379
NE [
NG, 539 ¢

A COMPARISON OF FILE ORGANIZATION TECHNIQUES

THESIS

Presented to the Graduate Council of the
North Texas State University in Partial

Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Roy Lee Rogers, B. §S.
Denton, Texas

August, 1977

Rogers, Roy Lee, A Comparison of File Organization Tech-

niques, Master of Science (Computer Science), August, 1977,
99 pp., 5 tables, 15 illustrations, bibliography, 23 titles.

This thesis compares the file organization techniques
that are implemented on two different types of computer sys-
tems, the large-scale and the small-scale. File organizations
from representative computers in each class are examined in
detail: the IBM System/370 (0S/370) and the Harris 1600
Distributed Processing System with the Extended Communications
Operating System (ECOS).

In order to establish the basic framework for comparison,
an introduction to file organizations is presented. Addition-
ally, the functional requirements for file organizations are
described by their characteristics and user demands. Conclud-
ing remarks compare file organization techniques and discuss

likely future developments of file systems.

TABLE OF CONTENTS

LIST OF TABLES .
LIST OF ILLUSTRATIONS
Chapter

I. INTRODGCTION

II. SURVEY OF ORGANIZATIONS

Sequential Organization

Random Organization

List Organization

Tree File Structures

Indexed Sequential Organization
Attributed String Organization

ITI. FUNCTIONAL REQUIREMENTS FOR FILE
ORGANIZATIONS . .. e

Characteristics of File Organizations
User Demands for File Organizations

1V, FILE ORGANIZATIONS FOR LARGE AND SMALL
SCALE COMPUTER SYSTEMS -

File Organization and Access for a
Large Scale Computer System

File Organization and Access for a
Small Scale Computer System

V. COMPARISON OF FILE ORGANIZATIONS

Similarities
Differences

VI. SUMMARY
APPENDIX I . .
APPENDIX IT
BIBLIOGRAPHY

iii

Page

iv

41

51

78

86
91
96
98

Table

IT.
ITT.
IV.

LIST OF TABLES

Example File--1
Comparison Chart

Access Methods . . .

File Access Methods and Access

Comparison of Systems

iv

.

Modes

Page

53
62
82
84

Figure

10.
11,

12.
13.

14.
15.

LIST OF ILLUSTRATIONS

Record Format for Example File--1

Sequential Organization of Example File--1

Direct Address Organization of Example File--1 .

Dictionary for Ekample File--1

List Organization of EXample File--1
Inverted Organization of Ekample File--1
Multilist Organization of Example File--1
Ring Organization of Example File--1
Example File--1 Symbol Trees

Example of an Immediate Decoding Tree
Example File--1 Directory Tree

Indexed Sequential Structure of Example
File--2 .

Diagram of the Attributed String
Organization « o .

Vertical Structure of Example File--3

Conceptual View of Indexed Sequential
File Organization

Page

11
13
19
21
23
25
30
32
34

35

39
\45

59

CHAPTER I
INTRODUCT ION

File organization techniques have received attention
periodically over the years from persons interested in infor-
mation retrieval and from persons interésted in file-oriented
computer applications in business, engineering, scientific,
and government work. This thesis presents by means of survey
and contrasts some implications for file organization tech-
niques used on large scale and small scale computer systems.

To accomplish this it examines and compares the file structures
used on representative systems from these two classes: the

IBM System/370 (0S/370) and the Harris 1600 Distributed
Processing System with the Extended Communications Operating
System (ECOS) respectively.

The following is a brief outline of this thesis. Chapter
II classifies and introduces various techniques of file organ-
izations, with a survey of some interesting file organizations.
During research of file organization techniques, 1t was observed
that a great wealth of useful and different material has been
published, but that no single work provides an adequate survey
of all file organizations. TFor this reason, it was decided to
include a large portion of this material and to present it in

a manner so that other researchers with limited knowledge of

file organization techniques would have these fundamental
developments in a single source. Therefore, some of the
introductory material of this chapter will be familiar to
advanced students of file organizations and file structures.
Six general file organization techniques are surveyed: the
sequential, the random, the list, the tree file structures,
the indexed sequential, and the attributed string.

In Chapter IIT the functional requiréments for file
organizations are examined via the characteristics of file
organizations, and the demands users place upon file organi-
zations. To that end, a statement of the users' common
demands are graphed into four categories. The common user
demands considered are naturalness, ease of access, ease
of maintenance, and the extend of software and hardware support.

Chapter IV examines the file organizations of a large
scale computer system and a small scale computer systemn. The
file organization'techniques are contrasted from a critical
viewpoint regarding variations in file organization, access
methods, and data management facilities. The chapter is not
exhaustive but does provide important terminology for use in
the comparison of the file organization techniques. Chapter
V presents a comparison of file organizations for the two
computer systems.

The final chapter summarizes the comparative study of
file organization techniques which exist in large scale com-

puter systems and small scale computer systems. Among the

contents of this chapter is information concerning the future
developments of file systems.

Two appendixes are included. The first presents some
basic key words and phrases and a brief description of new
phrases used in Chapter IV. Because terminology is.ekpanding
somewhat faster than it is being standardized, certain defini-
tions offered in this thesis and appendix are not absolute
and some file organization specialists may use different
terminology. The second appendix exemplifies the file system

performance for the small scale computer system.

CHAPTER 1I

SURVEY OF FILE ORGANIZATIONS

This chapter classifies and introduces various techniques

of file organizations. The six file organization techniques
surveyed in this chapter are the sequential, the random, the
list, the tree file structures, the indexed sequential, and
the attributed string.

In practice, many of these exist not only in pure forms
but also in hybrid and modified forms. Some are used in a
combined manner. That is, at one level a file may be organ-
ized by using one technique and at another level may be
organized by using a different technique (4). Therefore, the
techniques observed in actual use may not be pure forms. For
clarity of introduction, however, pure forms will be considered
here.

The six file organizations selected here are obviously
not the only forms of data structure possible for use as file
organization techniques. For example, the file organizations
for simple 1list, simple ring, and the binary tree have been
omitted. In the first two cases, more complex forms of these
file organizations are surveyed because of their greater popu-
larity as file organization techniques. For the same reason,
a general form of tree file structures has been included
instead of a binary tree.

Table I is a sample file that is used to illustrate the

discussion of the first four file organizations. The file

4

“I], 1S81)

"X, SeTTe(Apeys ST8S .sauor *7 iouealy 6961 ydmtiy 809-QHd g
"I 3591

XL se1Teq ApeyS $18§ SSUOL 9T33aN 9L6T 9138A3YD £09 -0 ¥

X1 odeyiae) "XT 3uoung £z9T Axxeg ‘) Aoyert ZL6T Lo gyS-yI ¢

"X1, seTTeq PUOUPTY €008 sI980Y °V edTIg €161 pnowdtd Z90-Dar 4

XL urisny SUBT YBO 655 STIION Y URTIY L96T I9ToansY) QTO-9dr T

211819 A1) 5501ppY SWeN Ieax oYEW BSUSDT] Joqumy
1091318 TOPOK DIODSY

JISUMO I TqowoINy

contains data on automobiles and their owners, as might be
maintained by a state department of motor vehicles. Figure
1 shows a record layout that might be used for each record
of this file. Each of the other file organizations will be

illustrated separately as they are discussed.

Sequential Organization

Sequential organization was, historically, the first to
be developed and is the best known. In a sequential file,
records are arranged in position according to some common
attribute of the records (10, p. 117). Sometimes records in
a sequential file are stored in order of their arrival in the
file. Figure 2 shows part of the example file organized as
a sequential file, where the file is ordered by license number.

The principal advantage offered by sequential organization
is rapid access to successive records. That is, if the nth
record has just been accessed, then the (n+l)th record can
be accessed very quickly. This is always true if the sequen-
tial file is resident on a single-aécess auxlliary storage
device, such as a tape drive. However, if the file is stored
on a multi-access device, such as a disk drive, then, in a
multiprogramming environment, head motion caused by other
users may reduce this advantage.

A sequential file is searched by scanning the entire file
until the desired record is found. For a large file, this is

a lengthy process. For this reason, transactions for a

LAST NAME FIRST NAME, INITIAL

STREET ADDRESS

CITY STATE

AUTO MAKE MODEL YEAR

LICENSE NUMBER

Figure 1. Record Format for Example File--1

Morris | Brian K. |5559 Oak Lane | Austin Tx.{ Chevrolet %
% 1967 | JBG-018 Rogers | Erica A. 8003 Richmond, Dallas %
% Tx. { Plymouth 1973 [JDC-062 Berry Leroy C. 2
% D 1627 Carthage Tx. | Mercury 1972 | KIA-548 %

umont Jir.

Figure 2.

of Example File--1

Sequential Organization

sequential file are usually accumulated, sorted so that they
are in the same order as the file, and then presented all at
once for processing, so that only one pass through the file

is required. Using such batching techniques, it is possible

to process sequential files at a very low cost per transaction.
Obviously, a sequential file is not wéll suited to an online
application, where the transaction batch size is small.

When a file is to be processed on the basis of more than
one key, efficiencies that are achieved by ordering the file
on-a single key are impossible unless a duplicate copy of the
file, ordered on the second key is maintained. The alternate
copy can then be used to determine the primary keys of the
record to be processed, and standard sequential processing
techniques can be used. This technique adds many steps to any
process accessing the file, and may greatly reduce efficiency.

In summary, sequential organization permits rapid access
to successive records and is the most economical implementa-
tion of a file that will have large batches of transactions
processed against it accordihg to one key. However, processing
and retrieving records out of sequence are very slow, and small
volume updates are inefficient, since any update requires re-
copying of the entire file. Other major strengths of the
sequential organization are its economy of storage, and its
speed for access by attributes if the cost of ordering (that
is, sorting) be ignored, and if the attribute by which the user

desires access is reflected in the key used for ordering.

10

Random Organization
The records in a randomly organized file are arranged
according to some established relationship between the key of
the record and the location of the record on direct-access
storage; records are stored and retrieved through the use of
this relationship (10, p. 118). There are three types of
random organization: direct address, dictionary lookup, and

calculation.

" Direct Address

When the address of the record is known, this address can
be used directly for storage and retrieval. This presumes
that some address bookkeeping is performed outside the computer
system, or that each record contains some field that is used
directly as the key. Figure 3 shows a direct organization of
the example file., In this case the last three digits of the
vehicle license number must be known to access a record.

The direct address method of organization is based upon
some predictable relationship between the key to the record
and its location within the file. In its simplest form, the
key would be the address of the cylinder and track on a DASD
where the record is placed. With this system, the location of
the record is known as soon as the key is known, so that the
record can be read directly.

A desirable characteristic of the direct address method

of organization is that records should be distributed as evenly

11

5815 Shady Crest Tr.

5815 Shady Crest Tr.

Dallas Tx. Dallas Tx.
Chevette 1976 Triumph 1969
FED-607 FED-608
607 608

Figure 3. Direct Address Organization

of Example File--1

‘Morris Brian K. Rogers |Erica A. Berry Leroy C.
5559 Oak Lane 8003 Richmond 1627 Dumont Dr.
Austin Tx. | Dallas Tx. Carthage Tx.
Chevrolet 1967 Plymouth 1973 Mercury 1972

JBG-018 JDC-062 KIA—548
018 062 548
Jones Nettie Jones [Eleanor L|

12

as possible throughout the file. If an attempt is made to
write too many records to a file that has already been allo-
cated, there will not .be room to add the record and it must

be placed in some other location. Retrieving records which
are placed anywhere other than their originally calculated
location makes programming more complex and increases access
time. The chief advantage of this type of random organization

is speed of access.

" Dictionary Lookup

A dictionary is a table of two-element entries, each of
which specifies a key-to-address transformation (10, pp. 119-

120). When a record is added to the file, an entry is added
to the dictionary; when a record is deleted, a dictionary
entry is removed. Retrievals are performed by looking up the
desired key in the dictionary, and then using the address
obtained from the dictionary to access the record. Figure 4
shows a dictionary for the example file, which could be used
for access based on owner's surname.

Since each reference to a record in the file requires a
search of the dictionary, the search strategy used has great
influence on the effectiveness of the file design. The two
search. strategies that are commonly employed are the binary

search and sequential scan.

If the dictionary is not maintained in any collating
sequence, a sequential scan is the only method that can be

used to obtain an address. If the dictionary has n entries,

Berry

Morris

Rogers

Jones, N,

Jones, E.

*3

%4

*5

*1

*2

*Record Number

Figure 4. Dictionary for Example File--1

13

14

then, on the average, (n + 1)/2 accesses will be necessary
to obtain an address.

On the other hand, if the dictionary is maintained in
collating sequence of the keys, a binary search is possible.
The binary search begins by first testing the key at the
location that is a power of 2 nearest to the middle of the
dictionary. A comparison indicates whether it is the desired
key, and, if not, in which half of the file the key is located.
This operation is then repeated, eliminating half the remaining
dictionary at each step, until the desired key is located,

or its absence is established.

Calculation

In the calculation method, a key is converted into an
address by some computational manipulation of the key (10, pp.
120-121). Since the set of addresses produced is much smaller
than the set of possible keys, the addresses generated from
distinct keys are not always distinct.

Two processes, compression and hashing, are discussed
here; only hashing, however, is an address calculation method.
Compression is included because an important performance
measure of both compression and hashing algorithms is the ex-
tent to which they map different keys into the same transformed
key.

Compression, called "abbreviation'" by Bourne and Ford (2)

is the transformation of the key so that it requires as little

15

storage as possible, and yet retains as much as possible the
discrimination and uniqueness of the original key (2). Com-
pression is normally applied to keys that are words or names
in natural language, so as to remove characters that add the
least to the information content of the keys.

Hashing is a transformation on keys that produce a uni-
form spread of addresses across the available file addresses
(9). Thus, hashing is used to transform a key (that may have
been compressed) to an address. A popular hashing algorithm
is to split the key into two parts, multiply the two halves
of the key, and use the middle bits of the product as the
hash address.

Compression techniques are especially useful in cases
where the keys may contain errors, such as may occur in
systems performing retrievals based on names, particularly if
the name has been transmitted verbally. Specialized compres-
sion techniques based on phonetics have been developed that
map various spellings of the same word into the compressed
key (5). A name-based retrieval system is an example where

both compression and hashing might be used together.

List Organization
This section describes list structures, which include
linear lists, inverted files, and rings. For each list

structure, methods for inserting and updating are outlined.

16

In dealing with list structures, it is desirable to have
a compact notation for specifying algorithms for manipulating
them. A convenient notation for this purpose has been intro-
ducted by Knuth (7). Every record consists of a number of
fiélds, some of which are pointers; therefore, all operations
on lists of records can be expressed in terms of operations
on fields of records. Let ‘the notation also include link
variables whose values are pointers.

A pointer to a record is the address of that record, ex-
pressed in a way that permits the direct location of the record.
Thus, a pointer can be an actual disk address, or it can be
an address relative to the disk address of the first record
of the file, or some other quantity. By the use of pointers
to imply linking relationship between records, it is possible
to completely divorce the physical and logical arrangement of
a file. In fact, through the use of pointers, it is even
possible to represent recursive data structures, which have
no representation without pointers.

The fundamental component of a list is a record, as de-
fined above, where one or more of the fields may be pointers.
Then a 1ist can be defined as a finite sequence of one or
more records or lists.

Lists that are not recursive and do not have loops or
intersections can be represented without the use of pointers,

if physical ordering is used to represent the linking rela-

tionship between records. This type of allocation is called

17

sequential allocation; in contrast, the use of pointers to
join related records is called linked allocation. Linked

allocation schemes are easier to update, but require more

storage for pointers.

In the figures showing list file organizations with
pointers, pointers are repreéented by arrows from the record
containing the pointer. The end of a list is indicated by a
pointer of some special value, often zero; in the figures
this end-of-1ist indicator is represented by the symbol used

to represent 'ground" in circuit diagrams, after Knuth (7):

Linear Lists

A linear list is a set of records whose only structure
is the relative linear positions of the records (7). There
are special names for linear lists in which insertions and
deletions are made at one end of the 1list (7):

A stack is a linear list for which all insertions and
deletions are made at the same end, called the top.

A queue is a linear list for which insertions are made
at one end, called the back, and deletions are made at the
other end, called the front.

A deque (contraction of "double-ended queue") is a linear
list for which insertions and deletions can be made at either
end, called the left and right of the deque.

These three structures are encountered frequently. They

are sometimes also called queueing disciplines; a stack is a

18

LIFO (last in first out) queue, a queue is a FIFQ (first in
first out) queue, and a deque is a queue that can be used in
either way. These names reflect the primary use of these
structures--the construction of various types of task queues.
They also occasionally are useful as intermediate files in
applications that require complex retrieval processes on large
files. For example, a stack might be used to accumulate the
results of a search of a file on a primary key for later
qualification by other processes.

A linear list may be implemented using either sequential
or linked allocation, but implementation is not limited to
these restricted cases. In general, additions and deletions
may be made at any point in a list, and a record may be on
several lists at once. The great ease with which additions
and deletions can be made in a linked 1ist is one of the chief
advantages of linked allocation. Figure 5 shows a linear list
organization for the example file, where a separate list has
been used for each distinct city of residence in the file.

The first spare field has been used as the list pointer.

Inverted Files

This second method of implementing file structures for
generic and multiple keyed records is called the inverted file
organization (8). By this method, another file is inserted
as an intermediary between the index and the data file. This

intermediary file contains records that are simply lists of

19

5815 Shady Crest Tr.

5815 Shady CrestTr.

Dallas Tx. Dallas Tx.
Chevette| 1976 Triumph | 1969
FED-607 FED-608

» b *~—

%4 *5

*Record mumber

Figure 5.

Morris Brian K. Rogers Erica A. Berry Leroy C.
5559 Oak Lane 8003 Richmond 1627 Dumont Dr.
Austin Tx. Dallas Tx. Carthage | Tx.
Chevrolet| 1967 Plymouth | 1973 Mercury 1972
JBG-018 JDC-062 KIA-548
[*r——
*1 = *2 %3
//
/
Jones Nettie Jones Eleanor L/

List Organization of Example File--1

20

pointers to the data file records. Every key in the index
points to one of these lists, called an inverted l1list (8, p.
64), and the list in turn points to all of the records in
the data file that contain the given generic key.

An inverted file is composed of a number of inverted
lists. Each inverted list is associated with one particular
value of some key field of a record and contains pointers to
all records in the file that contain that value of the key
field. Inverted lists are normally produced for all fields
of the record, permitting the file to be accessed on the basis
of any field (10, p. 123), Figure 6 shows an inverted file
structure for the example file. Since the file is inverted
on the basis of all fields, any one can be used to access a
record. Note that the longest inverted list is the one for
"Tx.", which appears in all records in the example file.

An inverted file permits very rapid access to records
based on any key. However, updating an inverted file struc-
ture is difficult, because all the appropriate inverted lists
must be updated. For this reason, an inverted file structure
is most useful for retrieval if the‘update volume is relatively
low or if updates can be batched.

A variation of inverted file structure that includes
features of lists is multilist structure. A multilist consists
of a sequential index that gives, for each key, the location
of the start of a list that links together all records char-

acterized by that key value. A multilist can be regarded as

21

1--9174 oTdwexg Fo uoljleZzTuSIQ PolIoAU] - ¢ oIndTy
JIOQUINU PIOISY,

4 § ‘¢
PUOWSTY]| { “XL 3S91D
€008 | |ApeUS $189
T 4 Z ¢ 5 1 ¢ SRR ALV AR |
ST TEO 961 16T 7161 6961 o6t | [ww%g X1
S Z Z % T ¢ ¢
ydumra], sia30y INOWATJ 9T1I8N STIION AINDIO) ‘D A0X9]
g S ‘v Z T S 12 Z
8YS -V seuop 790-20r eT0-0dr 200 -0 209-031 'Y BoTXy
S S ‘v ‘z T ¥ ¢ T ¢ Ts
*] I0UESTY SBTT®q 3eT0aA3]| | 9330030 sdeyzae] Y uetag Axaag mﬂwms,@

22

an inverted list structure in which all entries after the
first in each inverted list have been represented by lists in
the file rather than by entries in the inverted list.

Figure 7 shows a multilist organization of the example
file. Note that one link field is needed for each of the key
fields in the original record, since exactly one list will
pass through every record for each field in the record.

If the lists are divided into pages, if pointers in the
index refer to records by page and record number within page,
rather than record number within the file, and if each list
is restricted in length to one page, the structure is called

a cellular multilist (10, p. 126). In a cellular multilist,

then, each inverted list is represented by a number of sub-
lists, where a sublist is a linked list within a page. The
index points to the first record of each sublist.

A multilist is easier to update than an inverted file
because it avoids the necessity for complete reorganization
of the sequentially allocated inverted lists, but retrievals
are slower than with an inverted file because the lists must
be traversed to perform a retrieval. A cellular multilist
organization lies midway between the inverted file and multi-
list, both in updating difficulty and in retrieval speed,
because it represents the inverted lists by a structure that
is partially linked (the file) and partially sequentially

allocated (the index).

23

I--9T7Td oTdwexy yo uoT1BZTuBSIQ ISTITITAW "/ SIndig

- S
_ T~ . T
- Iml L illll.lllnll.l‘.
= — ~ ~
309-0dd L09-Tdd
6961} Ydumrip 9L6T | 9330A8Y)
X[SBRITRU "X SeITEd
"1 380D Apeys 18§ ‘1] 3501 ApeyS SI8S
+ 1ouesld SoUO{ 9T118N souor
E— P
C# \N% : Tx
e > = ’
—w —e — = -
VS -VIX Z290-21r 8T0-0ar
ZL61 AINSTION | ¢L6T YINOUWATJ L9671 | ISToLA3Y)
X1, 93BY1IRD *X], SEITRd ‘X1 cursny
T Fuouryy 791 pucyoTy £008 SUBT qBO 655§
I P.CFER Kiiog ‘Y BOTIY siao30y *y uBIdg STIXON

/
S ;] e

seTTed yduntIy AIndaop X1 STIIOR

24

A ring is simply a linear list that closes upon itself
(10, p. 126). A ring is very easy to search--a search starting
at any element of the ring can search the entire ring. This
facilitates entry into a ring from other rings. The danger
that an unsuccessful search may continue endliessly around the
ring is solved very simply if the search program saves the
record number of the first record it searches; the record
number of each record that is searched is then compared to
this stored number, and the search terminates unsuccessfully
when it returns to its starting point.

One important use of rings is to show classifications of
data. A ring is used to represent each class; all records in
that class are linked to its ring. 1If a tag field is included
in each record along with each pointer, then a class can be
searched for the records it contains, or a record can be
searched for the classes which contain it with equal ease.

The classification scheme can be hierarchic; if it is, a hier-
archic search of the file can be performed very easily starting
at the highest level ring.

Figure 8 shows a ring organization of the example file.
This example shows only a city ring; other rings could be

incorporated if the file was to be entered using other keys.

The organizations of Figures 7 and 8 are very similar; in fact,

the only two differences are the circularity of the ring

25

1--9TT4 9pdwexyg Fo uoIjlezIiueSio Bury

"8 sansig

IOqUNU PIODTYy

% Y
e gy r L]
809-add £09-aHg
6961 qdungay, 9.6T 913240
XL SBITR(X1, seTTeq
TLL 3S9I) ApRYS ST8S "11, 1se1) Apeys STI8S
T IOUBSTH ssuor 9133=N ssuoy
Cx Cx Tx
. e —————————y

8rS-vIA

ZL6T | Axoisy

"X1 | eseyzie)

I Juouny ZzoTl

‘N AoTo ATI9Yg

£90-0ar

¢L6T | YINOWATH

XL seITRd

PUoiyoTy £008

'Y BOTIY S19309

8T0-Ddr

LO6T | A9TOoXTASYD
X7, ur3sny
SUET Ye(Q 6598

Y uetLIg STIION

a8ey1ae)

&

V[suy 41

26

(rather then having some end) and the ring versus sequential
organization of the‘index information. If a file is to be
accessed using a variety of types of data, using a ring struc-
ture to classify the index information reduces the average
access time.

Updating a ring structure is slightly easier than with
other list structures because all the pointers to be modified
during an update can always be found by traversing the ring.
Because a ring has no end and no beginning, and because, given
some record number x, the record on each side of x can always
be located by moving forward through the ring (10, p. 150).

There are two chief disadvantages associated with the use
of ring structures: the overhead introduced by the pointers
(which is essentially identical to the overhead associated
with any list organization), and the number of operations
required to locate a record. With an inverted file, for
example, if a record is to be located on the basis of three
keys, the three appropriate inverted lists can be used in
combination to locate the desired record very quickly; with
a ring structure, one of the three rings would have to be
searched sequentially. The reason that only one ring struc-
ture is searched sequentially is, once the appropriate ring
1s located that contains records with all three keys, a se-
quential search through the ring would be necessary to locate
the desired record. Thus, if the rings are very long, the

search time to locate a record can be long.

27

Tree File Structures

A binary search is used for a sequentially allocated
random-access file that is stored in order of the collating
sequence of its keys. This arrangement reduces search time
at the expense of update time. For a file that is updated
more often than it is searched, linked allocation can be used
to minimize update time at the eXpense of search time. For a
file that is updated and searched with similar frequency, how-
ever, neither of these approaches is very practical, and some
sort of compromise must be struck. A tree structure is such
a compromise, combining the speed of a binary search with the
updating ease of linked allocation (10, pp. 151-153).

A precise definition of a tree structure can be expressed
easily with the use of elementary graph theory. The following
is a modifiéation of definitions used by Sussenguth (11):

A graph is a set of nodes and branches joining pairs of
nodes.

A path is a sequence of branches such that the terminal
node of each branch coincides with the initial node of each
succeeding branch.

A graph is said to be strongly connected if there exists

a path between any two nodes of the graph.
A circuit is a path in which the initial and final node
are identical.

A tree is a strongly connected graph with no circuits.

28

The root of a tree is a node with no branches entering
it. The root of the tree is said to be at the first level;
a node which lies at the end of a path containing j branches
from the node is said to be at the (j + Ith level.

A leaf is a node with no branches leaving it.

The filial set of a node 1s the set of nodes which lie at

the end of a path of length one from the node.

The set of nodes reachable from a node by moving toward
the leaves are said to be govermed by the node.

From the above definitions, it follows that a tree will
always have one and only one root; a tree of n nodes will al-
ways have exactly (n - 1) branches; and(n - 1) is the smallest
number of branches required for the tfee to be strongly
connected.

Tree-crganized files are used most often as indexes to
some other file. Such an arrangement permits a record in the
tree file to consist of only keys, pointers to other records
in the tree, and addresses in the file. This approach is
particularly useful if the records in the file are variable
in length. If the file consists of short, fixed-length records,
then the entire record can be placed within the tree structure.

In this discussion, it is assumed that the tree structures
under consideration are being used for key-to-address trans-
formation that can be represented in a computer--a series of

mixed letters and digits, binary integers, or some other quanti-

ty. Since decoding is an application of tree searching, which

29

is the fundamental operation performed in any tree-structured
file, this discussion is also applicable to any tree-structured
file,

Many names have been used for various tree structures; no
standard terminology exists. For this discussion, trees are

classified into three types: (1) symbol trees, (2} immediate

decoding trees, and (3) directory trees. These three cate-

gories provide a reasonable basis for a survey of tree organ-
izations. However, the following discussion by no means
exhausts all the possible combinations of node contents and

linkage arrangements that can be made.

Symbol Trees

In the construction of a symbol tree, the leaves of the
tree are placed in one-to-one correspondence to the addresses
in the file that is indexed by the tree. The non-leaf nodes
of the tree are used only for searching; each leaf node of
the tree contains a file address. Each key is broken into a
number of symbols, and one node is used for each symbol. The
tree will have one node on the first level for each distinct
first symbol of a key; one node on the second level for each
distinct first symbol of a key; one node on the second level
for each distinct second symbol; and so on (11). The filial
set for each symbol will have one node for each distinct
following symbol in the key set. Figure 9 shows a symbol tree

for the eXample file for searching by license number.

30

—] —

—

0 ——————f

Record number

*

Example File--1 Symbol Trees

Figure 9.

31

Immediate Decoding Trees

With a symbol tree, decoding is never complete until a
leaf is reached. There is another type of tree that has
appeared in the literature (1), called in this discussion an

immediate decoding tree, in which an entire key is stored at

each node, and decoding can be completed without reaching a
leaf. In this structure, one node is used for each distinct
key value. The tree is searched until an exact match is found,
and then the file address in that node is takén as the result
of decoding. An immediate decoding tree for keys which take
the integral values from one to fifteen is shown in Figure 10.
This structure is particularly suitable for relatively short
keys that can be represented in one or two machine words. For
long keys, particularly if they share many initial polygrams,
a symbol tree makes more efficient use of storage.

When an immediate decoding tree is searched, the search
key is compared with the key at the root. If the two keys
are equal, the file address stored at the root is the decoded
address. If the search key is less than the key at the root,
the left branch is taken and the previous step 1is repeated.
If the search key is greater than the key at the root, the
right branch is taken and the previous step is repeated. 1If

a leaf is reached without an equal comparison, the search ter-

minates unsuccessfully.

32

99a], durpods(93eIpOuUT

Ce

"0T 2anftg

\/
V4

o7

33

Directory Trees

A directory tree lies in the middle ground between a
symbol tree and an immediate decoding tree. Each node of a
directory tree contains several entire keys, but no file
addresses. During the search, if the search key is greater
than the jth key at a node but less than the (j + key), then
the branch corresponding to the jth node is tested next. When
a leaf is reached, that leaf will contain the desired file
address, if the search key is in the file. Figure 11 shows a
directory tree for searching the example file by license
number.

A directory tree is most useful if the file keys are all
the same length, or can be compressed to the same length. In
that situation, the keys stored at each node can be searched

using a binary search, greatly speeding the search process.

Indexed Sequential Organization

The indexed sequential file organization follows the same
basic pattern of sequential organization previously described.
For convenience, however, in permitting access by attribute
when the attribute is the part of the key used for ordering
the file, the indexed sequential adds an index to the keys.
As indicated in Figure 12, this adds to the data structure a
separate new portion showing an address for each of the cited
keys. The index when supported by the hardware reduces the

long sequential access time "to pass the file" and thus permits

JBG-018

FED-607

)

\

JBG-018

JDC-062

*1

*2

*Record n

umber

Figure 11.

txample File--1 Directory Tree

34

FED-607

FED-608

KIA-548

*4q

*5

*3

FILE

Record Record Record Record Record

F1 |¥2 |F5] F1{F2 |F3 |F1 |F2 |F3 |F1 {F2 | F3|F1 |F2 |F3

Example File--2

(A file consisting of five file components
[records] each with three fields, one of
which has three subfields).

e
|
_\

Figure 12. Indexed Sequential Structure
of Example File--2

35

36

access to any file component given the key, in about the same
length of time (“permits random access") (4, p. 276).

Indexed sequential organization, however, by reference to
indexes associated with the file, makes it also possible to
quickly locafe individual records for non-sequential processing.
Moreover, a separate area of the file is set aside for additions;
this obviates a rewrite of the entire file, a process that
would usually be necessary when adding records to a sequential
file. Although the added records are not physically in key
sequence, the indexes are referred to in order to retrieve the
added records in key sequence, thus making rapid sequential
processing possible.

The principal use of this file organization is for the
random access of records with nonserial keys (8, p. 56). There
must be a single key designated within each record for file
positioning, but the value of this key need not necessarily be
unique; if it is not, then the access to the file will he to
the first record in the series containing this key, and the
other records containing the same key will appear immediately
afterward. The key values themselves do not have to be serial
since the access mechanism to the records does not use the
key itself as a locator, but rather relies upon an index or a
look-up in order to point to a particular block containing
the indicated record key; hence, the key may be alphanumeric

and of varying lengths.

37

Attributed String Organization

The attributed string file orgnization consists of a
string of properties with both elements of the organization
eiplicitly'stated. The elements of the organization can be
termed as the attributes, and the string properties. Here
the usual concept of a record may be maintained as the file
components, or the properties themselves may be the file conm-
ponents or any grouping of them. This technique of file
organization might be more properly called the '"property
string"” since it consists of a sequence of properties (3).
However, since the major difference between this and the
common sequential file organization is the presence of the
attribute in explicit form, the term attributed string is
for historical contrast.,

An example of an attributed string file organization is
in the intelligence area (4, pp. 279-280). The items of data
gathered by an intelligence operation and maintained in an
intelligence file typically show very little uniformity of
conceptual content. The attributed string, therefore, appears
as an attractive way of showing such varieties of conceptual
content since it explicitly designates both attributes and
values, in contrast to the sequential or indexed sequential
file organizations.

The prime.cost of the attributed string is the storage
space taken by the attributes. TFor this reason, the attri-

buted string organization finds application mostly where the

38

sequential file organization would result in much storage
space occupied by filler symbols. Attributed strings may be
ordered but commonly are unordered. A diagram 1llustrating
the character of an attributed string organized file is shown
in Figure 13.

Access by attribute, by property, and by value are all
equally convenient, but typically slow. If the file be ordered
on an attribute, property, or value, then the file becomes
essentlally an indexed sequential organized file with the
characteristics noted previously.

In summary, the attributed string organization, because
of its use of storage space, serves as an alternative to the
sequential or indexed sequential file organizations for the
components of a file where the variability in the conceptual
content is such that the space occupied by the attributes 1s
less than the space that would be occupied by fillers in the
sequential or indexed sequential file organizatibns. It
provides further the most equal ease of access by attribute,

by property, and by value.

A4 | S4 A8 | S8 | A7 S7 | AS S5
S4 85 S7 S8
Figure 13. Diagram of the Attributed String

Organization

39

10.

11.

CHAPTER BIBLTOGRAPHY

Arora, 5. R. and W. T. Dent, 'Randomized Binary Search
Technique,'" Communications of the ACM, XII (February,
1969), 77-80"

Bourne, C.P. and D. F. Ford, "A Study of Methods for
Systematically Abbreviating English Words and Names ,"
- Journal of the ACM, VIII, (April, 1961), 538-552.

Chapin, Ned, "A Deeper Look at Data," Proceedings'gi‘the
- ACM National‘ConferenCe'gg, (1968), 631-638.

Chapin, Ned, "a Comparison of File Organization Techniques,"
Proceedings of the ACM National Conference 69, (1969),
273-2873.

Davidson, L., "Retrieval of Misspelled Names in an Airlines
Passenger Record System,"'CommUnication5'9£ the ACM
V, (March, 1962), 169-171.

Kindred, Alton R., Data Systems and Management, Englewood
Cliffs, N. J., Prentice-Hall, Inc., 1973, 129-130.

Knuth, D. E., Fundamental Algorithms: The Art of Computer
Programming, Vol. I, Reading, Massachusetts, Addison-
Wesley, 1968.

Lefkovitz, David, Data Management for On-Line Systems,
Rochelle Park, N. J., Hayden Book Co., Inc., 1974,
56-57.

Morris, R., "Scatter Storage Techniques," Communications
of the ACM, XI, (January, 1968), 38-47.

Roberts, David C., "File Organization Techniques,” Advances
in Computers, edited by Morris Rubinoff, New York,
New York, Academic Press, 1972, 115-165,

Sussenguth, E. H., Jr., "Use of Tree Structures for Proces-
sing Files,' Communications of the ACM, VI, (May,
1963), 273-279.

40

CHAPTER ITI
FUNCTIONAL REQUIREMENTS FOR FILE ORGANIZATIONS

This chapter is devoted to certain definitions, under-
lying concepts, and the functional requirements that are
placed upon the design of files for online systems by virtue
of their incorporation into a system. One requirement for
many applications is the ability to process data as it becomes
available. Records in a file must be logically organized so
that they can be retrieved efficiently for processing. This
chapter looks at what the characteristics of a file organiza-
tion should be in regards to online systems, and the user

demands for file organizations.

Characteristics of File Organizations

In data processing today, it is common for a computer
installation to dd a number of different types of processing.
An installation must provide for one combination or another
of data base processing, online processing, batch processing,
and inquiry and transaction processing. The inherent charac-
teristics of the file must be considered in selecting an
efficient method of organization. In addition to the purpose
for which a file is to be used, there are other characteristics
to be considered in planning both the manner in which the file

is to be organized and the manner in which it is to be accessed (3).

41

42

Among these are volatility, activity, and size. Thus, there
are a variety of requirements an access method must provide.
The following are some requirements that need to be met when
choosing a particular file organization.
a. Volatility: This refers to the addition and

deletion of records from a file. A static file

is one that has a low percentage of additions

and deletions. No matter how the file is or-

ganized, additions and deletions are of signifi-

cant concern, but they can be handled more

efficiently with some methods of organization

than with others.

b. Activity: Activity refers to the number of

records actually processed or updated during a

single run through the entire file. Activity

is considered from three standpoints: (1) per-

centage, (2) distribution, and (3) amount.

The percentage of activity is one of the factors

to be considered. If a low percentage of the

records are to be processed on a run, the file

should probably be organized in such a way that

any record can be quickly located without having

to look at all the records in the file.

The distribution of the activity is also a

consideration. With some methods of organization,

43

some records can be located more quickly than
others. The records processed most frequently
should certainly be the ones that can be located
most quickly. The amount of activity also makes
a difference. An active file (that is, one which
is frequently referred to) must be organized
very carefully, since the time involved in locat-
ing records may amount to an appreciable period
of time. At the other extreme, an active file
may be referred to so infrequently that the time
required to locate records is immaterial.

c. Size: A file so large that it cannot all be
online (available to the system) at one time must
be organized and processed in certain ways. A
file may be so small that the method of organiza-
tion makes little difference, since the time
required to process it is very short, no matter
how it is organized. The growth potential of
the file is also a consideration. Usually, files
are planned on the basis of their anticipated
growth over a period of time. Initial planning
must also consider how growth that exceeds this

size will eventually be handled.

User Demands for File Organizations
The common user demands on files considered here fall

into four categories: naturalness of the file organization

44

to the data, ease of access to data in the file, ease of
maintenance of the file, and extent of software and hardware

support for the file organization.

Naturalness

The naturalness of a file organization to the data is
partly a subjective matter dependent upon human familiarity
and ease of understanding. People tend to prefer file organi-
zation techniques which they believe they understand and with
which they have had experience.

From their experiences with file folders, filing cabinets,
and alphabetizing, people find it comfortable to regard a file
as composed of records, usually ordered (sequenced) on the
basis of some key. This is illustrated graphically in Figure
14. Each record is composed of data items, some of which may
in turn be deemed to be composed of other data items. This
1s essentially a tree structure of "is composed of" relation-
ships among properties. People's experience with this common
way of organizing data outside of an automatic computer in
turn often leads them to conceive of data structures for use
with a computer in terms that reflect the file organization
techniques they know.

Since a file is a collection of symbols that people con-
sider to be grouped into file components (usually "records"),
the distinction between one component and another and within

a component in a file depends upon a human-imposed structure.

FILE

Record Record Record Record

F1 | F2 |F3|F1 |F2|F3 |F1 |F2 |F3|Fl |F2 |F3

Figure 14,

Example File--3

(A file consisting of four file
components [records] each with
three fields, one of which has
three subhfields).

/ \

Vertical Structure of Example File--3

45

46

The more easily the people can form such concepts, the less
difficulty people feel they experience in working with the
data, and the more 'natural' they feel the file organization

to be.

Access

Users commonly demand access to a file in one of three
manners (1). The first of these is access by attribute,
usually to find the value (2). Commonly, this access involves
a logical ANDing of attributes. An example is to find in the

files the amounts of the balances due from customers. His-
torically, making provision for this manner of access has
dominated the selection of file organization techniques.

A second manner of access is by property, usually to
find other properties, or values. The access utilizes both
the attirubte and the value in the access process, and commonly
involves logical ANDing. An example of access by property is
to find in the file the balance due from the customer named
XYZ Corporation.

A third manner of access is by value to find the attri-
bute. This is the least common of the ways of access and in
one form is equivalent to content addressing. In practice,
it is nearly always followed by additional access by attribute
or by property. An example of access by value is to list all
the students in a file with a grade point average of 3.5 or

greater.

47

Maintenance

Users universally demand the ability to change the
content of a file--i.e., to be able to maintain or update a
file. But for a user to perform maintenance on a file re-
quires that he have the ability to perform access on one or
more means just described. TFile maintenance consists funda-
mentally of three operations: augmenting the data in files--
that is, incorporating additional properties in the file;
altering the existing contents of the file--that is, changing
the values in some properties but not the attributes; and
deleting data from the file--that is, removing existing
properties from the file.

The augment and delete operations involve changing at a
conceptual level the quantity of the data in the file. That
is, augment conceptually increases the amount of data in the
file. The file after augmentation consists of more non-filler
symbols such as non-blanks or non-zeros than it did before
augmentation. Conceptually, deletion from a file results in
a decrecase in the amount of data in the file. The file after
deletion consists of fewer non-filler symbols than it did
before.

These operations are conceptually defined since physical-
ly, the amount of storage space occupied by the symbols in-
cluded in a file in any given implementation may not be altered

by some deletion or augmentation operations. For example,

48

consider the case of a file conceptually organized into
fixed length records of identical format. If the user de-
sires to delete one or more of these records, one way of
doing it is to overwrite into the records to be deleted a
delete symbol, replacing some previously existing symbol,
such as part of the key. The result leaves unchanged the
total number of symbols in the file from a physical point

of view, but conceptually the file has been decreased in size.

Support

Even though the choice of file organization technique
should depend heavily upon the access and the maintenance
that the user desires to perform, in practice it more often
depends upon the hardware and software support. Users often
must select file organization techniques based upon what will
work with the software and hardware they have available.

The only question of efficiency that historically has
been seriously considered in detail has been the use of stor-
age space. Since historically internal storage has been very
limited, people have tried to minimize the amount of internal
storage needed for storing data records. In the past few
years, with the wider availability of large amounts of internal
storage, the imperative need for this requirement has begun
to fade. But internal storage, while now available, is still

costly, and hence in practice people still conserve its use.

49

Closely related to this has been the historically
limited capacity of external storage units, and their com~
parative slow transfer rates. These limits were eased by
hardware developments in the early and mid-1960's but the
practice of seeking file organization techniques that mini-
mize the use of external storage still persist because
external storage too is not a free good.

Historically, matters of operating speed have taken a
back seat to matters of storage use because the slower speed
could be more easily tolerated than the lack of sufficient
storage space. With the gradual easing of the storage limita-
tions, people now are starting to pay more attention to ways
of speeding operations involving files.

Because of the demand to keep the trauma of file conver-
sions small and because of the intellectual heritage of the
older limitations, the software generally available for file
operations has not kept up with the advances in hardware.

Yet a user when faced with the cost of develbping his own
software to support a particular file organization technique,
often judges that he loses less in time and money by electing

to use what is available, even if it meets his needs only

roughly.

CHAPTER BIBLIOGRAPHY

1. Chapin, Ned, "A Deeper Look At Data,' Proceedings of the
- ACM National Conference 68, (1968), 631-638.

2. McGee, William C., "File Structures for Generalized Data
Management,' Proceedings of the IFIP Congress 68,
(1968), 68-73"

3. Introduction to IBM Direct-Access Storage Devices and
- Organization Methods, Form GC20-1649-5, IBM Corp.,
White Plains, New York, 1976.

50

CHAPTER IV

FILE ORGANIZATION FOR LARGE AND
SMALL SCALE COMPUTER SYSTEMS

The manner in which data is managed in a computer system
and in a computer installation determines the degree to which
user needs can be satisfied and governs the efficiency of
file structures. Input/output and external storage devices
are the limiting factor on the efficiency of most information-
based file systems, even though devices such as the channel,
and operational techniques such as multiprogramming, are
commonly used to increase overall computer system performance.
Therefore, the manner in which input and output are performed,
the methods used for data storage and organization, and the
techniques employed to access data are of prime importance to
most computer system users.

A basic knowledge of file structures is essential for an
understanding of data management processes in a computer sys-
tem. Thus, the followihg discussions are not exhaustive but
do provide important terminology to be used in the comparison
of file structures imposed by the déta management facilities
of two available computer systems.

This chapter describes the file organization techniques

imposed by the data management facilities provided by the

51

52

operating system of a large scale computer system, and a
small scale computer system. The first computer system to
be studied is the IBM System/370 (0S/370) which is a logical
outgrowth of and an extension of the IBM System/360 {0S8/360)
computer (7). The second computer system to be studied in
this comparison is the Harris 1600 Distributed Processing
System (2) with the Extended Communications Operating System
(ECOS) serving as its operating system (3). Table II shows
how certain system characteristics from each system depict
the system's capability and size.
File Organization and Access for
A Large Scale Computer System

When a file is implemented, the implementation must be
performed within the constraints imposed by an available
computer system. These constraints are in two areas: physi-
cal constraints arising from the hardware characteristics of
the computer and its peripherals, and software constraints
imposed by the data management facilities provided by the
operating system. This section discusses the latter con-
straints as imposed by the data management facilities of IBM

System/370 (0S8/370).

File Organization

Data files are organﬁzed according to the manner in which
they are used. Five methods of organization are identified
for the IBM System/370 (0S/370):

1. Sequential

2. Direct

3. Indexed Sequential

523

I0SsS3d01d SUOTIBDTUNUUO) 910Uy

*

(eSeI0A®) SPUODSSTIIIW (S

A - E

(SATIQ ¥STQ SSPTIIAE) G99T STIIEY)

sajdqedow 771
SPUODISOURU ()G/ 03 PUODISOIITW T

(M59) so34q 5sg5¢s9

Ssax
(98vaoAR) SPUODISSITIIW (¢

(£4311T2®, °8BI03IS YSTQ 05SS)
so14qedeuw (pg

SPUODISOUBU gy O3 §/7

(X0v2) s914q9 09.°S¥z

ysTqQ Lddot.

SWT] SS9JOY YST(-

£31oede) YSIQ
DUT], 9TD4LD

a3ea01g UTBR

(+dDY¥ 009T STIIEH)
welsAg isndwo) a1edg TIBUS

(SST TOPOW 0/S/wWa1SAS WET)
walsdg asindwon o7edg 981w

SOT1STI9)DBIRY)

LAVHD NOSTHVANOD

IT JT19V1

54

4, Partitioned.

5. Virtual Storage Access Method (VSAM).

Sequential Organization--Sequential organization denotes

that the data records must be referenced in a manner dependent
upon the sequence in which the data records are physically
stored. Card decks and magnetic tape files are always organ-
ized sequentially and files on direct-access storage devices
are frequently, but not necessarily, organized in this manner.

This type of data organization is characterized by the
fact that records are written and retrieved in physical rather
than logical sequence (7, p. 81l). One of the major advantages
of sequential organization is that the access mechénism is
automatically positioned to access the next record. Opera-
tional difficulties are encountered with sequential organiza-
tion when records must be altered, deleted, or inserted.
When sequential media is used, the file must be copied to
another volume with the modifications being made as required.
With direct-access media, records can be altered provided
that the altered record is not shorter or longer than the
original. Performing update operations on files with blocked
records is also a problem, since the entire block must be
rewritten.

A sequential organized file is a good system for handling
a large volume of data that rarely changes and is processed

as an entire unit (8, p. 95). The records atre usually read

55

or updated in the same order in which they appear. For

example, the hundredth record is usually read only after the
first ninety-nine records have been read. This organization
is generally used when most records are processed each time

the file is used.

Direct Organization--A file organized in a direct manner

is characterized by some predictable relationship between the
key of a record and the address of that record on a direct-
access storage device (5, p. 5-4). This relationship is
established by the user. Direct organization denotes that a
data record may be referenced without "passing over" or refer-
encing preceding information (6, p. 95). This organization
method is generally used for files whose characteristics do
not permit the use of sequential or indexed sequential organ-
izations, or for files where the time required to locate
individual records must be kept to an absolute minimum,
Direct organization has considerable flexibility. The
accompanying disadvantage is that although the programming
system provides the routines to read and write a file of this
type, the user is largely responsible for the logic and pro-
gramming required to locate records, since he establishes the
relationship between the key of the record and its address on

the direct-access storage device.

Indexed Sequential Organization--Indexed sequential

Organization permits data records in a file to be referenced

56

sequentially or directly. The defining characteristic of an
indexed sequential file is that data records are logically
arranged by collating sequence, according to a key field con-
tained in each record (6, pp. 95, 116). Indexes of keys are
maintained to provide direct or sequential access. When an
indexed sequential file is referenced sequentially, the keys
in an index are processed in order; associated with each key
is the physical location on a direct-access storage device

of the corresponding data record. When an indexed sequential
file is referenced directly, the key is looked up in the
index (analogous to a table) to determine the physical location
of the desired record. Data files with indexed sequential
organization must reside on a direct-access storage device.

An indexed sequential file is similar to a sequential
file in that rapid sequential processing is possible. Indexed
sequential organization, however, by reference to indexes
associated with the file, makes it also possible to quickly
locate individual records for non-sequential processing (5).
Morecover, a separate area of the file is set aside for addi-
tions; this obviates a rewrite of the entire file, a process
that would usually be necessary when adding records to a
sequential file. Although the added records are not physically
in key sequence, the indexes are referred to in order to re-
trieve the added records in key sequence, thus making rapid

sequential processing possible.

57

The indexed sequential method of organization is of
special concern, since it allows the file to be processed
directly or sequentially. Records can be inserted or deleted,
and basic and queued access can be used.

An indexed sequential file must reside on a direct-
access storage device. Just like any other file, it possesses
a file control block stored in the volume table of contents
(VIOC) for that direct-access storage device. Each indexed
sequential file can use three different storage areas.

1. The prime area contains data records and track

indexes. The prime area is always used.

2. The overflow area contains overflow from the

prime area when new records are added to the
file. Use of the overflow area is optional,

3. The index area contains master and cylinder

indexes for the file and is used when the file
occupies more than one cylinder.

The access to records is managed through indexes. When
Tecords are written in the prime area, the system keeps record
of the highest key (i.e., the last record) for each track and
forms a track index--one entry per track. There is a tfack
index for each cylinder of the file. If the file occupies
more than one cylinder, then a cylinder index exists for each
cylinder; each entry in the cylinder index reflects the key
of the last record in the cylinder. A master index is devel-

oped for groups of cylinders to increase the speed of searching

58

the cylinder index. An indexed sequential file is depicted
conceptually in Figure 15,

The track index contains one entry for each track of a
cylinder. Each track index entry includes a normal entry
and an overflow entry. Initially, the normal and overflow
entries are the same. When an overflow is associated with
a track (due to an insert operation), the overflow entry
contains the key to the highest overflow record and the address
of the lowest overflow record associated with that track., A
track index is generated automatically for each cylinder.

As each track index is generated, the data management
system creates a cylinder index entry. If more than one
cylinder index entry is created, then a cylinder index is
formed. The master index is usually optional; the user can
specify the number of tracks of the cylinder index that cor-

responds to the master index entry.

Partitioned organization--Partitioned organization de-

notes a data file that is divided into sequentially organized
members. Each member is composed of data records. Logically,
a partitioned data file is a file of files (6, p. 96). Each

file or member is assigned a name (such as the name of a pro-
gram) and each name is stored in a directory, along with the |
physical location of the beginning of the member. The direc-
tory is stored along with the file. Members may be called by

name for processing, and members may be added or deleted as

- Master Index

59

File Organization

400 | »
625 | *
1000 | &
‘ CVlinderIIndex :
80+ ¢ 200 400 -
500 550 | 625 i i
700 | 800 | ¢ [1000: o
Cylinder 1
1 T | T
4p @ 40 ¢ go: ¢ 80 ! Track Index
Data Record| Data Record Data Record| Data Record
Key 10 Key 20 Key 30 Key 40 Prime
Data Record| Data Record| Data Record| Data Record Area
Key 50 Key 60 Key 70 Key 80
Overflow Area
T T T T
740 4 740 | 780 5 ' 780 | Track
800 ¢ ¢]800 ! i ; Index
Data Record|Data Record|Data Record|Data Record|]
Key 710 Key 720 Key 730 Key 740
\ Data Record|Data Record|Data Record|Data Record| i P;;Zg
Key 750 Key 760 Key 770 Key 780
pi Data Record|Data Record|Data Record|Data Recordmd
Key 790 Key 794 Key 796 Key 800
Overflow Area
Figure 15. Conceptual View of Indexed Sequential

60

required. The records within the members are organized
sequentially and are retrieved or stored successively accord-
ing to physical sequence (5).

Partiticned organization is used mainly for the storage
of sequential data, such as programs, subroutines, and tables.
For example, a library of subroutineé may be a partitioned
file whose members are the subroutines.

The IBM System/370 (0S/370) provides the user with the
subroutines necessary to create and maintain his own parti-
tioned file. 0S/370 also uses partitioned files to maintain

its own libraries {9, pp. 385-387).

Virtual storage access method (VSAM) organization--The

data organization for virtual storage access method differs
from the preceding organizations so as to establish a data
organization that will be, from a user's point of view, device
independent. The data organization should be suitable for
all kinds of accessing (indexed, addressed, direct and
sequential) and should be extendable to anticipated require-
ments (5, p. 5-4). Once a user adopts the VSAM organization,
his data will be portable from an IBM System/370 to another
IBM System/370. This will facilitate migration from smaller
systems to larger systems.

Data records of fixed or variable length are stored in
the same format in both indexed-sequenced and entry-sequenced

files. The records of an indexed-sequenced file are in collating

61

sequence, defined by a key field in the records; the records
of an entry-sequenced file are in the same sequence as the
order in which they are entered in the file. An index is used
to physically locate and sequentially order the records of an
indexed sequential file.

VSAM is designed to meet most of the common data organi-
zation needs of both batch and online processing (5, p. 10-3).
Batch processing requires the efficiency of sequential and
indexed data; online processing requires efficient direct
access for random requests.. VSAM permits both direct and
sequential access. Access can be by key, by relative address,
or by relative record number. Different types of processing
can be intermixed in the processing of a common data base.

You can select the type of access or the combination of types

that best suits user applications.

Access Methods

The characteristics of a file as described in certain
control blocks determine the access method that is assigned
to a file. An access method is the combination of a file organ-
ization and the technique used to access the data (6, p. 112).

Two different techniques are normally available to the
user for transferring data between storage and an external
storage medium. These techniques are referred to as access
methods and are implemented as access routines supplied by the

data management subsystem of the operating system (0S/370)

62

(6, p. 96). The access routines are available through macro

instructions recognized by the IBM System/370 assembler system.

The access techniques are combined with the file organi-

zation to determine access methods. The basic access techmique

is used with all forms of file organization; queued access is

used only with sequential and indexed sequential organization.

Six access methods are given in the following 1ist and summar-

ized in Table III:

1.
2.

5.
6.

Basic Sequential Access Method (BSAM)

Basic Partitioned Access Method (BPAM)

Basic Indexed Sequential Access Method (BISAM)
Basic Direct Access Method (BDAM)

Queued Sequential Access Method (QSAM)

Queued Indexed Sequential Access Method (QISAM)

The processing of each of the above access methods is performed

by a distinct access method routine; however, all users of the

data management system use the same routines (6, p. 112).

TABLE III

ACCESS METHODS

Data Access Technique
File
Organization : Basic Queued
Sequential BSAM QSAM
Partitioned BPAM
Indexed Sequential BISAM QISAM
Direct BEDAM

63

The access techniques are classified by their treatment
of buffering and input/output synchronization with processing.
The two techniques are named queued access and basic access.

Queued access--The queued access technique provides auto-

matic blocking and deblocking on data transfers between main
storage and input/output devices. Queued access also provides
look-ahead buffering and automatic synchronization of input/
output operation and processing. The access method routines
controls the use of buffers such that sufficient input blocks
are in storage at one time, preventing the delay of processing
unit operation. When using queued access, the user need not
test for input/output completion, errors, or exceptional
conditions. After the completion of an input/output macro
instruction, control is not returned to the user application
program until the operation is logically complete.

When queued access is used, buffering achieves its great-

est utility. Two transmittal modes are covered.

1. Move mode--the record is moved to the application
program's work area or from the work are to an
output buffer.

2. Locate mode--the record is not moved but the
address of the buffer holding the input record
is placed in a general-purpose register (for
input} or the address of the next output buffer
is placed in a general-purpose register (for

output).

64

The move and locate modes are referred to as simply buffering,
because the buffers in a buffer pool are associated with a
single file (6, p. 114).

Basic access--The basic access technique does not provide

automatic blocking and deblocking; neither does it provide
anticipatory buffering or automatic event synchronization.
Basic access is used when the sequence in which records are
processed cannot be predicted in advance. With the basic
access technique, the user must perform his own blocking and
deblocking. Moreover, input and output macro instructions
only initiate input/output processing; both operations must
be checked for completion with an appropriate macro instruc-
tion. In other words, automatig event synchronication is not
provided.
When basic access is used, buffers are controlled and
used in two ways.
I. A buffer is obtained directly from a buffer
pool with a macro instruction. That buffer
is subsequently used with an input/output
operation.
2. A buffer is obtained dynamically by requesting

a buffer with the input/output macro instruction.

65

File Organization and Access for
A Small Scale Computer System

In order to understand what a small scale compﬁter system
is all about; it is necessary to understand the system com-
ponents and their organization. This section is concerned with
the general job of describing the file structure organization
and access within a small scale system. The small scale system
to be described is the Harris 1600 Distributed Processing
System (2), with the Extended Communications Operating System

(ECO8) serving as the operating system (3).

File Organization

In the small scale computer system the file organization
is not usually left up to the user but is predefined for the
various peripheral devices. Similarly, the method of access
is system-defined and is ultimately connected with the file
organization. Each file-oriented peripheral device has a file
structure, which represents the method of recording, linking,
and cataloging data files. The file structure dictates the
organization of the file on the device and the method of file
access. This organizational structuring is important because
a file can be effective for a user application only if it is
designed to meet specific user requirements. Such factors as
size, activity, and accessibility must be considered when
determining the structure of a file (1). Thus, the types of

file organizations are restricted to just a few. We will

discuss them. They are

06

1. Sequential

Z. Relative Record
3. Keyed Sequential
4, Partitioned.

Logical Sequential organization--A logical sequential

organized file consists of a data area and a unit of alloca-
tion (UA) area. The data area is made up of UAs assigned to
the file. Records in the data area are of variable length and
may span over sector and UA boundaries. Each record contains
a header consisting of forward and backward chain pointers,
length of the record, and a flag indicator. The logical order
of records in a file is maintained through chain pointers in
the record headers. The chain pointers are not absolute disk
addresses, but are used in conjunction with a starting address
for the file or with the UA descriptor area to arrive at abso-
lute disk addresses. The physical sequence of records is
always in chronological order (records are always added to the
end of the file, even if they are inserted records). When a
record is inserted, the chain pointers involved are updated.
A deleted record is flagged as deleted but remains logically
attached to the file, and the chain pointers are updated only
after an inserted record is added.

The UA descriptor area consists of sector-size UA direc-
tory blocks. It is created after the initial contiguous

allocation is used up. As new UAs are assigned to the file,

67

the addresses of the UAs are entered in the UA descriptor area.
A directory block may contain up to 121 entries describing

UAs. When additional entries are needed, a new UA directory
block (a sector) is chained to the existing one(s).

~Relative record organization--A relative record organized

file consists of a data arca and a UA descriptor area. The UA
descriptor area is identical to the one used in logical sequen-
tial files. The records are addressed explicitly by a relative
record number or implicitly by addressing the next sequential
record.

The internal organization of a relative record organized
file is the same as that of a logical sequential file, with the
following restrictions;

1. There is no initial dummy record; the first record

starts in the first byte of the data area.

2. All records in the file must have the same length,

5. Logical record sequence matches physical record:

sequence; this is enforced by not allowing deletion
or insertion of records in existing files.
These three restrictions make possible the calculation of the
relative position of any record.

- Keyed sequential organization--Each record in a Keyed

Sequential file contains a key by which the record is identi-
fied. Records in a file are logically arranged according to

ascending collating sequence of the key field in each record.

68

The key field is part of the data in the record. The length
and the position of the key field in a record is constant
within a file but may vary from file to file.

Keyed sequential files use logical sequential organiza-
tion. That is, they contain a data area and a UA descriptor
area. In addition, a key directory area is kept with the
file. The key directory is a partial index of keys in the
file. The frequency of entries in the directory is specified
when the keyed sequential file is created {an entry in the
directory for every so many records). An entry in the direc-
tory consists of a key and location of the associated record.
Space for the key directory is allocated in Units of Allocation
(UAs). As extra space is needed for the directory, additional
UAs are chained to the existing one(s). Entries in the direc-
tory are of fixed length and may span over sector and Unit of
Allocation (UA) boundaries.

Partitioned organization--A partitioned file is divided

into sequentially organized members, each consisting of one or
more records. Each member is identified by a unique name, up
to 8 characters long. A partitioned file is orgdnized as a
logical sequential file. 1In addition, a directory is kept
containing member names and their starting locations. In the
data portion a special record, the start of member record, is
maintained. This record is used as a member separator when

reading the file sequentially, or is used to rebuild the member

69

directory during recovery. The member separator record con-

tains the name of the member which follows the record.

" Access Methods

The file organization and associated file structure of
the Harris 1600 Distributed Processing System (ECOS) has been
previously described from a user viewpoint. Because of its
complexity, the operating system (ECOS) provides data manage-
ment facilities and access methods which handle the file
structure changes that can result from the insertion and
deletion of records.

The data management facilities in the small scale system
is concerned with the movement of data between main storage
and external devices, and with the maintenance of data on
direct-access devices (disks). The Harris 1600 Distributed
Processing System (ECOS) provides three functions of data
management facilities.

1. Basic (physical) input/output via direct interface

to the operating system.

2. Queued (logical) input/output via the file manage-

ment services.

5. Logical file manipulations via the file system

utility programs.
The following discussion describes those aspects of file pro-
cessing which are performed by the small scale system access

methods.

70

Logical sequential access method (LSAM)--The logical

sequential access method allows a user to process files which
are organized as logical sequential, partitioned or keyed se-
quential. The sequence of records in files is determined by

the user at the time of entry of the record in the file (i.e.,
the logical sequence of records in the file does not necessar-
ily correspond to the chronological sequence of entry of records
in the file). Data records are stored as variable-length
records on disk; however, processing may be limited to accept
and/or produce only records of a fixed length.

For user convenience, macro instructions areé provided to
record or change the current-position pointer. Certain acces-
seés cause an implicit change in the current-position pointer
after performance of the requested operation. New records may
be added to the file in one of two ways. The first way is
via the insertion of records between two existing records (the
end of file and start of file are considered to be records).
This way has a tendency to cause inefficiencies in placement
of the records on disk and also requires more accesses to the
disk for each record than the second way. The second way in
which records may be entered in a file is via sequential out-
put. This method places the records in the file in the order
in which they are provided by the user and moves the end of
file (conceptually) with the entry of each new record. When
the file is closed, the end of file is recorded after existing

buffers are purged.

71

As an example of the logical sequential access method
(LSAM) within the small scale system, a file system perform-
ance statistics is used to characterize the performance of
LSAM. The logical sequential access method (LSAM) is the most
numerous used access method in the Harris Distributed Process-
ing System (ECOS); The statistics exemplify the CGET-PUT times
of LSAM disk accesses, allocation, and transfer rates when
copying cards to disk as a function of the buffering level
(see Appendik IT). This example indicates that even with the
small scale system file access is not always slow.

Relative record access method (RRAM)}--The relative record

access method allows a user to process files organized as
relative record files. The records are fixed length. Th
concept of a record is essentially an addressable area on| the
disk. The concept of a current-position pointer is used.| The
record to be accessed is determined by the value of the current-
position pointer and the type of access desired. Certain
accesses also cause a change (incrementally forward by on
record position) in the current-position pointer. New records
(or areas on the disk) are created as a part of a relativ
record file by PUT macros issued when the processing type|is
output and the addressing mode is sequential. In any other
case, only existing records may be accessed,

Since the records are fixed length, the relative position

of any record in a relative record file may be calculated

72

(instead of searched for), thus allowing rapid access to the
file without a sequential search through each record. Access
to the file is further optimized if the file is allocated
contiguously on the disk, thus obviating the necessity to
perform a directory access to determine the physical disk

address based on the relative address.

Keved sequential access method (KSAM)--The keyed sequen-

tial access method allows the user to process files which are
organized as keyed sequential files. Since keyed sequential
files are basically the same as logical sequential files, KSAM
allows the user virtually the same sequential processing cap-
abilities as does LSAM. The major difference in sequential
processing is that the current-position pointer value may be
reset based on a key contained in a record (i.e., set the
pointer to the record containing the specified key).

The user may also access a file by providing an explicit
address for each record processed. The explicit address is
in the form of a sequence of characters (up to 256) called a
key. The user provides a key which is considered to address
the first record in the file which contains the matching
sequence in the location specified to contain the key. The
key location is specified when the file is created.

Access to the file is expedited by the use of a directory
attached to the file. When the file is created, a key-ektrac—

tion interval is specified. The entries in the directory

73

consist of keys and record pointers that are extracted from
records as the file is being recorded in the sequential out-
put mode. There is an entry in the directory for each nth
record (where n is the key ektraction interval specified at
creation). While the directory is being built, the records
entered into the file are validated as being in ascending
collating sequence by key. If records are inserted, deleted,
or replaced in the file after it has been built, the directory

remains unchanged.

Partitioned organization access method (POAM) - -The par-

titioned organization access method allows a user to process
files which are organized as partitioned files. Partitioned
files are organized in the same manner as logical sequential
files with the addition of an auxilliary directory and special
records that mark the boundaries of each of the sub-files
(members) .

When a file is opened as output sequential, the records
entered in the file are written after the exisfing end of file
record. The records are made a part of the file when the user
issues the BUILD macro instruction. The BUILD macro specifies
a member name to be associated with the new records. If a
member of the same name already ekists, it is deleted. The
new member is then entered in the directory, the end of file

is moved to the end of the new member and a member separator

74

record replaces the old end of file. The file is then ready
for entry of more records to form another new member.

Access to the file other than building a new member is
similar to access to files yia LSAM. The user may issue macro
instructions to set the current-position pointer to the first
record in any member, The user then has access to the member
as if it were an individual file. The current-position pointer
may be saved and restored later even though the user has
switched to processing of another member.

There are many file processing considerations that are
applicable to more than one file type. These considerations
can be described in any ways. But the most important aspects
of the file processing characteristics of the Harris 1600
Distributed Processing System (ECOS) are summed up as mode,
type, and addressing. These three Processing characteristics
are described as follows.

(A) Mode

Data of a record is made available to or by the file
system in one or two modes, move mode or locate mode. In
the move mode, the record is moved from an input buffer
to a user's work area or from the user's work area to an
output buffer. 1In the locate mode, the file system pro-
vides the user a memory address where the record that has
been read can be found or where to place the record to

be written. In locate mode the maximum record length is

75

limited to 256 bytes, The register specified by the
user is used to communicate the starting address of
buffers in locate mode. If g file is opened for out-
put in locate mode, the specified register will contain
the address of the first output buffer.
(B) Type
(B.l) Input
Input processing allows retrieval of records
from files and positioning within the file accord-
ing to the addressing technique.
(B.2) Output
Output processing is allowed only under the
sequential addressing technique. It allows the
extension of a file by adding new records to the
end of the file, and it allows rewriting all of
part of a file by positioning to any point.inter-
nal to the file and creating new records (this
deletes old records from the starting position to
the end of file),.
(B.3) Update
Update processing allows positioning within
a file, retrieval of records, and based on the
access method used, it may allow all or some of
the following operatiqns: deletion of records,
insertion of records, or replacement of records.

This type is applicable only to disk files.

76

(C) Addressing

There are two basic techniques used in addressing
records in a file: Random and Sequential. In the ran-
dom addressing mode, an identifier, called a key,
explicitly addresses each record that is accessed. In
the sequential addressing mode, records are implicitly
addressed according to a current-position pointer.
During processing the value of the current-position
pointer may be altered by a special set of services
called "positioning" services. Services which access
data records use the current-position pointer to
implicitly specify the address of the record to be
accessed. Some services which access data records
also update the current-position pointer after access-

ing the record.

CHAPTER BIBLIOGRAPHY

Eckhouse, Richard H., Jr., Minicomputer System, Organiza-
tion and Programming (PDP-11), Tngléwood Cliffs,
N. J., Prentice-Hall, Inc., 1975,

- Harris 1600 Remote Communications Processor System Descrip-

tion Manual, Manual No. 160001, Dallas, Texas, Data

Communications Division, Harris Corporation, (June,
1976). - ‘ '

Harris 1600 Extended Communications Operating System (ECOS)
User Reference Manual, Manual No. 160002, Dallas,
Texas, Data Communications Division, Harris Corpora-
tion, (March, 1977),

Harris 1600 Systems ECOS Utilities Manual, Manual No.
160032, Dallas, Texas, Data Communications Division,
Harris Corporation, (February, 1977). : -

Introduction to IBM Direct-Access Stora ¢ Devices and
- Organization Methods, Form GC20-1649-9, IBM Corp.,
White Plains, N, Y., 1976. :

Katzan, Harry, Jr., Computer Data Management and Data Base
Technology, New York, W. Y., Van Nostrand Reinhold
Co., 1975, 89-139. '

Katzan, Harry, Jr., Computer Organization and the System/
370, New York, N.”Y., Van Nostrand ReinhoId Co.,

971, 45-85.

Lewis, T. G., and M. Z. Smith, AEElXinE Data Structures,
Boston, Massachusetts, Houghton MiffIin To., 1976,
94-96, _

Rudd, Walter G., Assembl Language Programming and the
- IBM 360 and 370 Computers, Englewood Cliffs, N. J.,
Prentice-Tall, Inc., 1976, 385-387.

77

CHAPTER V
COMPARISON OF FILE ORGANIZATIONS

In comparing the file organization techniques of large
and small scale computer systems, the first thing that is
apparent is the obvious differences in size of the two computer
systems (see Table II). The manifestation of this difference
is more storage capacity and increased input/output capacity
in the large scale system. Indeed, even within the same
system, various file organization techniques differ widely in
their organization and performance. Depending on the type of
transactions involved (e.g., creation, insertion, deletion, or
random retrieval of a large set of records) some techniques
may out-perform others in particular situations (2). Thus, it
is appropriate to compare the organizational differences at
this point.

A critical analysis of the large and small scale system's
file organization and access methods is presented here for
comparison. The characteristics of each system play a signifi-
cant role in its data handling capabilities. The respective
system file organization techniques show two important similari-
ties and one significant difference in their approaches to
file manipulation. The data management facilities and file

organizations available under each system represents the

78

79

similarities. The difference is found to exist in the access

methods used by both systems.

Similarities

The similarities that exist between the large and small
scale system's data management facilities and file organiza-
tions are summarized in the following paragraphs. Both data
management facilities indicate similarity in the input/output
operations performed.

The data management facilities in the large scale system
provide a software interface between processing programs and
auxiliary storage (2Z). Functions performed by this data
management are: (1) assigning space on direct-access volumes,
(2) maintaining a catalog of file names, (3) performing
support processing for input/output operations and performing
buffering and blocking/deblocking.

The data management facilities in the small scale system
provide a high-level interface to the input/output devices
via a file system (1). The file system is concerned with the
movement of data between main storage and external storage
devices, and with the maintenance of data on direct-access
devices (disks). Functions performed by this data management
are: (1} utilize basic input/output operations (i.e., READ,
WRITE; etc.), (2) provide record blocking/deblocking, (3) di-
vide a disk volume into Units of Allocation (UAs) for address-

ing and space allocation, (4) maintain an entry of all file

80

names in a Volume Table of Contents (VTOC), and (5) allow disk
file control services for user application program (e.g.,
CREATE, DELETE, OPEN, CLOSE, etc.).

The two computer systems show similarity in the structure
of their file organizations, Both computer systems follow the
same philosophy in design and file processing in each file
organization available. The file organizations of each systenm
are indicated in Table IV, with the access methods listed on
the same line bearing a close resemblance to one another in

the first two columns.

Differences

In contrasting the access methods used by both the large
and small scale systems, probably the largest difference is in
the way the access methods are chosen. There is an access
method for each type of file organization and possibly special-
ized access methods for specialized file techniques, such as
virtual storage access method (VSAM).

The large scale system's access methods are determined by
the combinaticn of a given file organization and the technique
used to access the data (i.e., basic or queued). The reason
for different access techniques is to give the user various
options between ease of programming and the amount of control
over the desired input/output operation.

The basic access technique can be used with all forms of

file organizations within the large scale system and the queued

81

access technique is used only with sequential organization
(for example see Table ITI). The access methods are identi-
fied primarily by the file organization to which they apply.
Although an access method is identified with a particular file
organization, there are times when an access method identified
with one file organization can be used to deal with a file
usually thought of as organized in a different manner.

On the other hand, the small scale system's access
methods are predefined with each file organization. Fach file
organization has an associated access method. The logical
sequential access method (LSAM) is the only access method that
can be utilized to access other type file structures (e.g.,
keyed sequential or partitioned).

Additionally, in creating a file the initial and continu-
ous space allocation is accomplished by the system. Then the
user may specify the file organization, data characteristics,
security passwords, and eventually disposition of the file
(whether it is permanent or temporary). Default file specifi-
cations are used when desired or possible. This provides the
user with less programming effort and knowledge about the file.

The structure and method of implementation of the various
access methods between computer systems bear a striking re-
semblance. Table IV indicates the access methods and access
modes (i.e., the basic methods of accessing or addressing data
on a direct-access device) that correspond between the large

and small scale systems. The only access method that is

82

TeT3USNDbOg

WOpUBRY

1BIlUSNDbOg

1BTlUSnboag
1eT1Usnbag
TeTlUSNbog ‘wopury
wopury

TeTiuanbog

pouUOIlITIIRg

Te13uanbag podey

9881035 TBNIITA
POUOT1ITIIE]
TeI3usnbag-paxopuy
10911(

TeI1USNbag

STEDg-TTBUS

oTBIg-9318BT]

SOPOJ{ $S223DYy

9TBIg-TTRUS

oﬁwum-oMng

SPOYISOW SSOIIY
pu® sUOI3BZTIUBIIQ STTJ

SddOW SSHDDV UNY SUOHLIW SSHIDV H'1Id

AT J19VL

83

implemented on the large scale system that is not available
on the small scale system if the virtual storage access method.
This access method is employed by the large scale system's
operating system which includes the facilities for a powerful
data management system. The small scale system does not have
implementation of virtual storage access techniques. This
type of access method within a small scale system could prove
to be costly in terms of time to design and implement, and in
terms of storage capacity.

Table V presents a comparison of both computer systems:
the large scale system, and the small scale system. There are
several advantages in the methodologies used by both systems.
The two principal advantages of the large scale system are
(1) the user states the access method requirements and the
operating system decides which access method will be used,
and (2) more storage capacity and increased input/output cap-
ability available by the system (see Table II). The primary
advantagés of the small scale system are (1) less effort and
knowledge of the file is required, (2) additional file storage
space is automatically allocated for the user, and (3} the

file structure is indicated by the file organization used.

84

STTF 9Y3 Aq paedTpur

pOosn UOT1BZTUB3IO

ST 2INIONIIS OTTF 93 (¢)
Surssonoxd Pa1B0ITE ATTE ([so0a] weisfg
PIODaX I0 STLF JIIMOTS -DTIBUWOINE ST UOTIBIOTTR SUTSS9D01d POINQIIISI(
asned SSUTWOD]IOYS axemMpIey (7) o3e103s 9TTF TBUCIITPPE (7) oocgwmmﬂhwmmu LISEEXES
Xoindwo) 9TBIS-ITRUES
suorydo }NBFSp YITM SUOT]
-BZTURSIO 9TTI JOJ SPOYIUW Iosn Aq poambea oTTF JO
SSOOOB JO 90TOYD Ou sey xosn (1) o3poTMowy| pue: 310FFS $SOT (1)
UOTIBZTIURS X0
@TTF JIO¥ PISN aIn3onils
08BI0LS JO SSOUSIBME I9Sn OU (¢)
Tosn 4q ArTrqedes (Loss/s0]
Pe1BO0TTR oq 3STI oFBI01S ndino/yndut peseaidur 0L /ue1sAS WET) Woq LS
Axepuodes jo junoue oyl (7) | pue L1oeded ofeioys ofrel (z) Toindwoy o{eog-23187
Isn 03 YoTym
passsnoad SOpPIIap WelsAs Surieiado
2q 01 STTI oyl SUIqrID oyl ‘sjusuwaaInbox poyjlsuwr
-§9p J0F oTqrsuodsax xasn (1) §S920® Sl sojels Josn (1)

sa3BlUBAPESI(]

se8BlURADPY

Wo3IS4G

SWHLSAS 40 NOSIYVANWOD

A HTEVL

CHAPTER'BIBLIOGRAPHY

1. Harris 1600 Extended Communications Operating System

2.

- User Reference Manual, Manual No. 160002, Dallas,

Texas, Data Communications Division, Harris Corpora-
tion, {March, 1977).

Katzan, Harry, Jr., Computer Organization and the System/
370, New York, N. Y., Van Nostrand Reinhold Co.,
1971, 45-85.

85

CHAPTER VI
SUMMARY

In summary, the comparison of file organization tech-
niques used on large and small computer systems have proven
to be different and similar in certain areas. The difference
appeared in the access methods used by both system, along
with the file organizations and data management facilities
showing the similarities. The respective systems used in
this comparison were: the IBM System/370 (0S/370)} and the
Harris 1600 Distributed Processing System with the Extended
Communications Operating System (EC0OS).

The major parallels that exist between the large scale
computer system (IBM System/370), and the small scale computer
system (Harris 1600 Distributed Processing System) are the
file organizations and the data management facilities. Both
systems achieve two basically different functions. First,
they are responsible for manipulating data on storage devices
in an efficient manner. Second, both systems give the user
the ability to create his own name space and to store and
retrieve data from this space in a flexible manner. Conse-
quently, in comparing the file organization techniques of the
large and small scale systems, they both maintain these basic

functions.

86

87

However, the differences between each system's access
methods reflect the large scale system's capability for more
data manipulations and large file operations. The small
scale system implies that its access methods are less flexible
and require decreased efforts by the user.

Historically, IBM has made available supporting software
for all of its file organization techniques. The IBM sup-
ported file organization techniques have in turn served as a
model or as a starting point for many other users and computer
systems. Hence, the file organization techniques of the
Harris 1600 Distributed Processing System (ECOS) appear to
have most of the generality of the IBM systenm.

However, with the technology advances in small scale
computer systems, the cost of such systems is already sig-
nificantly lower than the large scale computer system. Thus,
coupled with improved reliability and maintainability of file
organizations, the small scale computer system can become as
efficient in data manipulations as the large scale computer
system. Most important, however, the file organization tech-
niques of the small scale system offer the opportunity to
move data between main storage and external devices and pro-
vide maintenance of data on mass storage devices (disks)
identical to the large scale computer system.

Although the small scale system's data capabilities are

limited with the present-day core memories, the future can be

88

different with the new memory technology advancements. The
introduction of magnetic bubble memories (1) will increase
the data capabilities of the small scale system.

Magnetic core is presently the most commonly used memory
element in small scale computers, largely because of low cost.
Small scale cbmputer memory ranges from 1K to 128K words, with
core memory speeds typically ranging from 0.6 to 2 microseconds.

The magnetic bubble memories have an average access time
of 4.0 milliseconds. This speed is somewhat slower than core
memory, but is much faster than direct access storage
devices.

The magnetic bubble memory has a large number of applica-
tions that can be incorporated with specific computer systems.
The following are suggested applications for the magnetic
bubble memory for three types of computer systems.

1. Micro-processor based systems

a. Data terminal

b. Intelligent terminal

c. Portable data storage

d. Hobbyist applications
2, Large scale computer systems

a, Fixed head disk replacement

b. Buffer storage for peripherals
3. Small scale computer systems

a. Memory extension

89

b. Limited replacement where performance and
size outweigh media cost (i.e., floppy disk,
cartridge disk, and reel-to-reel tape).

While looking at future considerations of file systems,
the user has become the main objective. Perhaps the most
pressing problem in the effective use of computer systems
today is that of orgamizing data to be responsive to the
varied requirements of users.

Recent and future developments of file systems suggest
that computer systems are becoming more user oriented than
they have been. Increasingly, information management systems
will make more of the optimization decisions relating to file
organization. and compromises between different user requirements.
The trend appears to be turning the computer toward user re-
quirements rather than bending the user to the requirements of
the computer. This trend will continue to result in progres-

sively easier to use systems.

CHAPTER BIBLIOGRAPHY

1. Magnetic Bubble Memory Marketing Specifications, Dallas,
Texas, Texas Instruments, Inc., (September, 1976).

90

APPENDIX T
DEFINITIONS OF KEY WORDS AND PHRASES

This appendix defines some of the special key words and
phrases used throughout this paper. The entries are arranged
in alphabetical order. The main purpose of this appendix is
to be consistent in the use of key words, phrases and termin-

o0logy within the framework of this paper.

Access method--a technique for moving data between main stor-
age and input/output devices.

Attribute--a characteristic; for example, attributes of data
include record length, record format, file name, asso-
ciated device type and volume identification, use, and
Creation date.

Binary search--a dichotomozing search in which the number of
items of the set is divided into two approximately equal
parts at each step of the process. Appropriate adjust-
ments are made for dividing an odd number of items.

Block of records--a group of records that is considered to be
one physical segment of data for the purpose of recording
that data on a storage device. Certain data management
routines can collect these records into blocks or extract

them individually from the blocks.

91

92

Buffer--a storage area used to compensate for a difference in
operating speeds of two physical devices.

Buffer pool--a collection of contiguous buffers, which can be
assigned to a single file or to a group of files.

Current-position pointers--a pointer which contains the address
of the current record.

Data management--a major function of operating systems that
involves organizing, cataloging, locating, storing,
retrieving, and maintaining data. |

Data set--one or more data records making up a logical
grouping of information that may be referred to by a
unique name. Data sets are usually considered to re-
side on a storage device such as disk, drum, or magnetic
tape.

Direct access device--any one of a group of data storage
devices capable of performing random or direct data
retrieval and access.

File--a collection of data which is treated as a unit, each
datum consisting of three elements:

{a) a unit--an entity (object, person, concept, etc.)
that may be considered for data processing pur-
poses in terms of a finite number of properties;

(b) a property--a characteristic to which measures can
be assigned;

(c) A measure--a value capable of being expressed in a
finite number of information units (bits, charac-

ters, etc.).

ISP ADCNITON s S eSS T N s VT ST £l A, AT BPAN A GO | NEAMLASER i 1o v . ot e e

93

File organization--the organization or structure of a file.
In most instances the file organization is directly
related to the access method that was used to create
the file. For eﬁample, an indexed sequential file
organization is created by the Indexed Sequential
Access Method (ISAM).

FIFO--first in, first out queue discipline.

Filial set--a collection of sons descended from a particglar
node in a tree.

Fixed-length record--a record having the same length as all
other records with which it is logically or physically
associated.

Key--the identity field or identifier of a record. A name
or value associated with a particular record for the
purpose of unique identification of fhat record or to
synonomously associate it with other records.

Leaf--a terminal node of a tree.

LIFQ--last in, first out queue discipline.

Linked list--a data storage structure in which each record
contains a pointer which indicates where the next record
is located.

Pointer--a special reference field incorporated into the
structure of a record; a pointer contains a reference
to the next related record in logical (not physical)

sequence.

94

Record--a collection of related data items. A collection of
related records makes up a file.

Record overflow--track overflow; a hardware/software feature
that allows the automatic continuance of a data record
between two contiguous tracks on a direct access device.

Ring--a linked list that closes upon itself.

System catalog--a file consisting of entries corresponding to
each disk volume and disk file accessed by the system.
The entries within a system catalog contain the infor-
mation that connects file names to corresponding volumes
and VTOC entry numbers.

Terminal node--a node of a tree which has no successors (a
leaf).

UA--see units of allocation.

UA bit map--an index that indicates free or allocated UAs on
the volume.

UA descriptor--a file identifier which contains pertinent
information about a file (i.e., file name, starting
address, number of records, etc.).

Units of allocation (UAs)--a method of dividing a disk volume
(sectors) for addressing and allocating purposes.

Update--a method of modifying a master file with current
information, according to a specified procedure.

User area--disk area that is available for user files.

Variable-length records--data set records whose length is not

necessarily consistent throughout the overall data set.

95

Each record contains a four-byte prefix specifying the

total length of that record including the prefix bytes.
Volume--the number of records within a data set. A complete

unit of storage for a data storage device; a disk pack,

a drUm; a bin of a data cell, or a reel of magnetic tape.
Volume Table of Contents (VTOC)--a file containing volume-

related information, UA bit map for the volume, and

entries identifying each file in the volume.

R A TR R B0 N, WA s W, ST b AL Pk

96

9570
$6°0
89°¢
98¢
LT
68°T
€8¢
770
2y o
1234

Z Z 6L L2
T T $7L°9¢C
0 4 38V 2¢C
0 T $L0° 22
Z 0 312°L¢
T 0 $v° v
0 0 5¥S°¢C
Z 0 315°81
T 0 $0¢£°61
0 0 %65°8¢

I@FsuBI] 19g
$9s5901Yy ST - 8Ay

u:apsw u:maHnoHpmNﬂHHp:
ToAQT SUTISFIIY Wa1SAg

oinutw xad spaed--uddo

udd 6¢°09ST
wd> - /807
wds> 9¢- gLy
ud> 08 7sY
wdd> /S ¢y,
ud> §57°8¢9
udd> Gp°18¢
wd> £8°6.5
wd> 69°189
wdd 96159
93BY I9FJSsuBa]

WHLSAS HTVDS TIVWS ¥0d
SOILSILVILS HONVIMOAY¥Hd WHLSAS T1I4

I1 XIONdddyv

SPUODSSITTTNH
¥

AST O
AS I 0w
AST(w—
AST e
ASIJw—
AST (o

AS 10—

ASIdA
ASId
ASIA
ASIC
ASId
ASId

AS1d

ASTI=—SaYVvD

ASTU=—SJHYD

ASIA=—SUAEYD

AdOD
AdOD
AdOD
AdOD
AdOD
AdOD
Xd0D
AdOD
AdOD
AdOD

UoT1OUNg

97

a3nutw xad spaed--wdd

mwcoummﬂﬂﬂza

QILYD0TIVIYd 6761 $6°S1 562 0¢° 09 29721

AgIVD0T1IvEdd $S ¥ 1§°12 LT*€ 0€°St 12741

THLYDI0TIVHId 7L°86 9L LT 8L ¥ 89 8¢ 0V 12

TILVDOITVIUd 96" 16 v.* 82 ZL Y €5 8¢ 19°12 m
QHIVIOTIVIYd L8 %1 vz 95 08" Y VS og 6712

TLLYD0TIVHId 0F° 62 VLt 9s ¥°S LT 0% 8002

QILYI0TIVIdd 7€°¢6 76" 1S 70°§ 89°¢¢ Ve v

AIIYD0TIVIid 09°0T 11°276 0T8T 80°0¢ 91'7 i
QIIVIOTIVINd 9Z°ST 8918 LLTTT 95 2 $0' ¥

A4LYD0TIVIdd 0.708 7897 vz 9 SZ°82 §S° 12
UOTIEIOTTY VNI INd-1BIOL 189-TBIOL 3305 [BOTISAUJ 029G/505s090y

o8evIaoay

—Illlxoaﬂh SS92DY mmmhm><;lllg

PSNUTIUVO]--T] XIANI4JY

BIBLIOGRAPHY

Books

Eckhouse, Richard H., Jr., Minicomputer System, Qrganization
and Programming (PDP-11), Englewood Cliffs, N. J.,
Prentice-Hall, Inc., I975.

Katzan, Harry, Jr., Computer Data Management and Data Base

Technology, New York, N. Y., Van Nostrand Reinhold Co.,
975.

Katzan, Harry, Jr., Computer Organization and the System/370,
New York, N. Y., Van Nostrand Reinhold Co., 19771.

Kindred, Alton R., Data Systems and Management, Englewood
Cliffs, N. J., Prentice-Hall, Inc., 1973.

Knuth, D. E., Fundamental Algorithms: The Art of Computer
Programming, Vol. I, Reading, Massachusetts, Addison-
Wesley, 1968.

Lefkovitz, David, Data Management for On-line Systems,
Rochelle Park, N. J., Hayden Book Co., Inc., 1974.

Lewis, T. G. and M. Z. Smith, Applying Data Structures,
Boston, Massachusetts, HougEton Miffiin Co., 1976.

Rubinoff, Morris, Advances in Computers, New York, N. Y.,
Academic Press, 1972.

Rudd, Walter G., Assembly Language Programming and the IBM
360 and 370 Computers, Englewood CIiffs, N. J., Prentice-

Hall, Inc., 1976.

Articles

Arora, S. R. and W. T. Dent, "Randomized Binary Search Tech-
nique,' Communications of the ACM, XII, (February,
1969), 77-80. -

Bourne, C. P. and D. F. Ford, "A Study of Methods for System-
atically Abbreviating English Words and Names,'" Journal
of the ACM, VIII, (April, 1961), 538-552.

Chapin, Ned, "A Deeper Look at Data,” Proceedings of the ACM
National Conference 68, (1968), 631-638.

98

99

Chapin, Ned, "A Comparison of File Organization Techniques,"
Procecedings of the ACM National Conference 69, (1969),

Davidson, L., "Retrieval of Misspelled Names in an Airlines
Passenger Record System," Communications of the ACM, V,
(March, 1962), 169-171.

McGee, William C., "File Structures for Generalized Data
Management,'" Proceedings of the IFIP Congress 68, (1968),
68-73, o

Morris R., "Scatter Storage Techniques,'" Communications of the
ACM, XI, (January, 1968), 38-44.

Roberts, David C., "File Organization Techniques," Advances in

Computers, edited by Morris Rubinoff, XII, (1972), 1I15-"~

«

Sussenguth, E. H., Jr., "Use of Tree Structures for Processing
Files," Communications of the ACM, VI, (May, 1963), 273-
279.

Publications of Learned Organizations

Harris 1600 Remote Communications Processor System Description
Manual, Manual No. 160001, Dallas, Texas, Data Communica-
tions Division, Harris Corporation, (June, 1976).

Harris 1600 Ixtended Communications Operating System (EC0S) User
Reference Manual, Manual No. 160002, Dallas, Texas, Data
Communications Division, Harris Corporation, (March, 1977).

Harris 1600 Systems ECOS Utilities Manual, Manual No. 160032,
Dallas, Texas, Data Communications Division, Harris
Corporation, (February, 1977).

Introduction to IBM Direct-Access Storage Devices and Organiza-
“tion Methods, Form GC-1649-9, IBM Corp., White Plains,
N. Y., 1976.

Magnetic Bubble Memory Marketing Specifications, Dallas, Texas,
Texas Instruments, Inc., (September, 1976).

