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Abstract
We examine correlations in a time series of electric

power system bIackout sizes using scaled window
variance analysis and R/S statistics. The data shows
some evidence of long time correlations and has Hurst
exponent near 0.7. Large blackouts tend to correlate with

further large blackouts afler a long time interval. Similar
effects are also observed in many other complex systems
exhibiting self-organized criticality. We discuss this
initial evidence and possible explanations for self-
organized criticali~ in power systems blackouts. Self-
organized criticality, I~fuh’y confirmed in power systems,
would suggest new approaches to understanding and
possibly controlling blackouts.

1. Introduction

Electric power transmission networks are complex
systems that are commonly run near their operational
limits. Such systems can undergo non-periodic major
cascading disruptions that have - serious- consequences.
Individually, these dkuptions or blackouts can be
attributed to specific causes, such as lightning strikes, ice
storms, equipment failure, shorts through untrimmed
trees, excessive customer demand, or unusual operating
conditions. However, an exclusive focus on these
individual causes can overlook the global dynamics of a
complex system in which repeated major disruptions from
a wide variety of sources are a virtual certainty. Indeed,
large scale disruptions can be intrinsic to the global
system dynamics as is observed in systems displaying
Self-Organized Criticality (SOC) [1]. A SOC system is
one in ‘which the nonlfiear dynamics in the presence of
perturbations organize the overall average system state
near to, but not at, the state that is marginal to major
disruptions. SOC systems are characterized by a
spec&nn of spatial and temporal scales of the disruptions
that exist in remarkably similar forms in a wide varie~ of
physical systems. In these systems, the probability cf
occurrence of large disruptive events decreases as a power
function of the event size. This is in contrast to Gaussian
systems in which the probability decays exponentially
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with event size. Therefore, the application of traditional
risk evaluation methods to SOC systems is bound to
underestimate the risk of large events.

It is difficult to directly determine whether a system
has SOC type dynamics. However, we can explore the
existence of correlations of events over long time scales to
indicate whether the system has non-trivial complex
dynamics with non-Gaussian properties. We also consider
the probability distribution function of disturbance sizes.

2. Detecting long time correlations in time
series

A time series is said to have long-range dependence if
its autocorrelation fhnction falls off asymptotically as a
power law, This Iype of dependence is dif%cult to
determine because the noise tends to dominate over the
signal for long time lags. Over the last decade, several
techniques have been developed to overcome this
problem. One such technique, and chronologically the
fwst one, is the resealed range statistics (RIS statistics)
proposed by Mandelbrot and Wallis [3] and based on a
previous hydrological analysis by Hurst [4]; another is the
scaled window variance technique [2].

The RIS statistics or the scaled window variance
technique considers blocks of m successive points in the
integrated time series and measure how fast the range or
standard deviation of the blocks grows as m increases. In
the case of the scaled window variance technique, we
begin by considering a time series

X={ Xl:t=l,2,..., n]. We then construct the

associated series of the Brownian motion,

Ys {~:t = 1,2,..., n}; that is, the original series

integrated in time: y+xt. For the Brownian
o

motion series Y and for each m = 1, 2, . .. . n, a new

{
series Y(”*)= Y(n): u = 1,2—

u >.. . n/m] is generated.

The elements of this series are blocks of m elements of



the initial series; that is, ~(”” = {Kn,-m+,v{)rl}

We then calculate the standard deviation, a:), within

each of the n/m blocks of m elements of this series, and

after we average CYI) over the nim blocks to obtain

It can be shown that in the case of a time series X with
an autocorrelation fimction that has an algebraic tail, the

fimction cY~ scales as C7mcc mH, where H is the Hurst

exponent. For 1> H >0.5, there are long-range time
correlations, and for 0.5 > H > 0, the series has long-
range anticorrelations. If H = 1.0, the process is
deterministic. When the data is uncorrelated, the Hurst
exponent is 0.5.

A constant H parameter over a long range of time lag
values is consistent with self-similarity of the signal in
this range [5] and with an autocorrelation function that
decays as a power of the time lag with exponent
~=2 - 2H. In comparison with the direct determination of
the autocorrelation fimction or other techniques of
calculating the value of H, the scaled window variance
analysis is robust.

3. Analysis of blackout data

We define blackouts as disturbances of the power
transmission system that cause loss of power to
customers. Every year, the North American Electrical
Reliability Council (NERC) publishes a documented list
summarizing major disturbances [6]. They are of diverse
magnitude and the causes vary. It is not clear how
complete this data is, but it is the best-documented source
that we have found for disturbances in the North American
power transmission system.

We reviewed NERC records for the years 1994 through
1997 inclusive to determine the causes for recent large
blackouts. The breakdown of the 106 major blackouts fm
1994 through 1997 is shown in Table 1. All of the
blackouts were centered on the transmission system. The
average time to restore power was approximately 3 hours.
The number of major blackouts each year ranged i?om 21
to 29 with an average of27.

Table 1. Causes of major blackouts by region 1994-97.

Cause W NE MW SE Total

Weather – 25% 63 13 4 26
Equipment fails – 47% 26 15 6 3 50
Human error – 12°A 454013
Vandalism – 9°A 44 3 0 11
Low reserves – 7% 05 106

In trying to understand the global dynamical properties
of the North American power transmission grid, we have
done a simple correlation analysis of the reported

blackouts between January 1993 and July 1998. We
constructed time series with the resolution of a day for the
number of disturbances and for four different measures of
the blackout size. The blackout ‘size was measured by the
energy unserved (MWh), the amount of power lost (MW),
number of customers tiected and the restoration time.
(Energy unserved was calculated fi-omthe NERC data by
multiplying the power lost by the restoration time.) For
example, the time series for the power lost is shown in
Figure 1.

To these five series, the number of blackouts plus the
four measures of blackout size, we have applied the scaled
windowed variance analysis technique and the R/S
statistics to determine their respective Hurst exponents H.
Both methods give consistent answers. There is a clear
range of more that one decade of time lags (from about 30

days to 500 days) over which the averaged ~~, shows a

clear power dependence on time. Figure 2 shows the

averaged c7~ as a t?mction of time delay for the number of

blackouts and the energy unserved. The Hurst exponents

obtained by fitting 0~ are shown in Table 2.

Table 2. Hurst exponents of blackout numbers and sizes

Time series Hurst exponent H

Number of blackouts o.5~

Energy unserved (MWh) 0.70
Power lost (MW) 0.58
Number of customers 0.69
Restoration time 0.67

For the time series of the number of blackouts, the
Hurst exponent is about 0.5. This value indicates that
there is no correlation between individual triggers of the
blackouts. This is not surprising and is perhaps what
could be expected from the variety of random causes for
the blackouts.

On the other hand, the analysis of the time series of
blackout sizes show a clear existence of long range time
correlations, as indicated by the Hurst exponents greater
than 0.5 in Table 2. The time record considered has only
1920 points. To test the significance of the results for the
blackout sizes, a random scrambling of the time series
leads to H exponents that range from 0.49 to 0.55. They
are well below the values obtained for the original records,
which suggest that their deviation tlom 0.5 is significant.
The sequences do not show any signs of periodicity that
could contaminate the determination of H.

We also used the NERC data from January 1993 to
July 1998 to estimate the probability distribution function
of the blackout sizes. For example, Figure 3 shows the
probability distribution of the energy unserved in the
blackouts. The fitted line shows that the probability
decreases with power –0.98. For the number of customers
affecte~ the probability distribution fimction decays as a
–0.65 power and for the restoration time the power is



–1. 13, For each of these measures of blackout size, the
probability falls off relatively slowly with the blackout
size. Since the exponents are clearly above –2, the
variance of the blackout size is unbounded. Furthermore,
since the powers are close to –1, even the mean could be
unbounded. These results imply that blackouts of the
size of the full grid are possible.

4.Possible explanation of power system SOC

We suggest a qualitative account of the structure and
effects in a large scale electric power transmission system
which could give rise to SOC. The transmission system
contains many components such as generators,
transmission lines, transformers and substations. Each
component experiences a certain loading each day and
when all the components are considered together they
experience some pattern or vector of loadings. The pattern
of component loadings is determined by the power system
operating policy and is driven by the aggregated customer
demands at the substations. The power system operating
policy includes short time frame actions such as generator
dispatch as well as longer time tie actions such as
improvements in procedures and planned outages for
maintenance. The operating policy seeks to satisfi the
customer demands at least cost. The customer dem~d
has daily and seasonal cycles and a secular increase.
Moreover, the patterns of customer demand change due to
the evolution of bulk power markets and geographic shifts
in population and industry.

Events are either the limiting of a component loading
to a maximum or the zeroing of the component loading if
that component trips or fails. Events occur with a
probability that depends on the component loading. For
example, the probability of transformer failure generally
increases with loading. Another example is that au
operator redispatching to limit power flow on a
transmission line to its thermal rating could be modeled
as probability zero below the thermal rating of the line
and probability one above the thermal rating.

Each event is a limiting or zeroing of load in a
component and causes a redistribution of power flow in
the network and hence a discrete increase in the loading of
other system components. Thus ‘events can cascade. If a
cascade of events includes limiting or zeroing the load at
substations, it is a blackout. A stressed power
transmission system experiencing an event must either
redistribute load satisfactorily or shed some load at
substations in a blackout. A cascade of events leading to
blackout usually occurs on a time scale of minutes to
hours and is completed in less than one day.

It is custommy for utility engineers to m&e
prodigious efforts to avoid blackouts and especially to
avoid repeated blackouts with similar causes. These
responses to a blackout occur on a range of time scales
longer than one day. Responses include repair of
damaged equipment, more fkequent maintenance, changes
in operating policy away from the specific conditions

causing the blackout, installing new equipment to
increase system capacity, and adjusting or aiding system
alarms or controls. The responses reduce the probability
of events in components related to the blackout, either by
lowering their probabilities directly or by reducing
component loading by increasing component capacity or
by transferring some of the loading to other components.
The responses are directed towards the components
involved in causing the blackout. Thus the probability of
a similar blackout occurring is reduced, at least until load
growth degrades the improvements made. There are
similar, but less intense responses to unrealized threats to
system security such as near misses and simulated
blackouts.

The pattern or vector of component loadings may be
thought of as a system state. Maximum component
loadings are driven up by customer demand trends via the
operating policy. High loadings increase the chances of
cascading events and blackouts. The loadings of
components involved in the blackout are reduced or
relaxed by the responses to security threats and blackouts.
However, the loadings of some components not involved
in the blackout may increase. These opposing forces
driving the component loadings up and relaxing the
component loadings are a reflection of the standard tmdeoff
between satis~ing customer demands economically and
security. The opposing forces apply over a range of time
scales. We suggest that the opposing forces, together
with underlying growth in customer demand and diversity
give rise to a dynamic equilibrium and conjecture that
this dynamic equilibrium is SOC.

Table ‘3. Analogy between power system and sand pile

Power system Sand pile
system state loading pattern
driving force

gradient profile
customer demand addition of sand

relaxing force
event Iresponse to blackout gravity

limit flow or trip sand topples

indicate the roughly analogous structure
an idealized sand r)ile model which is

We briefly
and effects in
expected to show SOC [7]. Consider a large, idealized
sand pile which has grains of sand added at a
continuously varying location. When the local maximum
gradient gets too large, sand at that location is more
likely to topple. Events are the toppling of sand and
cmcadkg events are avalanches. The system state is. a
vector of maximum gradients at all the locations in the ‘‘
sand pile. The driving force is the addition of sand,
which tends to increase the maximum gradient, and the
relaxing force is gravity, which topples the sand and
reduces the maximum gradient. SOC is a dynamic
equilibrium in which avalanches of all sizes occur and in
which there are long time correlations between avalanches.
The analogy between the sand pile and the power system
is shown in Table 3. There are also some distinctions
between the two systems. In the sand pile, the avalanches
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are coincident with the relaxation of high gradients. In the
power system, each blackout occurs on fast time scale
(less than one day), but the knowledge of which
components caused the blackout determines which
component loadings are relaxed both immediately after the
blackout and for some time after the blackout.

5. Conclusion

The time series of blackout sizes presented above show
long-range time correlations as well as power dependent
tails in their distribution functions. These initial results
suggest that the global dynamics of the power
transmission system are those of a complex dynamical
system. Such system may be close to a SOC system.
The results are consistent with SOC, but there is not yet
enough evidence to fully confm this. Longer and more
detailed records of blackouts would be helpful, as well as
more refined methods to distinguish SOC dynamics tlom
data.

The correlation results suggest that large blackouts m
correlated with further large blackouts after a long time
interval. In general, the SWV and IUS analyses presented
here go beyond cumulative statistics such as the
probability densi~ fimction to reveal some temporal
information about the system dynamics.

We have also suggested a qualitative description of the
global dynamics of a large scale electric power system.
These global dynamics are broadly analogous to the
dynamics of an idealized sand pile model that is expected
to show SOC. This outline of a possible explanation of
SOC in a power system shows the opposing forces that
could give rise to a dynamic equilibrium with SOC
properties. The opposing forces are, roughly speaking,
the trends in load demands weakening parts of the system
and the responses to blackouts strengthening parts of the
system. It is interesting to reflect that responses to a
blackout are usually regarded as an outcome of a detailed
investigation of particular blackout causes. However, the
more global view suggested here sees responses to
blackouts as an intrinsic part of the global system
dynamics.

If electric power transmission systems are found to
obey SOC like dynamics, this would have a number of
important implications. First and perhaps most striking
is the intrinsic unavoidability of cascading events in such
a system when tilven near its operational limits. When
an event occurs the natural tendency is to focus on the
cause of that event and try to prevent it from happening
again, While often justified, this overlooks the fact that
there will always be unforeseen events that will act as
triggers. Reaction to a trigger which has already occurred
will not impact another type of trigger and the potential
severity of a resulting disruption depends less on the
individual trigger (or sequence of events) then it does on
the overall system state. This means that the global

system state is at least as important in assessing a
system’s vulnerability to disruption as the state of some
individual components.

On a more reassuring note, because of the apparently
universal nature of SOC systems, we can learn a great deal
about their dynamics from studying simple paradigmatic
SOC models. Indeed, our qualitative description of SOC
dynamics is a fwst step towards a more quantitative
simulation model that”captures the essentials of the global
complex dynamics of the power system. The SOC or
other complex dynamics in such a model would provide
insights into’ global power system dynamics and allow
more critical examination of exp~anations of SOC. Such a
model could also serve as a test bed for developing
methods for predicting and even controlling the overalI
system state to reduce the chances of large blackouts. One
can even speculate about the possibility of determining
statistical precursors to blackouts, which could allow real
time corrections to prevent large blackouts.

Power transmission systems are large, complicated
interconnected structures which underpin our society. Our
initial results are suggestive of SOC in the global
dynamics governing blackouts and we look forward to
probing these complex dynamics further.
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Figure 1. Power loss caused by blackouts in North America 1993-1998.
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Figure 2. Scaled windowed variance analysis of
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Figure 3. Probability distribution function of energy unserved
for North American blackouts 1993-1998.


