
tr
!
I'
'd

OAK RIDGE
NATIONAL
LABORATORY

ORNVTM-13094

RECEIVED
NOV 2 1 1995
0 S.T 1

Toward a Multi-Sensor-Based
Approach to Automatic Text

Classification

V. R. Dasigi
R. C. Mann

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITE0 STATES
DEPARTMENT OF ENERGY

-v. .. .- ' _
-

~ . . ,'. ' * ,C . , .- . - . I . . , , .- ~ ~--f ..,. -----sl_____l .. ". ,
. .. - , , * . * ':' , . . : . . - * I ' . . .

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni.
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied. or assumes any legal liability or responsibility for the accuracy, coin-
pleteness, or usefulness of any information, apparatus, product, or proceas dla-
closed, or represents that its u s e would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or servlce by
trade name, trademark, manufacturer, or otherwise, does not necessarily COnstC
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNLRM-I 3094

L

c,

"

Computer Science and Mathematics Division

TOWARD A MULTl=SENSOR=BASED APPROACH
TO AUTOMATIC TEXT CLASSIFICATION

V. R. Dasigi'
R. C. Mann

Department of Computer Science and Information Technology, Sacred Heart
University, Fairfield, CT.
+

DATE PUBLISHED - October 1995

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
managed by

Lockheed Martin Energy Systems
for the

U.S. Department of Energy
Under Contract DE-AC05-840R21400

CONTENTS

ABSTRACT

4

5

INTRODUCTION & BACKGROUND

A MULTI-SENSOR NEURAL NET APPROACH

PROGRAM COMPONENTS

3.1 The Lexical Analysis Group

3.2

3.3 The SVD Group

3.4

The Frequency Matrix Generation Group

The LSI-Based Analysis and Neural Net
Input Generation Group

3.5 The Other Sensors Group

3.6 The Miscellaneous Group

RESULTS

FUTURE WORK

ACKNOWLEDGEMENTS

REFERENCES

FIGURE 1

FIGURE 2

v

1

3

6

8

9

10

12

15

16

16

20

22

23

27

29

iii

.-. ,. ' . - .. -* - a;. . ,. I I . ;,.-: - , r .

ABSTRACT

Many automatic text indexing and retrieval methods use a term-document matrix that
is automatically derived from the text in question. Latent Semantic Indexing is a
method, recently proposed in the Information Retrieval (IR) literature [Deerwester, et
al., 901, for approximating a large and sparse term-document matrix with a relatively
small number of factors, and is based on a solid mathematical foundation. LSI
appears to be quite useful in the problem of text information retrieval, rather than text
classification. In this report, we outline a method that attempts to combine the
strength of the LSI method with that of neural networks, in addressing the problem of
text classification. In doing so, we also indicate ways to improve performance by
adding additional “logical sensors” to the neural network, something that is hard to do
with the LSI method when employed by itself. The various programs that can be used
in testing the system with TIPSTER data set are described. Preliminary results are
summarized, but much work remains to be done.

V

1 Introduction & Background
With explosive growth of multi-media data repositories, rapidly increasing
connectivity of computer networks and the emergence of and widespread ac-
cess to the national information infrastructure, there is an urgent need for
intelligent tools for access, analysis and filtering of multi-media information.
According to news reports, the white house started receiving tens of thou-
sands of messages per day through electronic mail soon after announcing its e-
mail address to the public. Fast classification of such messages into categories
of contemporary public interest (e.g., health care, taxes, national service,
etc.) can be vital to the responsiveness of the administration. Significant
progress has been made in document retrieval, going beyond the traditional
methods of Boolean and exact keyword matching [Salton, 891 [CACM, 921
[IEEE Expert, 931 [Computer Journal, 921 [van Rijsbergen, 921. Much work
has been done in applying probabilistic methods to IR and by represent-
ing documents as vectors in an n-dimensional space [Turtle and Croft, 921.
Work in natural language-based methods, while quite impressive, often suf-
fers from one major drawback - that of scaling up effectively [Smeaton, 921.
Integrated approaches that combine natural language methods with statisti-
cal and/or vector-based approaches appear to hold promise, but are relatively
rare [Jacobs, 931.

An important first step in supporting automated information retrieval
and classification is to derive the indexing information automatically. In the
case of text documents, the conventional practice used to be to employ some
controlled vocabulary defined by an expert. Instead, most contemporary
approaches use terms contained in the text document itself, or their lexical or
semantic variants, directly as indexes into the document. The “vector-based)’
approaches view documents as vectors of such terms. Thus, a “library” of
documents would be a collection of term vectors, or alternately, a term-
document matrix, where the entries represent the frequency of each term in

1

each document. Needless to say, such term-document matrices tend to be
very sparse and very large.

Latent Semantic Indexing (LSI) is a method recently developed to capture
the “latent semantic structure” hidden in the association of terms within
documents, as indicated in a term-document matrix[Deerwester, et al., 901.
The large sparse matrix is reduced into three relatively small matrices (one of
which is simply a diagonal matrix) by singular value decomposition (SVD)
corresponding to the largest several singular values. The original sparse
matrix can be approximated by the product of the smaller SVD matrices.

One advantage of this method is that there are potentially fewer elements
to deal with after SVD than in the large term-document matrix, that is,
the SVD version is more efficient with respect to space. However, once the
fact is considered that the large term-document matrix happens to be very
sparse, the space efficiency advantage becomes debatable, but there is at
least one other very significant justification for performing the SVD. It turns
out that a careful selection of the number of singular values included in the
SVD, captures the “latent semantic structure” of the collection of documents
[Deerwester, et al., 901. While the SVD results in only an approximation to
the original term-document matrix, it is claimed that the approximation
gives better results than the original! The intuitive reason for this surprising
anomaly is that the approximate version weeds out insignificant associations
between terms and documents, and only represents the major associative
patterns.

The research reported here represents an effort to go beyond the ad-
vantages of LSI, by combining its valuable ideas with the powerful pattern-
matching and learning capabilities of neural networks. A major stumbling
block in applying neural networks to most IR applications has been that
the size of a typical IR problem results in impractically large neural net-
works. Typically, documents to be classified as well as retrieval queries are

2

I .
. . . I . .’. 1 . , r I . .-..* - -., . . , . .

represented as a set of terms, the size of which is at least in the thousands.
In such networks there could be hundreds of thousands of connections, not
to mention the complexity when lateral inhibition is added for a winner-
takes-all effect, e.g., [Wilkinson and Hingston, 921. Our preliminary results
in addressing these issues are summarized.

2 A Multi-Sensor Neural Net Approach
In part, this work was motivated by the success of the Gene Recognition and
Analysis Internet Link (GRAIL) system developed at the Oak Ridge National
Laboratory. GRAIL is a pattern recognition system for identifying protein-
encoding DNA sequences among anonymous sequences in higher eukaryotes,
which may span tens to hundreds of “sparse” kilobases [Uberbacher and Mural, 911
[Xu, et al., 941. A multi-layer feed-forward neural network receives inputs
from several sensors that measure different characteristics of the signals or
data sets to be analyzed. The net acts as a classifier and assigns the input
pattern to a given number of classes. The net is trained using a set of known
data patterns that are representative of the application domain. In its sim-
plest form, GRAIL operates with sensors that give signals that are either
”on” or ”off’, indicating the presence or absence of a particular pattern or
characteristic. Sensors can also supply “analog” input signals to the integrat-
ing network. The neural net represents a reliable mechanism to integrate the
information from multiple sources to form a combined best estimate of the
true classification decision. The term “sensor” is interpreted in a broad sense.
It can encompass a real physical sensor device or an algorithm that computes
a feature of a signal acquired by a physical sensor. The term ”logical sensor”
is used in the latter context.

We start with the hypothesis
appropriate for classification and

that a GRAIL-like system would be
filtering of English text documents:

very
It is

3

hypothesized that the eventual system, being neural network-based, would
be capable of integrating in a systematic way existing and new approaches
as required by the application. The GRAIL-type system can integrate differ-
ent kinds of sensors, e.g., statistical and syntactic sensors as well as simple
keyword sensors, and other standard techniques already in use by the an-
alyst community, such as LSI or other approaches (e.g., [Salton, et al., 941
and [Damashek, 951). Initially, the system would be capable of reliably clas-
sifying text documents into different classes, and can be eventually modified
to retrieve information that matches a specified profile.

Specifically, in this initial effort, we focused on two main goals. First,
create input to a neural network that is LSI-based, so that the size of the
neural net will be practical, and it can be trained without much difficulty.
Further, a second goal is to see if additional sensors can be added easily to
the neural net input, to give improved results. The relationship between the
LSI component and the neural network is symbiotic. The LSI-based input
makes for the input to the neural network to be of a much smaller size than
would a long term vector be. Further, LSI is based on a solid mathematical
theory, which adds strength to the resulting system. For its part, the neural
network makes it easy to add trainability to the LSI-based method, and also
makes it possible to integrate other sensors to complement or supplement
the LSI-based input.

It has been indicated above that an “LSI-based” input vector is used with
a neural network to contain its size. This technique needs some elaboration.
A straightforward, but simple-minded input vector for the neural network
would be a document represented as a vector of all possible term frequencies.
Most sets of documents of reasonable size (such as newspaper or magazine
stories, novels, scientific articles, etc.) comprise thousands of distinct word
roots, which may be viewed as primitive terms. Thus, the size of the input
term vector in a simple-minded representation would be a few thousand. LSI

4

work suggests a way to represent a document using around a hundred (‘fac-
tors”, derived from the much longer term vector and the SVD of a (‘reference
matrix”’.

Actually, the developers of LSI indicate that a query may be viewed as
a pseudo-document and may be represented by a vector of a chosen number
of factors, so it may be placed in the same vector space as regular document
vectors [Deerwester, et al., 901. This is done as follows. First a reference
term-document sparse matrix X is derived from the library of documents
that are of interest. This matrix is split into three matrices by SVD, so that

X = T.S.D’
Here, X is a txd matrix, where t is the numbers of distinct terms (word

roots) and d is the number of documents in the reference collection. The
order of T is txk, that of S, which is a diagonal matrix, is kxk, and that of D
is dxk, where k is the chosen number of factors. (LSI research indicated that
a choice of k around a hundred is very effective.) Now, the pseudo-document
vector DQ corresponding to a lxt query vector Q may be derived simply as:

In this work, we use this same idea to squash any lxt document vector
into a lxk vector that serves as input to the neural network. The only
care that must be exercised is to make sure that the reference term-document
matrix that is used as the starting point is one that ccadepuately” represents
all concepts of interest. Note that this requirement is no more stringent than
would be required in the standard LSI approach.

Figure 1 shows a high level view of how the proposed method works. The
input to the system is an individual document that needs to be classified into
one of several categories. Different logical sensors are applied to the docu-

‘ A reference matrix is the term-document matrix of a reference library/collection of
documents. A reference library is simply the collection of documents that “adequately”
represents all concepts of interest.

DQ = Q.T.S”

5

ment, constituting different kinds of preprocessing to derive salient features.
One such sensor of interest to this work is one based on the term vector
representing the input document. This lxt vector gets transformed into a
lxk vector, using an SVD-based transformation, as explained above. The
features derived by the logical sensors constitute input to a neural network
that has already been trained. The output is an indication of the category
to which the document belongs. This approach may be adopted to perform
other related functions, e.g., document filtering or retrieval.

3 Program Components

Any serious IR system has to deal with vast amounts of data. Evaluation of
such a system should involve at least millions of bytes of data (and more re-
cently, giga- and even tera- bytes). To this end, a license to use the TIPSTER
data source, distributed by the Linguistic Data Consortium, was obtained.
The TIPSTER collection consists of about 3 billion bytes of SGML-coded
text data in compressed form, coming from different sources such as the AP
News wire, the Wall Street Journal, Ziff-Davis publications, etc., distributed
on three CD-ROMs.

In this preliminary effort, the focus was exclusively on the AP news wire
stories. On the first CD-ROM, aside from a large amount of non-AP news
wire data, there is one compressed AP file for each day of the year 1989.
Each such file contained several tens through a few hundreds of news stories
and analyses, coded in SGML, with the total file size in the hundreds of
thousands of bytee, up to about a megabyte. The programs work with such
files, after they are uncompressed. The purpose of the multi-sensor neural
net is to classify the news stories into one of ten ad hoc categories (the gen-
eral/miscellaneous category includes any story that does not seem to belong
to one of the others):

6

c

1. accidents and natural disasters

2. business and finance

3. crime

4. culture

5. general/miscellaneous

6. obituary

7. politics and government

8. science and technology

9. terrorism

10. weather

For the documents used for training and testing purposes, the categories
of the documents as manually determined by a teacher are to be encoded in
a file named categories. This file is described in more detail later.

The programs may be divided into a few groups, based on their function.
They fall broadly into the following groups: lexical analysis, frequency matrix
generation, SVD group, LSI-based analysis and neural net input generation,
other sensors and miscellaneous. Each group is described below. A simple
makefile, called Makef i le , is written to capture the appropriate dependencies
and generate the necessary executables. Figure 2 summarizes the relationship
between the different groups of programs at a very high level.

7

3.1 The Lexical Analysis Group

The main purpose of this group of programs is to separate the individual
news stories in each file, strip off the SGML codes, and also perform simple
morphological stemming. As.needed, the programs also filter a set of stop
words out of each story document.

The details of the SGML coding are available in a document type defini-
tion available on the CD-ROM for each category of news source. It was found
to be convenient to write a Lex source file for this purpose, mainly in view
of the SGML coding. The unix tool Lex takes this source file as input and
generates a C source program. This C program in turn takes as input a file
conforming to the lexical description in the Lex source file, and produces the
required output. There are three different Lex sources files (that are mostly
similar) written for slightly different purposes: aplex. in2, aplexbasic . i n
and singlex. in. From these Lex sources, using Makef i l e , one can respec-
tively produce the executables aplex, aplexbasic and singlex.

All the executables accept an uncompressed AP news wire file containing
a number of stories for a single day, coded in the predefined SGML format,
as standard input by redirection. The executable aplex strips the SGML off,
filters stop words, stems words using a simple Porter stemmer [Porter, 801,
and writes the words of each individual story into a separate file. These files
are named with sequential numbers. It expects the number for the first file
to be specified a file named l ex . in, and if such a file is not present, the
starting file number defaults to 1.

The function of aplexbasic is somewhat simpler. All it does is to strip
the SGML off, and separate the individual stories into separate files. These
files are numbered as described above, with the difference that all of them
contain the extension .basic. For example, the default name for the first file

'There are other Lex source files, namely, vs j lex . in, doelex. in and zf l e x . in, that
have been written and are available, to serve purposes similar to aplex. in.

8

would be 1. basic. The purpose of singlex is to take a single such file (the
name of which ends in the .basic extension) as standard input by redirec-
tion, and produce the corresponding file (without the .basic extension) that
contains a list of filtered and stemmed words, by output redirection. Thus,
singlex may be used, for’instance, to produce the file i from 1. basic.

3.2 The Frequency Matrix Generation Group

The program merge.c goes through a specified sequence of files that have
been generated by aplex as above. First, it derives individual term frequency
distributions for each file, and then merges them into a single summary file.
In doing so, it keeps track of unique terms, and it uses a simple format to
squash multiple successive zero entries. (A lone 0 appears by itself, but if
there are n (i 1) successive zeroes, they appear as nz.) This latter point
is important considering that the term-document frequencies derived in this
work were more than 98% sparse! the program asks for the starting and
ending file numbers, which should be the names of files containing stop-word-
filtered, stemmed terms. All the files in the specified inclusive range must
be present. The resulting sparse term-document matrix is written into a file
whose name is the same as the last file number, except for the extension . i
that is added. If more files were later added beyond the “ending file” above,
merge3 has an option so it can continue just with the new files. It creates
temporary files corresponding to each of the files in the specified range, witli
extensions . 2 and .I, but destroys all but the very last one of them, as
indicated above.

Another program, convert.^, asks for the name of the sparse term-
document matrix generated by merge, and performs a conversion on it to
generate the file matrix that conforms to the SVD functions. The sparse

3The executables corresponding to a C program file are named the same as the source
file, without the . c extension.

9

matrix is expected by the SVD functions in a “Compressed Column Storage
format” [Berry, et al., 931, which is different from the straightforward rep-
resentation indicated above. This conversion is required because the new
format cannot be derived until the straightforward sparse matrix represen-
tation is completely known. The program convert. c is described in more
detail later in Section 3.4, because it does more than just converting the
matrix into a new format.

3.3 The SVD Group

The bulk of these programs was taken from the SVDPACKC package [Berry, et al., 931.
The SVDPACKC is a set of C functions for performing the singular value
decomposition of a matrix, with special attention to sparse matrices, using
eight different methods. Of all the available methods, the “Single Vector
Lanczos” method (using an eigensystem adequate for determining a num-
ber of the largest singular values (and corresponding singular vectors)) was
chosen, because of its performance. ,

The program, called las2 . c4, expects two input files: matrix and l a p 2
The file matrix is the sparse matrix represented in a compressed column
storage format, ans is derived by convert from the output of merge. The
other file, 1ap2, specifies the input parameters to las2 on a single line, as
follows (taken directly from [Berry, et al., 931):

name lanmax maxprs end1 endr vectors kappa, where

0 name is a string defining the name of the data set.

0 Zanmax is an integer specifying the maximum number of Lanczos iter-
ations allowed.

4See [Berry, et al., 931 for the naming convention and many other details.

10

0 maxprs is an integer which indicates the number of singular triplets
desired.

0 end1 and endr specify the two end points of an interval within which
all unwanted singular values lie.

0 vectors indicates if singular values and vectors are needed (TRUE) or
just singular values (FALSE).

0 kappa is the relative accuracy of Ritz values acceptable as singular
values.

It is important to note that maxprs must not exceed lanmax, and also
that the algorithm generally ends up computing a number of singular values
different from maxprs. The number of computed singular values is really
dictated by Zanmax, which, when not large enough (although it must always
be at least maxprs), may result in fewer than maxprs singular values. If it
is large enough, it could sometimes even result in more than maxprs values,
too.

The program Zas2, as modified, produces several output files: lav2,lao2,
T. S and T. SINV. The file lav2 is binary as described in [Berry, et al., 931.
Apart from some header information, it essentially contains the D matrix
followed by the T matrix (referring to the end of Section 2). It is important
to note that the values are written out in column major order, either t values
or d values per column, k times (as defined in Section 2), and in the order
corresponding to increasing singular values. Thus, the most important values
appear at the end. The file la02 is an ASCII file containing, among other
things, the singular values themselves, and is ignored for our purposes. T. S
and T.SINV are also binary files and contain some header information first.
The header consists of two long integers representing the number of singular
values and vectors written out (which may be different from k) and the

11

,-..;*' '

number of terms t. In T. S, this header is followed by the product 2'3, which
is a txk matrix, in column major order, with the same qualifications as for
lav2. T. SINV has the product T.S-*, which is also txk, following the header,
as in T.S.

In the SVD group, there is another program named mags. c, not supplied
as a part of SVDPACKC. This program computes the magnitudes of the
vectors corresponding to the documents in the reference library, and writes
the number of documents, followed by the magnitudes, one per line, into
an output file specified by the user (which it asks for). In computing the
magnitudes, mags uses the T . S and lav2 files mentioned above.'

3.4 The LSI-Based Analysis and Neural Net Input
Generation Group

The program convert, mentioned in Section 3.2, apart from converting the
sparse matrix from one format to another, also generates four other executable
files: neural, LSIcat, input and LSI. The executable logic for these files,
to be explained later in this section, is specified, respectively, in neural. c,
LSIcat . c, input. c and LSI . c. The program convert creates temporary
files, named, %@+3. c, %@+4. c, %@+2. c and %@+I. c, respectively, by adding
to the these .c files some data definitions corresponding to the terms in the
reference library of documents. (It leaves the original . c files unchanged.)
It then generates the executables by compiling the temporary files and later
deleting them. As can be expected, the data about the terms in the reference
library is directly available in the original term-document matrix specified to
convert, as indicated at the end of Section 3.2.

Now, we describe the programs neural, LSIcat, input and LSI, that are

5Another related program magsrau. c, which is currently not used, was also written,
which computes the magnitudes of the document vectors straight from the original term-
document matrix file (whose name it asks for), independent of any SVD.

12

generated by convert. The purpose of neural is to generate the training
or test input for the neural network, into a file called NEU.nna6. from a
sequence of input document files. These input document files should be
those created by aplexbasic (see Section 3.1). The program asks for the
numbers of the first and last file to be classified (for training or testing), and
also for the desired number of “factors”. This latter input value corresponds
to the number of singular values (and vectors) used in computations, and is
required for predictable control. This was necessitated by the fact that the
SVD programs supplied in SVDPACKC do not give the user precise control
on the number of singular values computed. As long as there are at least
as many singular values (and vectors) available as the specified number of
factors, just the right number of the more significant values are used from the
file T . SINV, which is assumed to be available. This program also assumes the
availability of a categories file7, which is used to create the training output
(or reference output for testing). The program also repeatedly generates and
later deletes a temporary file named %@+3.

LSIcat can be used to classify a sequence of input document files using
an LSI-based method, for comparison against the performance of the multi-
sensor neural network. The LSI approach, as described in [Deerwester, et al., 901,
was originally intended for document retrieval, rather thhn classification. We
modified it to do classification as follows. First, the document from the ref-
erence library that matches an input document best is identified. Next, the
category of the reference document is looked up in the categories file and
is reported as the category for the input document in question.

61n this work, we used a neural network tool named Neuralworks, trademarked by
Neuralware, Inc. This package requires the training and test file names to end in .ma.

‘This file is to list the number of the category for each of the document files, in the
format of the file number (ignored), followed by a tab, followed by the number of the
category to which the file belongs, one pair per line. This list must be immediately
preceded by a line starting with a hyphen.

13

The input document files for LSIcat should be those created by aplexbasic
(see Section 3.1). As with neural, LSIcat also asks for the numbers of the
first and last file to be classified (for training or testing), and also for the
desired number of “factors”. It uses the two files T. S and lav2 in comput-
ing the best matching reference document. Further, the program asks for
the name of the “document magnitudes” file, that must already have been
created by the mags program (see Section 3.3). This program repeatedly
generates and later deletes a temporary file named %9+4.

The purpose of input is to generate a single input vector ‘for the neu-
ral network, from a single input document file, which, either is created by
aplexbasic (see Section 3.1) or is simply some other kind of ASCII file. The
program asks for the desired number of “factors” to be used from the T. SINV
file, and also for the name of the input file. This program is currently not
used much, and needs to be modified for incorporating the category infor-
mation into the output file it creates, namely SINGLE.OUT. It also generates
and later deletes a temporary file named %9+2.

The program LSI can be used to match a single input document file
(presumably created by aplexbasic (see Section 3.1) or is simply some other
kind of ASCII file) against all the documents in the reference library. It
simply computes, using the LSI method in a straightforward manner, the
cosine values of the angles between the input document vector and the vectors
of all the reference library documents, and writes these values into a file
name that it asks for. In this process, it also asks for the name of the
“document magnitudes file” (as does LSIcat) and also for the desired number
of “factors”. It uses the right number of factors from the two files T.S
and lav2 in computing the cosine rankings. At the end it asks if another
document file is to be matched. It generates and later deletes a temporary
file named %(o+i .

__. , . - . ‘..*. . , , ,,,:. z.. ‘,. ._,, . - _ - _ , .., . .

14

~ , . . ? I ..,.. :.-. , ,,. . .

3.5 The Other Sensors Group

The creation of a very simple second sensor to the neural net, with the goal
mainly being a proof of concept, works as follows. The program gensensor2. c
can create a program that generates a second input vector (viewed as a second
sensor) for the neural network. It assumes the existence of the file sensor2. c,
which represents the executable portion of the second logical sensor for the
neural net (to be described shortly). It asks for the number of categories, and
also assumes the existence of as many category profile files as the number of
categories. These files are supposed to contain a number of keywords* which
constitute a profile for the respective category. These files are assumed to
have the names cat#. basic, where # stands for the category number (refer
to the beginning of Section 3). (The words in the profile files are stemmed
and written to corresponding files, whose names start with the prefix s added
to the beginning of the category profile file names.) It also creates a tempo-
rary file (%(0+5. c by adding data corresponding to the category profiles to the
logic of the sensor2 . c file, compiles it to create the executable sensor2 and
then deletes the temporary file. It also uses another temporary file named
%Q+6.

The program sensor:! asks for the starting and ending file numbers, which
define the range of the input document file numbers. These files must have
been created either by aplex or singlex (see Section 3.1). That is, the input
files to sensor2 must be files of stop-word-filtered, stemmed words, one per
line. It creates an output file named NEU.S2, in which each line is simply a
vector (corresponding to an input document), whose size equals the number
of categories. The components of the vector represent what fraction of the
terms in the document correspond to the words in the profile. The degree of
match for the “general” category is negatively related to the best match for

‘There must be at least two keywords for each category, except for the “general”
category, which is supposed to just have any single word.

15

any of the other categories.
The program neural3. c creates a combined neural net input vector from

NEU.ma and the NEU.S2 files. Recall, from the preceding description of the
neural program, that the NEU. ma file contains LSI-based input vector and
training output (or test reference) values. It actually asks for the two input
file names and the desired name for the combined file. The latter file is
created as the output.

3.6 The Miscellaneous Group

This group contains several programs: r e su l t s . c analyzes the neural net
output and reports the percentage pf correct results; rantest. c creates sev-
eral random sets of neural net training and test input pairs from a single
given file of neural net input vectors; h i s t ca t . c gives a simple histogram of
the distribution of files in each category, as indicated by the categories file;
etc.

4 Results
A major stumbling block in this work was the manual categorization of doc-
uments for training and testing purposes. The neural network is of a sub-
stantial size, with more than one hundred input nodes and about ten output
nodes. Such a network typically requires several thousand training inputs,
and this requirement increases with the number of hidden units. Manual clas-
sification of thousands of news stories was extremely time consuming, even
if it was trivial in a number of cases. Such data are not already available
with the TIPSTER data set. We could manually categorize only 480 news
stories, which is what we worked with. Consequently, the following results
are far from conclusive. We believe that they do, however, point out that

16

the approach is promising, in spite of the fact that the neural net is very
inadequately trained.

Of the 480 documents, the first 380 were used as the “reference library”.
That is the term-document matrix used in all LSI/SVD operations has 380
columns. The number of SVD “factors” used in this work was 112. The
neural net inputs created by neural, were also based on this matrix. The
neural net was a simple feedforward net with back propagation, and used the
delta rule for learning and the tanh transfer function. It was tested in two
configurations; one with 112 inputs (just based on LSI alone) and another
with 112 LSI-based inputs plus another 10 inputs based on simple category
profiles. Both configurations used 10 output units, one for each category. The
neural nets that performed best for each configuration were chosen, which
happened when the single sensor neural net (with just the 112 LSI-based
inputs) has 9 hidden units, and the other, two sensor neural net (with 122
inputs) had 10 hidden units.

When LSI method was used by itself to perform classification on the 100
documents that are not part of the reference library, there was essentially
just a single experiment. This was so because, generating the SVD for each
new reference library was computationally very expensive even when several
megabytes of main memory was used by the program. The results from the
LSIcat program, which performed the LSI-based classification were some-
what surprising. Although the performance of LSI in classifying the known
library documents was a perfect 100%) the percentage of correct results when
the 100 new documents were used dropped to 54%.

We present the results of our neural network experiments in two tables.
The percentages of correct results shown in the tables represent the peak
performance that did not get any better with more training. For testing the
neural nets, inputs were created for all the 480 documents, including a correct
answer for each case. This “answer” was to be used either for training the

17

Data Set
No.
1
2
3
4
5
6
7
8
9
10
11
12

No. of
Iterations
48K
16K
64K
64K
32K
48K
80K
48K
64K
48K
48K
32K

Percent Correct
with Test Data
58
72
72
62
62
62
62
58
68
60
64
68

Percent Correct
with Training Data
80.70
77.67
76.98
77.21
76.05
76.98
80.47
78.14
77.44
78.14
78.84
76.05

Table 1: Results of Classification with the Single Sensor Neural Net

neural net or for comparison, in the case of a testing. The rantest program
was then used to generate a dozen pairs of files from this set of 480 inputs.
Each pair of files had a training file and a test file. Each of the dozen pairs
were generated by a different random distribution of 430 inputs into the
training file and the other 50 inputs into the test file. The same pairs of data
sets were used to test both the single sensor neural net and the two sensor
one.

Table 1 shows the performance of the 112-input neural net on each of
the dozen different data sets. In each set, the test file was tested after the
neural net was trained for anywhere between 16,000 and 64,000 iterations.
On the test set, the correctness percentage ranged from a minimum of 58%
to a maximum of 72% for the dozen sets. When the training set itself was

18

Data Set
No.

~

1
2
3
4
5
6
7
8
9
10
11
12

No. of
Iterations
48K
48K
32K
64K
32K
16K
32K
16K
32K
32K
16K
32K

Percent Correct
with Test Data
62
70
76
64
64
66
66
62
70
58
64
72

Percent Correct
with Training Data
85.11
84.42
84.19
83.72
84.88
83.26
84.88
84.19
83.49
83.02
80.47
83.02

Table 2: Results of Classification with the Two Sensor Neural Net

used as a data set, the performance was between 76.05% to 80.7% correct.
Table 2 shows the performance of the 122-input neural net on each of the

dozen different data sets. Again, in each set, the test file was tested after the
neural net was trained for anywhere between 16,000 and 64,000 iterations.
On the test set, the correctness percentage ranged from a minimum of 58% to
a maximum of 76% for the dozen sets. When the training set itself was used
as a data set, the performance was between 80.47% to 85.11% correct. It may
be seen that in the case of individual data sets, there was an improvement
in performance with 10 out of the 12 data sets in the two sensor neural net,
compared to the single sensor version, with marginal decrease of performance
in the other two cases. But in one of these two cases (data set 2), the
superficially better performance of the single sensor neural net decreased a

19

few percent with more training. These anomalies can perhaps be attributed
to the simple-mindedness of the second sensor used (see Section 3.5).

We believe that one thing the results conclusively indicate is that the
neural nets need more training. There is a clear improvement of classification
results in the neural net approach compared to the LSI-method by itself. And
the two sensor version, with a very simple-minded second sensor, seems to
do better in most cases than the single sensor version.

5 Future Work

The work is far from complete. Clearly the neural networks need more train-
ing, and more training requires more data. Automatic tools, as described in
Section 3, are in place for generating data from AP news wire stories, but
each of the stories needs to be manually categorized to complete the data.
Once this is done, different possible neural network architectures need to be
tried for best performance with each different set of input sensors.

Other important extension to the work here would be in the area of other
input sensors. LSI is a simple, yet very powerful technique for information
representation. However, it is limited by the vocabulary seen so far in the
reference library.’ One way to address this limitation is to add other sensors
which are sensitive to newer words and other patterns in the input. The sec-
ond sensor that was implemented attempted to do that using a very simple
technique. The slight improvement of results even with such a simple addi-
tion is very encouraging, adding strength to our original hypothesis that a
multi-sensor neural network approach would be very effective for information
classification and retrieval.

’In our data, the vocabulary from the reference library was rather large - about 10,025
unique stemmed terms. This set, however, includes “terms” like 1, 100th, $2, 1974, etc.,
which comprise about 5 6 % of the terms.

20

Natural language (NL) processing techniques hold some promise in this di-
rection [Schank, et al., 811 [Lewis, et al., 891 [Smeaton, 921 [Lewis, 921. The
depth of analysis using established NL techniques perhaps needs to be con-
trolled carefully to optimize performance. Deep NL analysis runs into the
problem of scaling up well; sensors based on shallower NL processing a la
[Schank, et al., 811 might provide just the right balance. Krovetz suggests
an approach sensitive not just to words, but word senses (the classic issue
of polysemy), which adds more discriminatory power, but requires somewhat
deeper processing[Krovetz, 901. The LSI approach appears to capture some
aspects of synonymy to the extent that synonyms co-occur in related docu-
ments, but perhaps does not offer fine discrimination of the different senses
of polysemous words.

The basic idea of the second sensor based on category profiles that was
used in this work can be strengthened by various means. Instead of creating
profiles manually, as done in our simple version, profiles could be automati-
cally generated. One way to generate category profiles automatically is using
LSI itself. The answer to the question how important is term i to document
j (or how strongly associated are they) can be used appropriately, when the
category of document j is already known. However, it is doubtful that this
technique will add substantial new information to the neural net, that is
not already contained in the LSI input. Another technique would be to use
existing methods that suggest significant terms for predefined topics, e.g.,
[Zhou and Dapkus, 951.

The approach may also be adopted to perform related functions, such as
document filtering and document rertrieval. The categories may be chosen
to fit individual interest profiles, and new documents can be identified to fit
particular profiles. Alternately, the neural net can be set up to accept two
sets of inputs, one corresponding to a query (viewed as a “pseudo-document7’)
and the other corresponding to a candidate document, with the output in-

21

dicating a degree of match. The net can be run with each document in the
collection (from which retrieval is to be made) as a candidate. Those docu-
ment satisfying predefined retrieval criteria (e.g., the top ten documents, all
documents exceeding a threshold degree of match, etc.) may be retrieved.

The SVD programs are very memory intensive. In our experiments, they
took several megabytes of main memory. At one point, the program ran out
of main memory, and could only be run by reducing precision from double
to float. This problem can easily become acute, even with single precision,
as the size of the term-document matrix increases. As the number of doc-
uments in the reference library increases, so does the number of terms, and
consequently, the memory problem becomes doubly more acute. The number
of factors selected in the SVD also directly affects the memory requirement.
So, when larger matrices are involved, the application may have to be moved
to a supercomputing or parallel computing environment.

On the software engineering front, the components of the research pro-
totype developed in this work need to be integrated together into a system
that is easy to use, with an effective user interface.

Acknowledgements
The first author wishes to thank Reinhold Mann, Head, Intelligent Sys-

tems Section, for the opportunity and support to work on this project and the
facilities provided. He also thanks the Oak Ridge Institute for Science and
Education for 'the summer fellowship that made this work possible. Thanks
are also due to Mike Berry of University of Tennessee, Knoxville and his
students for distributing the SVDPACKC software, to Chuck Glover of the
Intelligent Systems Section (ISS) at ORNL for help with the Neuralworks
package, and to Ron Lee of the ISS for help with general systems problems.
Availability of some general lexical utilities from New Mexico State Univer-

22

sity’s Consortium for Lexical Research is also acknowledged.

References

[Berry, et al., 931 Berry, M., T. Do, G. O’Brien, V. Krishna and S. Varadhan,
SVDPACKC (Version 1.0) User’s Guide, Technical Report CS-93-194, De-
partment of Computer Science, University of Tennessee, Knoxville, April,
1993 (revised October, 1993).

[CACM, 921 Communications of the Association for Computing Machinery,
Special Issue on Information Filtering, 35(12), December, 1992.

[Computer Journal, 921 The Computer Journal, Special Issue on Information
Retrieval, the British Computer Society and Cambridge University Press,
35(3), June, 1992.

[Damashek, 951 Damashek, M-, Gauging Similarity
with n-Grams: Language-Independent Categorization of Text, Science,
267, pp. 843-848, 10 February, 1995.

[Deerwester, et al., 901 Deerwester, S., S. Dumais, G. Furnas, T. Landauer
and R. Harshman, Indexing by Latent Semantic Analysis Journal of the
American Society for Information Science, 41(6), pp. 391-407, 1990.

[IEEE Expert, 931 IEEE Expert, Special Issue on Using AI in Text-Based
Information Retrieval, 8(2), April, 1993.

[Jacobs, 931 Jacobs, P., Using Statistical Methods to Improve Knowledge-
Based News Categorization, IEEE Expert, 8(2), pp. 13-23, April, 1993.

[Krovetz, 901 Krovetz, R., Information Retrieval and Lexical Ambiguity,
Working Notes of AAAI Spring Symposium on Text-Based Information
Systems, pp. 70-72, 1990.

23

[Lewis, et al., 891 Lewis, D., B. Croft and N. Bhandaru, Language-Oriented
Information Retrieval, International Journal of Intelligent Systems, 4, pp.
285-318, 1989.

[Lewis, 921 Lewis, D., An Evaluation of Phrasal and Clustered Representa-
tions on a Text Categorization Task, SIGIR-92 Proceedings, pp. 37-50,
1992.

[Porter, 801 Porter, M., An Algorithm for Suffix Stripping, Program, 14(3),
pp. 130-137, July, 1980.

[Salton, 891 Salton, G., Automatic Text Processing, Addison-Wesley Pub-
lishing Company, Reading, MA, 1989.

[Salton, et al., 941 Salton, G., J. Allan, C. Buckley and A. Singhal, Au-
tomatic Analysis, Theme Generation and Summarization of Machine-
Readable Texts, Science, 264, pp. 1421-1426, 3 June, 1994.

[Schank, et al., 811 SChank, R., J. Kolodner and G. DeJong, Conceptual In-
formation Retrieval, Information Retrieval Research, Oddy, R., s. Robert-
son, C. vanRijsbergen and P. Williams (Eds.), Butterworths, Boston, pp.
94-116, 1981.

[Smeaton, 921 Smeaton, A., Progress in the Application of Natural Language
Processing to Information Retrieval Tasks, the Computer Journal, 35(3),
pp. 268-278, 1992.

[Turtle and Croft, 921 Turtle, H., and B. Croft, A Comparison of Text Re-
trieval Methods, the Computer Journal, 35(3), pp. 279-290, 1992.

[Uberbacher and Mural, 911 Uberbacher, E., and R. Mural, Locating
Protein-Coding Regions in Human DNA Sequences by a Multiple Sensor-
Neural Network Approach, Proc. Natl. Acad. Sci. USA, 88, pp. 11261-
11265, 1991.

24

[van Rijsbergen, 921 van Rijsbergen, C., Probabilistic Retrieval Revisited,
the Computer Journal, 35(3), pp. 291-298, 1992.

[Wilkinson and Hingston, 921 Wilkinson, R. and P. Hingston, Incorporating
the Vector Space Model in a Neural Network used for Document Retrieval,
Library Hi Tech, lO(1-2), pp. 69-75, 1992.

[Xu, et al., 941 Xu, Y., R. Mural, M. Shah and E. Uberbacher, Recogniz-
ing Exons in Genomic Sequence using GRAIL 11, Genetic Engineering,
Principles and Methods, Plenum Press, 15, June, 1994.

[Zhou and Dapkus, 951 Zhou, J. and P. Dapkus, Automatic Suggestion of
Significant Terms for a Predefined Topic, Third ACL Workshop on Very
Large Corpora, MIT, Cambridge, June 1995.

I

25

i .) I
I

i

Multi-S ensor/Neur a1 Net Intelligent Information Retrieval

El document

stop words
filter

term frequency
count

v-l svd ops *
(lxk

other sensors

document
indica tors

Figure 1. Schematic of multi-sensor/neural network approach to intelligent text retrieval and document classification.

ORNL-DWG 95M-8798

matrix CCS format
Frequency SVD

Matrix Group
Group

Reference

Documents
I

tex GRAIL software tools

Single
Document

Filtered,
stemmed

documents

input
Lexical documents

Analysis
Group - Filtered,

I)
I

Neural

Input
Programs

Neural net input
(sensor 1 input)

Other
Sensors
Group

I i

Category profilebased
sensor output
(sensor 2 input to neural net)

LSI-based classification
of input document (for
comparison against the
multi-sensor approach)

Figure 2. Schematic diagram of texGRAIL module interdependencies.

.

.- . - . b .L. . , ., -... .--.--. , i_ - _ 1 ' 1 ~ . , A I . 1 I . - ". ..; .-.-.I, . . . -. - - .

ORNLlTM-13094

INTERNAL DISTRIBUTION

I. J. Barhen
2. V. Baylor
3. J. R. Einstein
4. C. W. Glover
5. W. C. Grimmell
6. X. Guan
7. H. E. Knee
8. R. W. Lee
9. S. Matis

I O . S. McKenney
11-15. R. C. Mann

16.
17.
18.
19.
20.
21.
22.
23.

24-25.
26.
27.
28.

E. M. Oblow
C. E. Oliver
S. Petrov
V. Protopopescu
N. S. V. Rao
M. Shah
R. F. Sincovec
CSMD Reports Office
Laboratory Records, ORNL-RC
Document Reference Section
Central Research Library
ORNL Patent Office

EXTERNAL DISTRIBUTION

29-30. Office of Scientific and Technical Information, P. 0. Box 62, Oak Ridge, TN
37831.

31. Office of Assistant Manager for Energy Research and Development, Oak Ridge
Operations, U.S. Department of Energy, P. 0. Box 2008, Oak Ridge, TN 37831.
32-36. Professor V. R. Dasigi, Department of Computer Science and Information
Technology, Sacred Heart University, Fairfield, CT 06432-1 000.

Recognition, SUNY-University at Buffalo, UB Commons, 520 Lee Entrance-Suite 202,
Buffalo, NY 14228-2567.

37. Professor R. K. Srihari, Center for Excellence for Document Analysis and

38. J. Blair, JBX Technologies, 25 Moore Road, Wayland, MA 01778.
39. D. Harman, NIST, Building 225, Room A216, Gaithersburg, MD 20899.
40. J. Prague, ORD, P. 0. Box 4132, Washington, DC 20505.
41. J. Baker, ORD, P. 0. Box 41 32, Washington, DC 20505.
42. B. Glatz, NPIC, P. 0. Box 70967 Southwest Station, Washington, DC 20024-

43. M. Berry, Department of Computer Science, 107 Ayres Hall, University of
0967.

Tennessee, Knoxville, TN 37996-1 301.

31

1

	ABSTRACT
	INTRODUCTION & BACKGROUND
	A MULTI-SENSOR NEURAL NET APPROACH
	PROGRAM COMPONENTS
	3.1 The Lexical Analysis Group
	The Frequency Matrix Generation Group
	3.3 The SVD Group
	Input Generation Group
	3.5 The Other Sensors Group
	3.6 The Miscellaneous Group

	RESULTS
	FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES
	FIGURE
	FIGURE

