ID
BCTR 15,0 (RESET INITIAL ADDRESSTBILITY
BCTR 15,0 ABSOLUTE ENTRY POINT).
STM 14,12,12(13) SAVE RLGTSTErS
LR 12,15 SETUP BASE REGISTER.
ST 13,SAVEAPEA+4 CHAIN BACK
LA 0,SAVEAREA CHAIN FORWAr D
ST 0,8(0,13)
LR 13,0 SET UP SAVE AREA POINTER
US ING SAVEARFA,13 AND AD3RESSABILITY
OPEN (DUMPAFEAtUTPUT)
C NO>) 0,4 ALIGN LIST TO FULLi4RD
BAL 1,*+3 LOAD PEGI W/LIST ADDR.
DC AL'(143) OPTION BYTE
DC AL3(DUAPARFEA) DCB ADDRESS
SVC 19 ISSUE OPEN SVC
LA 2,0
LA 3,0
LA 4,0
LA 5,0
LA 6,0
LA 7,0
LA 8,0
LA 9,0
LA 10,0
LA 11,0
LA 14,0
LA 15,0

168

[167+
1168+
1169+
1170+
1171+
1172+
1173+
1174+

1176+*

1173+
1179+
1180+
1181+
1182
1134

998
999+
1000+
1001+
1002+
103+
1004+
1005+
1006+
1007+
1008+iHB0003
1009+
1010 *
1011 *
1012
1013+
1014+
10 15
1016+
1017+
1018+
1019+
10?0+
1021+84
1022+
1023+
1024+C4
1025+
1026
1027
1028
1029
1030
1031
1032
1033+
1034+A
1035 *
106 *
1037
1038+
1039+
1040+
1041+
1042+
1043+
1044+
10 45+
1046+B6
1047+
1048+
1049+C6
10. 50+
1051
1052
1053
1054
1055
1056
1057
1058+
1059+8
1060 *
1061 *
1062
1063+

CNOP
BA L
DC
DC
DC
DC
DC
DC
DC
DS
SVc

CASE
ST
ST
LA
A
LR
CR.
BE
B
L
L
B
L
L

SNA P I D=1 9CB=DUMPARE A, PDA T A=R EGS
0,4
lIHBOO03 BRANCH AROUND PARAM LIST
AL(1) ID NUMBER
ALI(O)
AL1(130) OPTION FLAGS
AL 1(32) OPTION FLAGS
A(DUM0 AREA) DCB ADDRESS
A(O) TCB ADDRESS
A(O) ADDRESS OF SNAP-SHOT LIST
OH
51

LABEL=ALITA=0,OPPATOR=NE,REGB=15
10, SWAVE10
llSAVElI
10,0
10,=F'0'
11,15
10,11
B4
C4
10,SAVE10
11,SAVEll
A

10tSAVE10
11,SAVEll

A 4,=F'lf
A 5,=F' 1'
A 6,=Fzh
A 7,=F'
AA 8,=Ft'1
A 9,=F'1'

ENCASE OPTION=1,LABEL=ALAB=HERE
B HERE
EQU *

CASE
ST
ST
LR
LA
A
CR
BNE
B
L
L
B
L
L

LABEL=BREGA=14,OPR4TOR=EQL ITB=0
10,SAVE10
1 1, S AVE 11
10,14
11,0
ll,=F'0'
10,11
B6
C6
10,SAVE10
llSAVElI

10,SAVE10
1, SAVEII

A 4,=F'2'
A 5,=F'2'
A 6,=F$2#
A 7,=F'2'
A 8,=F'2'
A 9,=F'2'

CE'DCASE 0TION=1,LABEL-B,LAB=HERE
B HERE
EQU *

CASE LOC A=X, LOC Y 1L ABEL=C9,OPR ATOR=LLST 10,SAVE1O

169

1064+
1065+
1066+
1067+
106a
1069+B8
1070+
1071+
10 72+C8
1073+
1074
175

1376
1077
1078
1079
1080
1081+
1082+C
1083 *
1084 *
1085
1086
1097
1088
1089
1090
1091
1092
1093+HERE
1094 *
jo95 *
1096 *
1097 *
1098*
1099+
1100+
1101+
1102+
1103+
1104+
1105+
1106+
1107+
1108+H80012
1109+
1110 *
1111 *
1112
1113+
1114+
1115+
1116+
1117
1118+
1119+
112D0+
1121 +
1122+

1123
1124
1125
1126
1127
1128
1129

SAVEARE

ZERO
SAVE
SAVE 9
SAVE10
SAV 11

ST
L
L
CR

L
L
B
L
L

11, SAVEIl
13,X
11,y
10,11
*,ILLEGAL OPERATOR
10,SAVE10
[[,SAVE1I
C
10, SAVE10
liSAVElI

E40CASE
B HERI
EQU *

ELSE

EI1 DELSE
FQU *

C40P
BAL
DC
DC
DC
DC
DC
DC
00C
OCSDS
Svc

EX IT
L
LM
MV I
R R
CLOSE
CN OP
BAL
DC
D0
SvC

A DC
DS
DC
DS
D s
DS
DS

SPECIFIED FOR A CASE CONDITION

A 4,=F131
A 5,=F'3'
A 6,=F'3'
A 7,=F'3'
A 8,=F'30
A 9,=F'3'
OPTION= ,LABEL=CLAB=HERE

E.

A 4,=F'4#
A 5,=F'4'
A 6,=F'4'
A -7,=F'4'
A 8,=F14'
A 9,=F'4'
LAB=HFPE

SNAP ID=2,DC8=DUAPAREA, DATA
0,4
1,1H30012 BRANCH AROUND PARAM L
AL1(2) ID NUMBER
AL1(0)
ALI(130) OPTION FLAGS
AL1(32) OPTION FLAGS
A(DUMPAREA) DCB ADDRESS
A(0) TCB ADDRESS
A(0) ADDRESS OF SNAP-SHOT LIST
OH
51

=R EGS

LIST

13,4(13) POP UP SAVE AREA
14,12,12(13) RESTORE REGISTERS
12(13),X'FF FLAG EXIT
14 RETI UN

DUMPAREA
0,4 ALIGN LIST TO F"ULLWJRD
1,*+8 LOAD REGl W/L!ST ADDR
AL[(128) 0P T IN 8Y TE
AL3(D!JMPAPEA) DCB ADDRESS
20 ISSUE CLOSE SVC

18A(01
OF
1F'0'
IF
' F
1F
1F

170

171

1130 POINTER DC
1131 STACK DS 100F
1<32 X DC IF'4'
S133 Y DC 1'8'
114 DUMPAREA 8C 8)DNAME=TEPAM, DSJY G=PS , RECFV=V BA , X

MACRF=WBLKSIZE=882,LRECL=125

1136+* DATA CONTRJL BLOCK
1137+*
1138+DUMPAREA DC OF'O ORIGIN ON WORO UNDARY

1140+* DIRECT ACCESS DEVICE INTERFACE

1142+ DC BL16'0' FDADDVTBL
1143+ DC A(O) KEYLEDEVTTRdAL

1145+* COMMON ACCESS METHOD INTERFACE

1147+ DC AL1(0) BUFNO
1148+ DC AL3(1) BUFCB
1149+ DC AL2(0) BUFL
1150+ DC BL2'0100000000000003' DSORG
1151+ DC A(l) IOBAD

1153+* FCUNDA-TION EXTENSION

1155+ DC BLI'00000000'.BFTEKBFLHIARCHY
1156+ DC AL3(1) EflOAD
3.157+ DC BL1'O1010100' RECFM
1158+ DC AL3(0) EXLST

1160+* FOUNDATION BLO CK

1162+ DC CL8'TEAM' NAME
1163+ DC BL'00000010' OFLGS
1164+ DC BL1'00000000' IFLG
1165+ DC BL 20000000000100O' 4MACR

1167+* BSAM-BPAM-QSAI INTERFACE

1169+ DC BLI'00000000' RER1
1170+ DC AL3(1) CHECK, GERR, PERR
1171+ DC A(1) SYNAD.
1172+ DC H'O' CINDI, CIND2
1173+ DC AL2(832) BLKSIZE
1174+ DC F'0' WCP, WCP-L., OFFSR, 0F5
1175 + DC A(1) IDBA
1176+1DC ALI(0) NCP
1177+ DC AL3(1) EIBR, EOBAD

1179+ 4BSAM-BPAM INTERFACE

1181+ DC AM) EOBW
1182+ DC H'O' DIRCT
1183+ DC AL2(125) LRECL
1194+ DC AM) C'TRL, NOTE, POINT
1185 END
1136 =FfO'
1187 =Foll
1188 =F#21
1189 =F'3#
1190 =F*41

APPENDIX D

THE USE OF NESTED DO MACROS

Sample Program M Illustrating
Nested DO and ENDDO Macros

ST"4T SOURCE STATEMENT

962
963 FRISBEE
979 START
985
986
987
9.38
989
990
991
992
993

-995
996
997 *
998 *
999
1011 *
1012 *.
1013
1075
1076
1077
1078
1090 *
L091
1107
1108
1109
1116 *
1117
1129
1130
1131
1138 *
1139 *
1140
1153
1154
1155
1156
1157
1159
1159
1160
1172
1174 *
1175 *

P0INT
ENTER
OPEN
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA
L A
L A

SNAP

NOGEN
12,SAVEAREA
(DUMPAREAOUTPUT)
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
10,0
11,0
14,0
15,0

TD=1,-DCB=DtjMPAREAPDATA=REGS

D3 LOWN UM=1,BYNUM=1,HGHNUM=5,D9L00P=SLABEL=LCOPA
A 4,=FvI t

A 5,=FI*
A 6,=F '1'
SNAP ID=2,DCB=DJMPAREA,PDATA=REGS

0O WHIL E=A ,WREGA=8, WOP=LT, WL I TB=10, LABEL=L90PB
A 8,=F '
A 9,=F'1I

ENDDO LA[3EL=L09PB

SNAP ID=3,DCB=DJMPAREA,PDATA=REGS
A 14,=F.'
A 15,=F *l

E'000 LABEL=LODPA

CASE L ABEL=T ESTAREGA=4,C0PRA TORE EQREGB=15
LA 4,0
LA 5,0
LA 6,0
LA 8,0
LA 9,0
LA 14,0
LA 15,0

'SNAP ID=4,DC3=DJMPAREAPDATA=REGS
ENCASE 0PT1'0N=2,LABEL=TESTA

172

LABEL=TESTBLT A=0,)PRATOR=NE,REGB=12
LA 4,5
L A 5,5
LA 6,5
LA 8K
LA 5
SNAP ID=5,D&3=DJ'IPAREAPDATA=REGS

11 76
1190
1191
1192
1193
1194
1195
1207 *
1203
1263
1269
1270
1277 *
1278
1290
1292 -
1293 *
1294
1306 *
1307 *
1308,
1313

EXIT
CLOSE DUMPAREA

SAVE.AREA DC..
rS)

ZE1P0 DC
SAVE DS
SAVF9 DS
SAVE10 D S
SAVEII IS
POINTER DC
STACK DS
DUMDAREA DCB

END

18A(0.)
0F

IF1 F
JF ()t

IF' 0'
1 OOF
DDNAME=TEAM,DS RG=?SRECFM=VBA,

MACRF=WrBLKSI ZE=882, LRECL=125

=Ft 1'
=F 5'
=F 40
=FI'10
=F' 0'
=F11001

REGS AT ENTRY TO SNAP ID = 001

REGS 0-7

REGS 8-15

END OF SNAP

00000030 9001B888 00000000 00000000

00000000 00000000 00000000 00000000

000000, 00000000 00000000 00000000

500kB820 0001B.C20 00000000 00000000

CASE

173

DO LOWREG=4vBYREG=4,H3HNU =100,DCLOOP=G,LAB EL=EEE
A 14, =F'I
A 15,=F 1'

ENDO LABEL=EFE

SNAP TD=6,DC B=0JMPAREAPDATA=PEGS
ENDCASE LABEL=TESTB,n'PTICN=2

SNAP ID=7,DCB=DUMPAREA,POATA=REGS

1319
1320
13.1
1322
132
1324
1325
1326
1327
1328

1379
1380
1381
1382
1383
1384
1385

X

REGS AT ENTRY TO SNAP

PEGS 0-7 000002AO A031994 00000000
000000a1 0000001 00000001

REGS 8-15

END CF SNAP

0000000

50016820

REGS AT ENTRY TO SNAP

REGS 0-7

PEGS 8-15

END OF SNAP

00000000

0001Bc20

00000000 00000000

00000000 00000000

ID = 003

000002AO 8001B9F8 00000000 00000000

00000001 00000001 00000001 00000000

0000000A
50016820

000000A 00000000 00000000
0001RC20 00000000 00000000

EGS AT ENTRY TO SNAP

REGS 0-7

FEGS 8-15

END OF SNAP

000002A0 A0016994 00000000 00000000
00000032 00000002 00000002 0000000

00000004 0000004 00000000 00000000
50J1B82J 0001BC20 00000001 00000001

rEGS AT ENTRY TO SNAP ID = 003

PEGS 0-7

REGS 8-15

END OF SNAP

000002A0 8001B9F8 00000000 00000000

00000032 00000032 00000002 00000000

0000000A 00000004 00000000 00000000
5001682 0001BC20 00000001 00000000

174

ID = 002

00000000

00000000

ID = 002

PEGS AT ENTRY TO SNAP

rEGS 0-7

REGS 8-15

END CF SNAP

kEGS AT ENTRY TO SNAP

PEGS 0-7

RE4S 8-15

ENO OF SNAP

000002AO A0018994

0000033 00000003

00000000 00000000

00000003 00000000

0000000A 0000000A 00000000 00000000

500IB82 0001BC20 00000002 00000001

ID = 003

000002AO 800139F3 00000000 00000000

00000003 00000003 00000003 00000000

0000000A 000000 A 00000000 00000000

5003B820 0001BC20 00000002 00000000

KEGS AT ENTRY TO SNAP

REGS 0-7

REGS 8-15

END OF SNAP

000002A0

00000004

00000004

50018820

REGS AT ENTRY TO SNAP

REGS 0-7

REGS 3-15

END OF' NAP

A3013994 00000000

00000004 00000004

ID = 002

00000000

00000000

0000000A 00000000 00000000

0001C20 00000003 00000001

ID = 003

0 0002A0 30 19F8 00000000 00000000

00000004 00000004 00000004 00000000

0000000A

5001B820

000000A 00000000 00000000

0001BC20 00000003 00000000

175

ID = 002

PEGS AT ENTRY TO SNAP ID = 002

00000240 A0DIB994 00000000 00000000

00000005 00000005 00000005 00000000

00000004

5001B820

0000000A 00000000 00000000

0001BC20 00000004 00000001

END OF SNAP

REGS AT ENTRY TO SNAP ID = 003

REGS 0-7

REGS 8-15

END OF SNAP

000002AO 800139F8 00000000 00000000

00000005 00000005 00000005 00000000

S0000000A

50013820

0000000A 00000000 00000000

0001BC20 00000004 00000000

REGS AT ENTRY TO SNAP ID = 005

REGS 0-7

REGS 8-15

END OF SNAP

000002A 9001BACC 06000000 00000000
00000005 00000005 00000005 00000000

00000005 00000005 00000000

5001B820 00018C20 00000005

PEGS AT ENTRY TO SNAP

KEGS 0-7

REGS -15

END OF SNAP

000002A0

00000005

00000000

00000001

ID = 006

A001BBDC 00000000 00000000

00000005 00000005 00000000

00000005 00000005 00000000 00000000

5001820 0001BC20 00000019 00000014

REGS 0-7

176

177

TIA T

TA

T Esl

DO MACON

BEGIN
EXECUTION 0!
DO JVCRO

TEST COMPLr
O MACRO EXECUTION O

DO MACR o

EXECUTE

DO MARCO

CASE

EXECUTE

< C

CASE

TEST

EXECUTE

CASE MACRO

TEST EXECUTE
DO !1ACRO DO MACRO

STOP

Fig. 27--Flowchart showing structured logic of
Program M.

PEGS AT ENTRY TO SNAP

PEGS 0-7

ID = 007

000002A0 A001BBF4 00000000 00000000

00000005 00000005 0000005 00000000

PEGS 8-15 00000005 00000005 00000000 00000000

501f820 0001BC20 00000019 00000000

END OF SNAP

Program M with Expanded Macros

STMT SOURCE STATEMENT

962 FRISBEE
963+FRISBEE
964+
965+
966+
967+
968+
969+
970+
971+
97'+
973+
974+
975+
976+
977+
978 START
979+
9 00+START
981+
982+
983+
984
985
986
987
988
989
9)0
991
992
993
994
995
996
997 *
998
999 +

1000+
1001+
1002+
1003+
1004+
1005+
1006+
1007+

ENTER
DS
ENTRY
USING
BALR
B
D
BCTR
BC TR
STM
LR
S T
LA
ST
L .
US I NG
OPEN
CNOP
BAL
DC
DC,
Svc
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA
LA

SN AP
CN OP
BA L
DC
0 c

D C
DC
DC

DC

12,SAVEAREA
OH
FRISBEE DECLARE NAME ENT.,Y
*12 DECLARE BASE ADRESSIBILITY.
15,0 (INITIAL ADDRESSIILITY).
12(,15) RPANCH AROUND ID FIELD
AL1(7),CL7'FRISBE' ID LENGTH AND TD
15,0 (RESET INITIAL ADDrIESSIBILITY
15,0 ABSOLUTE ENTRY PD. NT).
14,12,12(13) SAVE REGISTERS
12,15 SETUP BASE PEGxSTER.
13,SAVEAREA+4 CHAI-A BACK
0,SAVEAREA CHAIN FORWARD
0,8(0,13)
13,0 ST UP SAVE A-EA POINTER
SAVEAREA,13 AND ADD'ESSABILITY

(DU PARPEA, OUTPUT)
0,4 ALIGN LIT TO FULLdJRD
1,*+8 LOAD PEGI W/LIST ADDR.
AL(143) CPTION BYTE
AL3(DUMPAREA) DCB ADDRESS
19 ISSUE OPEN SVC

2,0
3,0
4,0
5,0
6,0
T,0

8,0
9,0
10,0
11,0
14,0
15,0

0,4
1IIHB0003 6 ANCH AROUND PA RAM LIST
AL(1) ID NUMBER
ALI(0)
ALM130) OPTION FLAGS
ALI(32) PTTION FLAG
A(DUMPAV.EA) DCB AD: ESS
A(O) TCB ADDRESS
A(O) ADDRESS OF SNAP-SHOT LIST

178

ID=lDC8=DUMPArEAPDATA=REGS

1008+1HB0003
1009+
1010 *
1011 *
1012
10 13+
10144+
1015+
1016+
1017+.
1018+
1019+
10?0+
1021+
1022+
1023+
1024 +
1025+
1026+
1027+
1028+
1029+
1030+
1031+
1032+
1033+
1034+
1035+LOOPA
1036+
1037+
10533+
1039+
1040+
1041+
1042+
1043+
1044+
1045+
1046+
1047+
1048+
1049+
1050+
1051+
1052+X4
10 53+
1054+Z4
1' 55+
1056+
1057+
1053+
1059+
1060+
1061+.
1062+
1063+
1l64+
1065+
1066+
1067+
1068+Y4
1069+
1070+
1071+
1072+
1073+W4
1074

DS OH
SVC 51

D)
ST
ST
ST
ST

L A
A
LA
A
LA
A
L
ST
LA
ST
LA
ST
LA
ST
L
L
L

L .
ST
ST
ST

ST
L
S
L
S

L

L
ST
C
BL

c R
BH
B
CR
BL
AR
L
ST
LA
S T
L A
ST
LA
ST
L
L
L
L
B
L
L
L
L
a
EQU

L4WNUM=1,BYNUM=1,HHNJ M=5,D0LOT3P=S, LABEL=L0OPA
8, SAVER
9, SAVE9
10,SAVE10
11,SAVEl1
10,0

11,0
II,=F15W
9,0
9,=F'l1'
8,PONTER
9,STACK(8)
8,4(8)
10,STACK(8)
8,4(8)
11,STACK(8)
8,4(8)
8,POTNTER
8, SAVE8
9,SAVE9
10,SAVE10
1iSAVEll
8,SAVE8
9,SAVE9
10,SAVE10
ll,SAVEL1
8, POTNT EP
8,=F'4'
11,STACK(8)
8,=F,4c

10, STACK(8)
8,=' 4s
9,STACK(8)
8, POINTER
9, ZERO
X4
10,11
Y4
Z4
10,11
Y 4
10,9
8, POINT EP
C,SIAOK(3)

90, S TAC K (8)8,4(3)

11 STACK(8)
8,4(3)
8, POINTER
8,SAVE8
9,SAVEI9
10, SAVF10
l ,ts-AVElI
W4
8,SAVE8
9,SAVE9
10, SAVE 10
I, SAVEll
ALOOPA

*
A 4,=F'l'

179

1075
1076
1077
1078+
1079+
1080+
1081+
1082+
1083+
1084+
1085+
1086 +
1087+1HB0005
1088+-
1089 *
1090
1091+LOOPB
1092+
1093+
1094+
1095+
1096+
1097+
1098+
1099+
1100+
11014+
1102+T6
1103+
1104+
1105+V6
1106
1107
1108
1109+
11 10+CLOOPB
1111+
11 12+BLOODB
1113-.
1114+AL0 PB
1115
1116
1117+
1118+
1119+
1120+
1121+,

11224+
1123+
1124+
1125+
1126+T-80008
1127+
1128
1129
1130
113 1+
It 32+CLO[PA
1133+
1114+i3LOPA
1135+
1136+ALOOPA
1137

1139
1140+
1141+

A 5,=F'l'
A 6,=F'1'
SNAP ID=2, DCb=DJ4PAREA,PDATA.=PEGS

CN0 0,4
BAL 1,11HB0005 8PANCH AROUNJ PARAM LIST
DC AL1(2) 10 NUMBER
DC AL1(3li
DC ALI(1301 OPTION FLAGS
DC AL1(32) OPTION FLAGS
DC A(DUMPAREA) DCB ADDRESS
DC A(O). TCB ADDRESS ,
DC A(0) ADDRESS OF SNAP-SHOT LIST
DS 0H
SVC 51

DO WHLE=AWREGA=8,WOP=LTWLITB=10, LABEL=LODPB
EU *

ST
ST
LR
LA
A
CR
BNL
L
L

L
L
B
EQU

E

L
L
L
L
EQ U

CMOP
BAL
DC
DC
DC
DC
DC
DC
DC
DS
S -

ENDDO
3
L
L
L
L
E2U

CASE
ST
ST

10, SAVE10
11, SAVEl
10,8
11,)0
1 ,F*10'
10,11
T 6
10, SAVE 10
11,SAVElI
V6
10, SAVE 10
llSAVEll
AL OOP F
*

A 8,=F''
A 9,=F'1'

NDD0 LABEL=LOOPB
LO D 8
8,SAVE8
9,SAVE9
10, SAVE 10
ltrSAVEll

*

SNAP ID=3, DCB=DJMPARE AtPDATA=REGS
0,4
1,IHB0008 BRANCH AROUND PARAM LIST
ALl(3) ID NUMBER
AL 1(0)
ALI(130) OPTION FLAGS
ALI(32) OPTION FLAGS
A(DUMDAREA) DCB ADOESS
A(0) TCB A0D'ESS
A(0) ADDRESS OF SNAP-SHOT LIST
OH
51

14,=F'l'
A 15,=F'1'
LABEL L13P A

8,SAVE8
9,SAVE9
10, SAVE10
11,SAVEll

L ABEL =T E.S TA, R EGA=4,DPRA TOR= EQOREGB=15
10,AVE10
II, SAVEII1

180

1142f+
1143+
1144+
1145
1146+
1147+-B 10
1148+
1149+
1150+C10
1151+
1152
1153
1154
1155
1156
1157
1153
1159
1160+
1161+
1162+
1163+
116 5

11664+
1167+
1168+
1169+IH30011
1170+
1171
if72+TESTA
1173 *
1174
1175
1176+
1177+
117P)+
1179+
1180+
1181+
1182+
1183+
1184+Bl
1185+
1186+
1187+C13

1189
1190
1191
1192
1193
1194
1195 +
1196+
1197+
1198+
1199+
1200+
1201+

1203 +
1. + T H800 14
12,05+
1206 *
1207

LR

CB E
BNE

B
L -
L

10,4
11,15
13, 11
10

C10
10, SAVE 10
11,SAVE1l
T E S T A
10,SAVE 10
11, SAVEII

LA 4,0
LA 5,0
LA 6,)
LA 8,0
L A 9,0
SA 14,0
LA 15,0
SNAP TD=4,DC3=DJMPAREAPDATA=REGS

CM0P 0,4
BAL 1,1H30011 BR ANCH AROUND PARAM L IST
D AL1(4) ID NUMBER
DC AL(0)
00 ALI(130) -DTION FLAGS
DC ALI(32) 0PT TON FLAGS
DC A(DUMPAREA) DCB ADDR ESS
DC A(O) TCB ADD E SS
oC A(O) ADDRESS OF SNAP-SHlT. LIST

s 0 H
SVC 51
E4OCASE ODTI0N=2,LABEL=TESTA
EU *

CASE
ST
ST
LA
A
LR
CR
BE
B
L
L
B
L
L

CNOP
BA L
rC
DC
DC,

DOC
DC
DC

D S
SvC

L ABEL=TFSTBLITA=0,3PRATO=NE,REGB=12
10, SAVE10
11,SAVE1l
10,0
10,F'O'
11,12
10,11-
B13
C13
10, SAVE 10
11, SAVEII
TES T3
10,sAVEI10
11,SAVELI

LA 4,5
LA 5,5
LA 6,5
LA 8,5
LA 9,5
SNAP ID=5, DC i=DJA AEA, PD AT A=REGS

0,4
1, H 00 14MR ANCH AROUND PAR AM LI ST
ALl() 1D NWM3ER
AL 1O)
AL1(130) TA FLAGS
ALI(321 7PTTrN FL A S
AM(091PA REA) DCB ADOIKESS
A(D) TCB ADDRESS
A(0) ADDRESS OF SNAP-SHDT LIST
OH
5L

DO LOWREG=4,BYREG=4,HGHNUM=100, D0L"0P=G,LABEL= FEE

181

12,,3+
120+
121)10 +
1211+
1212+1C 1+
1 2 I12+1213+
12 14 +
121 5+
1216+
1217+
1210+
1219+
1220+
1221+
1222+
1223+
1224+
1225+
1 26+
1227+
1228+FE
12?9+
1230+
1231+
1232+
1233+
1234+
1235+
1236+
1237+
1238+
1239+
1?40+
1241+
1242 1
1243+
1244+
1245+X15
1246+
1247+15
1248+
1249+
1250+
1251+
1252+
1253+
1254 +
1255+
1256+
1257+
1258+
1259+
1260+
1261+Y15
1262+
12634-+
1264+
1265 +
1266+W15
1267
1268
1269
1210+
1271+CEEE
1272+
1273+8EEE
1274+

18:2

ST
S T
ST
S T
LP
LA
A
LR
L

ST
LA
ST
LA
ST
LA
ST
L.
L
L
L
ST
ST
ST
ST
L
S

L'
S
L
S
L
ST
C
BL

CR
BH
B
CP
B L
AR
L
ST
LA
ST
LA
ST
LA
ST
L
L
L
L
B
L
L
L

L

0 u

L
L
L
L

StSAV&i 3
9, S AV E9
10, SAVE10
IISAVEII
10,4
11,0
I II=F ' 10 0
9,4
8,1 POINTER
9,STACK38)
8,4(3)
10,STACK(8)
8,4(9)
l1,STACK(8)
8,4(8)

8,POINTER
8,5AV8
9,SAVE9
10, SAVE10
IllSAVEll
8, SAVE
9, SAVEl9

,10, SAVEIO
ll,SAVElI
8,POIMTER
8 ,=F'I 4

11, STACK(8)
B,=F'41

10, STACK(8)
8,=F'41
9,STACK(8)
8,POINTER
9, ZERO
X15
10,11
Y15
Z15

10, 11
Y15

10,9
8,1TUITER
9, STACK (8)
8,4(8)
10,STACK(8)
8,4(3)
1iSTACK(8)
8,4(3) -
8,POT1IER
8, S4VE8
9, SAVE9
10,SAVE10
11, SAVElI
W15
8,SAVE8
9,SAVV9
10, SAVE 10
liSAyVl1
A E E":

A 14,=F1'
A 15,=F'li

ENODO LAfEL=EEE
EEE
8,sAVE
9,SAVE9
10,SAVE10
l1,SAVEl1

1275+AEEE
1276 *
1277
1278+
1279+
1280+
1281+
1282+
1283+
1284+.
1285+
1286+
1287+IH30017
1288+
1289
1290+TESTB
1291 *
1292 *
1293 -
1294+
1295+
1296+
1297+
1298+
1299+
1300+
1301+
1302+
1303+1HB0019
1304+
1305 *
1306 *
1307
1308+
1309+
1310+
1311+
13 12
1313+
13 14+
1315+
1316
1317+-

1318
131 2
1325)
L321

1322

I324
1325
1326
1327

COP
B4L
DC
DC
DC
DC
DC
D
DC
DS
Svc

SNAP I=6,DC6=DJMPAREAPDATA=REGS
0,4
1,IH0017 BRANCH ARJUND PARAM LIST
AL1(6) It NUMBER
ALI(0)
AL(130) OPTION FLAGS
ALI(32) OPTION FLAGS
AW(U'4PA!AIA) DCB ADDRESS
A(O) TC3 ADDRESS
A(0) ADDRESS OF SNAP-SH3T LIST
OH
51

ED0CASE LABEL=TEST8,OPTION=2
EQU

SN A P
CNOP
BAL

C L
DC
DC
DC

DC

DC
DS
Svc

L
L .
MV I

CL 0 SE

DC 49114 L

Sv c

SAVEARFA DC
0 s

SAVF9 D
sAVE10 DS
SAVEl OS .D
POINTER DC
STACK OSD
DUMPAREA f)03

1329+*
1330+*
1331+DUMPAPEA DC

1333+*

1335+
1336+

*

T D=7,DCB=DUMPAR EA,?PDA TA=REGS
0,4
1,TH30019 BANCH AROUND PARAM LIST
AL 1(7) ID NUMBER
AL1(0)
ALI(130) OPTION FLAGS
ALI(32) OPTION FLAGS
AM(UPA0 F-A) DCB ADOkESS
A(O) TCB AD PRESS .
A(O) ADD ESS OF SNAP--SH)T LIST
OH
51

13,4(,13) POP UP SAVE AREA
14,12,12(13) RESTORE GISTERS
12(13),X'FF' FLAG EXIT
14 RE TUR N -

f)UP A PE A
5,4 ALIGN LIST TO FULL4JRD
1,*+8 LOAD EGI W/LIST ADDR
At1(12) OPTION BYTE
AL3(D'JMPAqEA) DCB AJDRESS
20 ISSUE CLOSE SVC

18A(0)
or
SF' 0'
IF

IF
IF
IF'10'
10SF

DNAMiF=TEAM1,D SDAG=?S ECFM=VBA
ACRF=WBLK SLE=882LRE CL=125

0 A TA CONTROL LOCK

OF1O' ORGI3ON WtORLD B3JNDARY

DIRECT ACCESS VICE INTERFACE

DC BL'6' FOAODVThL
f, A(0) FKFYLE, ')EVTTR AL

183

x

184

1338+* COMMON ACCESS METHOD INTERFACE

1340+ DC ALI(0) SUFNO
1341+ DC AL3(1) BUFC5
1342+ DC AL2(0) BUFL
1343+ DC BL? 010000000000000' DSORG
1344+ DC AM1) 0BAD

1346+* FOUNDATION EXTENSION

1348+ DC BL'000)0000' BFTEKtFL, HIARCHY
1349+ DC AL3(I) E0AD
1350+ DC BL1101010100' RECFM
1351+ DC AL3(3) EXLST

1353+* FOUNDATION BLJCK

1355+ DC CL8'TfE AM' DDNAME
1356+ DC BL1'0O00001 O OFLGS
1357+ DC BL1'00000000' IFLG
1358+ DC BL2'0000000000100030' MACR

1360+* BSAM-BPAM-QSA4 INTERFACE

1362+ DC" BL'0000000' RER i
13 63+ DC AL3(1) CHECK, GERR, PFRR
1364+ DC AU) SYNAD
1365+ DC H40 CN0), CIND2
1366+ DC AL2(382) BLKSIZE
1367+ DC '0 WCPf; WCPL, OFFSR, OFFSW
1368+ DC AI) UB4A
1369?+ DC ALi(0) NC P
1370+ DC AL3U) EQBR, EDBAD

1372+* BSAM-BPAM NTERFACE

1374+ DC A F7) E BW
1375+ DC H'0' DIRCT
1376+ DC AL2(125) LRECL
1377+ DC A(1) CNTPL, NOTE, PMINT
137 END
1379
1380 =F#5'
1381 =F141
1382 =F10'
1383 =Foo
1384 =F'1001

BIBLIOGRAPHY

Books

Chapin, Ned, 360/370 Programming in Assembly Language,
New York, McGraw-Hill Book Co., 1968.

Dahl, 0. J. and others, Structured Programming, London,
Academic Press, Inc., Ltd., 1972.

Hannula, Reino, Computers and Programming: A System/
360-370 Assembler Language Approach, Boston, Ma.,
Houghton Mifflin Co., 1974.

Organick, Elliott I., The Multics System: An Examination
of Its Structure, Cambridge, Ma., The~MIT Press, 1972.

Weinberg, G., The Psychology of Computer Programming, New
York, Von Nostrand Re inhold Co., 1971.

Wirth, Miklaus, Systematic Programming: An Introduction,
Englewood Cliffs , N.J., Prentice-Hall, Inc., 1973.

Articles

Baker, F. T., "System Quality Through Structured
Programming," Proc. FJCC, (1972), 339-343.

and H. D. Mills, "Chief Programmer Teams,"
Datamation, XIX (December, 1973), 58-61.

Bauer, F. L.,, "Software and Software Engineering," SIAM
Review, XV (April, 1973), 469-480.

Benson, Jeoffrey, "Structured Programming Techniques,"
Record of the 1973 IEEE Symposium on Computer Software
Reliability, New York, (April, 1973), 143-147.

Bohm, C. and G. Jacopini, "Flow Diagrams, Turing Machines
and Languages with only Two Formation Rules,"
Communications of the ACM, IX (May, 1966), 366-371.

Denning, P. J., "Is It Not Time to Define 'Structured
Programming' ?" SIGPLAN Notices, (February, 1974),
6-7.

185

186

Dijkstra, E. W., "The Humble Programmer," Communications of
the ACM, XV (October, 1972), 859-866.

, "Structured Programming," Software
Engineering, Report on a Conference Sponsored by the
NATO Science Committee, Rome, Italy, (October, 1969).,
84-88.

, "The Structure of the 'THE' Multi-
programming System," Communications of the ACM,
XI (May, 1968), 341-356.

"GOTO Statement Considered Harmful,"

Communications of the ACM, XI (March, 1968), 147-148.

._"Complexity Controlled by Hierarchecal
Ordering of Function and Variability," Software
Engineering, Report on a Conference Sponsored by the
NATO Science Committee, Garmish, Germany, (October,
1968), 181-185.

Donaldson, James, "Structured Programming," Datamation, XIX
(December, 1973), 52-54.

Fisher, David, "A Survey of Control Structures in Program-
ming Languages," SIGPLAN Notices, (November, 1972),
1-13.

Hopkins, Martin, "A Case for the GOTO," SIGPLAN Notices,
(November, 1972), 59-62.

Kent, William, "Assembler-Language Macroprogramming: A
Tutorial Oriented Toward the IBM 360," Computing
Surveys, (December, 1969), 183-196.

Leavenworth, B. M., "Programming With(out) the GOTO,"
SIGPLAN Notices, (November, 1972), 54-58.

McCracken, Daniel, "Revolution in Programming: An Overview,"
Datamation, XIX (December, 1973), 50-52.

Miller, E. and G. Landamood, "Structured Programming:
Top-Down Approach," Datamation, XIX (December, 1973),
55-57.

Mills,, H. D., "On the Development of Large Reliable
Programs," Record of the 1973 IEEE Symposium on
Computer Software Reliability, New York, (May, 1973),
155-159.

187

Parnas, D. L.,, "Information Distribution Aspects of Design
Methodology," Information Processing 71, North-
Holland Publishing Co., 339-344.

Peterson, W. W., et al, "On the Capabilities of While,
Repeat, and Exit Statements," Communications of the
ACM, XVI (August, 1973), 503-512.

Rosen, Saul, "Electronic Computers: A Historical Survey,"
Computing Surveys, (March, 1969), 7-36.

Tenny, Ted, "Structured Programming in FORTRAN," Datamation,
XX (July, 1974), 110-115.

Wulf, William, "A Case Against the GOTO, " SIGPLAN Notices,
(November, 1972), 63-69.

Reports

IBM System/360 Operating System Assembler Language, IBM
Form No. GC28-6514-8.

IBM System/360 Operating System Principles of Operation,
IBM Form No. GA22-6821-8.

Improved Programming Technologies Management Overview,
IBM Corporation, Data Processing Division, Systems
Marketing, Installation Productivity Programs
Department, August, 1973.

Kessler, M. M., *CONCEPTS* Report 4, OS/360 Assembly
Language Block Structured Programming Macros, IBM.

Mills, H. D., Chief Programmer Teams: Principles and
Procedures, Report No. FSC 71-5108, IBM Federal
Systems Division, Gaithersburg, Maryland.

, How to Write Correct Programs and Know It,
Report No. FSC 73-5998, IBM, Gaithersburg, Maryland,
December, 1972.

, Mathematical Foundations for Structured
Programming, Report No. FSC 72-6012, IBM, Gaithersburg,
Maryland, February, 1972.

Special Interest Group on Programming Languages, Special
Issue on Control Structures in Programming Languages,
New York, New York, Association for Computing Machinery.
Vol. VII (November, 1972).

