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ABSTRACT 

Many automatic text indexing and retrieval methods use a term-document matrix that 
is automatically derived from the text in question. Latent Semantic Indexing is a 
method, recently proposed in the Information Retrieval (IR) literature [Deerwester, et 
al., 901, for approximating a large and sparse term-document matrix with a relatively 
small number of factors, and is based on a solid mathematical foundation. LSI 
appears to be quite useful in the problem of text information retrieval, rather than text 
classification. In this report, we outline a method that attempts to combine the 
strength of the LSI method with that of neural networks, in addressing the problem of 
text classification. In doing so, we also indicate ways to improve performance by 
adding additional “logical sensors” to the neural network, something that is hard to do 
with the LSI method when employed by itself. The various programs that can be used 
in testing the system with TIPSTER data set are described. Preliminary results are 
summarized, but much work remains to be done. 
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1 Introduction & Background 
With explosive growth of multi-media data repositories, rapidly increasing 
connectivity of computer networks and the emergence of and widespread ac- 
cess to the national information infrastructure, there is an urgent need for 
intelligent tools for access, analysis and filtering of multi-media information. 
According to news reports, the white house started receiving tens of thou- 
sands of messages per day through electronic mail soon after announcing its e- 
mail address to the public. Fast classification of such messages into categories 
of contemporary public interest (e.g., health care, taxes, national service, 
etc.) can be vital to the responsiveness of the administration. Significant 
progress has been made in document retrieval, going beyond the traditional 
methods of Boolean and exact keyword matching [Salton, 891 [CACM, 921 
[IEEE Expert, 931 [Computer Journal, 921 [van Rijsbergen, 921. Much work 
has been done in applying probabilistic methods to IR and by represent- 
ing documents as vectors in an n-dimensional space [Turtle and Croft, 921. 
Work in natural language-based methods, while quite impressive, often suf- 
fers from one major drawback - that of scaling up effectively [Smeaton, 921. 
Integrated approaches that combine natural language methods with statisti- 
cal and/or vector-based approaches appear to hold promise, but are relatively 
rare [Jacobs, 931. 

An important first step in supporting automated information retrieval 
and classification is to derive the indexing information automatically. In the 
case of text documents, the conventional practice used to be to employ some 
controlled vocabulary defined by an expert. Instead, most contemporary 
approaches use terms contained in the text document itself, or their lexical or 
semantic variants, directly as indexes into the document. The “vector-based)’ 
approaches view documents as vectors of such terms. Thus, a “library” of 
documents would be a collection of term vectors, or alternately, a term- 
document matrix, where the entries represent the frequency of each term in 

1 



each document. Needless to say, such term-document matrices tend to be 
very sparse and very large. 

Latent Semantic Indexing (LSI) is a method recently developed to capture 
the “latent semantic structure” hidden in the association of terms within 
documents, as indicated in a term-document matrix[Deerwester, et al., 901. 
The large sparse matrix is reduced into three relatively small matrices (one of 
which is simply a diagonal matrix) by singular value decomposition (SVD) 
corresponding to the largest several singular values. The original sparse 
matrix can be approximated by the product of the smaller SVD matrices. 

One advantage of this method is that there are potentially fewer elements 
to deal with after SVD than in the large term-document matrix, that is, 
the SVD version is more efficient with respect to space. However, once the 
fact is considered that the large term-document matrix happens to be very 
sparse, the space efficiency advantage becomes debatable, but there is at 
least one other very significant justification for performing the SVD. It turns 
out that a careful selection of the number of singular values included in the 
SVD, captures the “latent semantic structure” of the collection of documents 
[Deerwester, et al., 901. While the SVD results in only an approximation to 
the original term-document matrix, it is claimed that the approximation 
gives better results than the original! The intuitive reason for this surprising 
anomaly is that the approximate version weeds out insignificant associations 
between terms and documents, and only represents the major associative 
patterns. 

The research reported here represents an effort to go beyond the ad- 
vantages of LSI, by combining its valuable ideas with the powerful pattern- 
matching and learning capabilities of neural networks. A major stumbling 
block in applying neural networks to most IR applications has been that 
the size of a typical IR problem results in impractically large neural net- 
works. Typically, documents to be classified as well as retrieval queries are 
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represented as a set of terms, the size of which is at least in the thousands. 
In such networks there could be hundreds of thousands of connections, not 
to mention the complexity when lateral inhibition is added for a winner- 
takes-all effect, e.g., [Wilkinson and Hingston, 921. Our preliminary results 
in addressing these issues are summarized. 

2 A Multi-Sensor Neural Net Approach 
In part, this work was motivated by the success of the Gene Recognition and 
Analysis Internet Link (GRAIL) system developed at the Oak Ridge National 
Laboratory. GRAIL is a pattern recognition system for identifying protein- 
encoding DNA sequences among anonymous sequences in higher eukaryotes, 
which may span tens to hundreds of “sparse” kilobases [Uberbacher and Mural, 911 
[Xu, et al., 941. A multi-layer feed-forward neural network receives inputs 
from several sensors that measure different characteristics of the signals or 
data sets to be analyzed. The net acts as a classifier and assigns the input 
pattern to a given number of classes. The net is trained using a set of known 
data patterns that are representative of the application domain. In its sim- 
plest form, GRAIL operates with sensors that give signals that are either 
”on” or ”off’, indicating the presence or absence of a particular pattern or 
characteristic. Sensors can also supply “analog” input signals to the integrat- 
ing network. The neural net represents a reliable mechanism to integrate the 
information from multiple sources to form a combined best estimate of the 
true classification decision. The term “sensor” is interpreted in a broad sense. 
It can encompass a real physical sensor device or an algorithm that computes 
a feature of a signal acquired by a physical sensor. The term ”logical sensor” 
is used in the latter context. 

We start with the hypothesis 
appropriate for classification and 

that a GRAIL-like system would be 
filtering of English text documents: 

very 
It is 
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hypothesized that the eventual system, being neural network-based, would 
be capable of integrating in a systematic way existing and new approaches 
as required by the application. The GRAIL-type system can integrate differ- 
ent kinds of sensors, e.g., statistical and syntactic sensors as well as simple 
keyword sensors, and other standard techniques already in use by the an- 
alyst community, such as LSI or other approaches (e.g., [Salton, et al., 941 
and [Damashek, 951). Initially, the system would be capable of reliably clas- 
sifying text documents into different classes, and can be eventually modified 
to retrieve information that matches a specified profile. 

Specifically, in this initial effort, we focused on two main goals. First, 
create input to a neural network that is LSI-based, so that the size of the 
neural net will be practical, and it can be trained without much difficulty. 
Further, a second goal is to see if additional sensors can be added easily to 
the neural net input, to give improved results. The relationship between the 
LSI component and the neural network is symbiotic. The LSI-based input 
makes for the input to the neural network to be of a much smaller size than 
would a long term vector be. Further, LSI is based on a solid mathematical 
theory, which adds strength to the resulting system. For its part, the neural 
network makes it easy to add trainability to the LSI-based method, and also 
makes it possible to integrate other sensors to complement or supplement 
the LSI-based input. 

It has been indicated above that an “LSI-based” input vector is used with 
a neural network to contain its size. This technique needs some elaboration. 
A straightforward, but simple-minded input vector for the neural network 
would be a document represented as a vector of all possible term frequencies. 
Most sets of documents of reasonable size (such as newspaper or magazine 
stories, novels, scientific articles, etc.) comprise thousands of distinct word 
roots, which may be viewed as primitive terms. Thus, the size of the input 
term vector in a simple-minded representation would be a few thousand. LSI 

4 



work suggests a way to represent a document using around a hundred (‘fac- 
tors”, derived from the much longer term vector and the SVD of a (‘reference 
matrix”’. 

Actually, the developers of LSI indicate that a query may be viewed as 
a pseudo-document and may be represented by a vector of a chosen number 
of factors, so it may be placed in the same vector space as regular document 
vectors [Deerwester, et al., 901. This is done as follows. First a reference 
term-document sparse matrix X is derived from the library of documents 
that are of interest. This matrix is split into three matrices by SVD, so that 

X = T.S.D’ 
Here, X is a txd matrix, where t is the numbers of distinct terms (word 

roots) and d is the number of documents in the reference collection. The 
order of T is txk, that of S, which is a diagonal matrix, is kxk, and that of D 
is dxk, where k is the chosen number of factors. (LSI research indicated that 
a choice of k around a hundred is very effective.) Now, the pseudo-document 
vector DQ corresponding to a lxt  query vector Q may be derived simply as: 

In this work, we use this same idea to squash any lxt  document vector 
into a lxk vector that serves as input to the neural network. The only 
care that must be exercised is to  make sure that the reference term-document 
matrix that is used as the starting point is one that ccadepuately” represents 
all concepts of interest. Note that this requirement is no more stringent than 
would be required in the standard LSI approach. 

Figure 1 shows a high level view of how the proposed method works. The 
input to the system is an individual document that needs to be classified into 
one of several categories. Different logical sensors are applied to the docu- 

‘ A  reference matrix  is the term-document matrix of a reference library/collection of 
documents. A reference library is simply the collection of documents that  “adequately” 
represents all concepts of interest. 

DQ = Q.T.S” 
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ment, constituting different kinds of preprocessing to derive salient features. 
One such sensor of interest to this work is one based on the term vector 
representing the input document. This lxt  vector gets transformed into a 
lxk vector, using an SVD-based transformation, as explained above. The 
features derived by the logical sensors constitute input to a neural network 
that has already been trained. The output is an indication of the category 
to which the document belongs. This approach may be adopted to perform 
other related functions, e.g., document filtering or retrieval. 

3 Program Components 

Any serious IR system has to deal with vast amounts of data. Evaluation of 
such a system should involve at least millions of bytes of data (and more re- 
cently, giga- and even tera- bytes). To this end, a license to use the TIPSTER 
data source, distributed by the Linguistic Data Consortium, was obtained. 
The TIPSTER collection consists of about 3 billion bytes of SGML-coded 
text data in compressed form, coming from different sources such as the AP 
News wire, the Wall Street Journal, Ziff-Davis publications, etc., distributed 
on three CD-ROMs. 

In this preliminary effort, the focus was exclusively on the AP news wire 
stories. On the first CD-ROM, aside from a large amount of non-AP news 
wire data, there is one compressed AP file for each day of the year 1989. 
Each such file contained several tens through a few hundreds of news stories 
and analyses, coded in SGML, with the total file size in the hundreds of 
thousands of bytee, up to about a megabyte. The programs work with such 
files, after they are uncompressed. The purpose of the multi-sensor neural 
net is to classify the news stories into one of ten ad hoc categories (the gen- 
eral/miscellaneous category includes any story that does not seem to belong 
to one of the others): 
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1. accidents and natural disasters 

2. business and finance 

3. crime 

4. culture 

5. general/miscellaneous 

6. obituary 

7. politics and government 

8. science and technology 

9. terrorism 

10. weather 

For the documents used for training and testing purposes, the categories 
of the documents as manually determined by a teacher are to be encoded in 
a file named categories. This file is described in more detail later. 

The programs may be divided into a few groups, based on their function. 
They fall broadly into the following groups: lexical analysis, frequency matrix 
generation, SVD group, LSI-based analysis and neural net input generation, 
other sensors and miscellaneous. Each group is described below. A simple 
makefile, called Makef i le ,  is written to capture the appropriate dependencies 
and generate the necessary executables. Figure 2 summarizes the relationship 
between the different groups of programs at a very high level. 
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3.1 The Lexical Analysis Group 

The main purpose of this group of programs is to separate the individual 
news stories in each file, strip off the SGML codes, and also perform simple 
morphological stemming. As.needed, the programs also filter a set of stop 
words out of each story document. 

The details of the SGML coding are available in a document type defini- 
tion available on the CD-ROM for each category of news source. It was found 
to be convenient to write a Lex source file for this purpose, mainly in view 
of the SGML coding. The unix tool Lex takes this source file as input and 
generates a C source program. This C program in turn takes as input a file 
conforming to the lexical description in the Lex source file, and produces the 
required output. There are three different Lex sources files (that are mostly 
similar) written for slightly different purposes: aplex. in2, aplexbasic . i n  
and singlex. in. From these Lex sources, using Makef i l e ,  one can respec- 
tively produce the executables aplex, aplexbasic and singlex. 

All the executables accept an uncompressed AP news wire file containing 
a number of stories for a single day, coded in the predefined SGML format, 
as standard input by redirection. The executable aplex strips the SGML off, 
filters stop words, stems words using a simple Porter stemmer [Porter, 801, 
and writes the words of each individual story into a separate file. These files 
are named with sequential numbers. It expects the number for the first file 
to be specified a file named l ex .  in, and if such a file is not present, the 
starting file number defaults to 1. 

The function of aplexbasic is somewhat simpler. All it does is to strip 
the SGML off, and separate the individual stories into separate files. These 
files are numbered as described above, with the difference that all of them 
contain the extension .basic. For example, the default name for the first file 

'There are other Lex source files, namely, vs j lex .  in, doelex. in and zf l e x .  in, that 
have been written and are available, to serve purposes similar to aplex. in. 
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would be 1. basic. The purpose of singlex is to take a single such file (the 
name of which ends in the .basic extension) as standard input by redirec- 
tion, and produce the corresponding file (without the .basic extension) that 
contains a list of filtered and stemmed words, by output redirection. Thus, 
singlex may be used, for’instance, to produce the file i from 1. basic. 

3.2 The Frequency Matrix Generation Group 

The program merge.c goes through a specified sequence of files that have 
been generated by aplex as above. First, it derives individual term frequency 
distributions for each file, and then merges them into a single summary file. 
In doing so, it keeps track of unique terms, and it uses a simple format to 
squash multiple successive zero entries. (A lone 0 appears by itself, but if 
there are n (i 1) successive zeroes, they appear as nz.) This latter point 
is important considering that the term-document frequencies derived in this 
work were more than 98% sparse! the program asks for the starting and 
ending file numbers, which should be the names of files containing stop-word- 
filtered, stemmed terms. All the files in the specified inclusive range must 
be present. The resulting sparse term-document matrix is written into a file 
whose name is the same as the last file number, except for the extension . i 
that is added. If more files were later added beyond the “ending file” above, 
merge3 has an option so it can continue just with the new files. It creates 
temporary files corresponding to each of the files in the specified range, witli 
extensions . 2  and .I, but destroys all but the very last one of them, as 
indicated above. 

Another program,  convert.^, asks for the name of the sparse term- 
document matrix generated by merge, and performs a conversion on it to 
generate the file matrix that conforms to the SVD functions. The sparse 

3The executables corresponding to a C program file are named the same as the source 
file, without the . c extension. 
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matrix is expected by the SVD functions in a “Compressed Column Storage 
format” [Berry, et al., 931, which is different from the straightforward rep- 
resentation indicated above. This conversion is required because the new 
format cannot be derived until the straightforward sparse matrix represen- 
tation is completely known. The program convert. c is described in more 
detail later in Section 3.4, because it does more than just converting the 
matrix into a new format. 

3.3 The SVD Group 

The bulk of these programs was taken from the SVDPACKC package [Berry, et al., 931. 
The SVDPACKC is a set of C functions for performing the singular value 
decomposition of a matrix, with special attention to sparse matrices, using 
eight different methods. Of all the available methods, the “Single Vector 
Lanczos” method (using an eigensystem adequate for determining a num- 
ber of the largest singular values (and corresponding singular vectors)) was 
chosen, because of its performance. , 

The program, called las2 .  c4, expects two input files: matrix and l a p 2  
The file matrix is the sparse matrix represented in a compressed column 
storage format, ans is derived by convert from the output of merge. The 
other file, 1ap2, specifies the input parameters to las2  on a single line, as 
follows (taken directly from [Berry, et al., 931): 

name lanmax maxprs end1 endr vectors kappa, where 

0 name is a string defining the name of the data set. 

0 Zanmax is an integer specifying the maximum number of Lanczos iter- 
ations allowed. 

4See [Berry, et al., 931 for the naming convention and many other details. 
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0 maxprs is an integer which indicates the number of singular triplets 
desired. 

0 end1 and endr specify the two end points of an interval within which 
all unwanted singular values lie. 

0 vectors indicates if singular values and vectors are needed (TRUE) or 
just singular values (FALSE). 

0 kappa is the relative accuracy of Ritz values acceptable as singular 
values. 

It is important to note that maxprs must not exceed lanmax, and also 
that the algorithm generally ends up computing a number of singular values 
different from maxprs. The number of computed singular values is really 
dictated by Zanmax, which, when not large enough (although it must always 
be at least maxprs), may result in fewer than maxprs singular values. If it 
is large enough, it could sometimes even result in more than maxprs values, 
too. 

The program Zas2, as modified, produces several output files: lav2,lao2, 
T. S and T. SINV. The file lav2 is binary as described in [Berry, et al., 931. 
Apart from some header information, it essentially contains the D matrix 
followed by the T matrix (referring to the end of Section 2). It is important 
to note that the values are written out in column major order, either t values 
or d values per column, k times (as defined in Section 2), and in the order 
corresponding to increasing singular values. Thus, the most important values 
appear at the end. The file la02 is an ASCII file containing, among other 
things, the singular values themselves, and is ignored for our purposes. T. S 
and T.SINV are also binary files and contain some header information first. 
The header consists of two long integers representing the number of singular 
values and vectors written out (which may be different from k) and the 
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number of terms t. In T. S, this header is followed by the product 2'3,  which 
is a txk matrix, in column major order, with the same qualifications as for 
lav2. T. SINV has the product T.S-*, which is also txk, following the header, 
as in T.S. 

In the SVD group, there is another program named mags. c, not supplied 
as a part of SVDPACKC. This program computes the magnitudes of the 
vectors corresponding to the documents in the reference library, and writes 
the number of documents, followed by the magnitudes, one per line, into 
an output file specified by the user (which it asks for). In computing the 
magnitudes, mags uses the T .  S and lav2 files mentioned above.' 

3.4 The LSI-Based Analysis and Neural Net Input 
Generation Group 

The program convert, mentioned in Section 3.2, apart from converting the 
sparse matrix from one format to another, also generates four other executable 
files: neural, LSIcat, input and LSI. The executable logic for these files, 
to be explained later in this section, is specified, respectively, in neural. c, 
LSIcat . c, input. c and LSI . c. The program convert creates temporary 
files, named, %@+3. c, %@+4. c, %@+2. c and %@+I. c, respectively, by adding 
to the these .c  files some data definitions corresponding to the terms in the 
reference library of documents. (It leaves the original . c  files unchanged.) 
It then generates the executables by compiling the temporary files and later 
deleting them. As can be expected, the data about the terms in the reference 
library is directly available in the original term-document matrix specified to 
convert, as indicated at the end of Section 3.2. 

Now, we describe the programs neural, LSIcat, input and LSI, that are 

5Another related program magsrau. c, which is currently not used, was also written, 
which computes the magnitudes of the document vectors straight from the original term- 
document matrix file (whose name it asks for), independent of any SVD. 
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generated by convert. The purpose of neural  is to generate the training 
or test input for the neural network, into a file called NEU.nna6. from a 
sequence of input document files. These input document files should be 
those created by aplexbasic (see Section 3.1). The program asks for the 
numbers of the first and last file to be classified (for training or testing), and 
also for the desired number of “factors”. This latter input value corresponds 
to the number of singular values (and vectors) used in computations, and is 
required for predictable control. This was necessitated by the fact that the 
SVD programs supplied in SVDPACKC do not give the user precise control 
on the number of singular values computed. As long as there are at least 
as many singular values (and vectors) available as the specified number of 
factors, just the right number of the more significant values are used from the 
file T . SINV, which is assumed to be available. This program also assumes the 
availability of a categories file7, which is used to create the training output 
(or reference output for testing). The program also repeatedly generates and 
later deletes a temporary file named %@+3. 

LSIcat can be used to classify a sequence of input document files using 
an LSI-based method, for comparison against the performance of the multi- 
sensor neural network. The LSI approach, as described in [Deerwester, et al., 901, 
was originally intended for document retrieval, rather thhn classification. We 
modified it to do classification as follows. First, the document from the ref- 
erence library that matches an input document best is identified. Next, the 
category of the reference document is looked up in the categories file and 
is reported as the category for the input document in question. 

61n this work, we used a neural network tool named Neuralworks, trademarked by 
Neuralware, Inc. This package requires the training and test file names to end in .ma. 

‘This file is to list the number of the category for each of the document files, in the 
format of the file number (ignored), followed by a tab, followed by the number of the 
category to which the file belongs, one pair per line. This list must be immediately 
preceded by a line starting with a hyphen. 
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The input document files for LSIcat should be those created by aplexbasic 
(see Section 3.1). As with neural, LSIcat also asks for the numbers of the 
first and last file to be classified (for training or testing), and also for the 
desired number of “factors”. It uses the two files T. S and lav2 in comput- 
ing the best matching reference document. Further, the program asks for 
the name of the “document magnitudes” file, that must already have been 
created by the mags program (see Section 3.3). This program repeatedly 
generates and later deletes a temporary file named %9+4. 

The purpose of input is to generate a single input vector ‘for the neu- 
ral network, from a single input document file, which, either is created by 
aplexbasic (see Section 3.1) or is simply some other kind of ASCII file. The 
program asks for the desired number of “factors” to be used from the T. SINV 
file, and also for the name of the input file. This program is currently not 
used much, and needs to be modified for incorporating the category infor- 
mation into the output file it creates, namely SINGLE.OUT. It also generates 
and later deletes a temporary file named %9+2. 

The program LSI can be used to match a single input document file 
(presumably created by aplexbasic (see Section 3.1) or is simply some other 
kind of ASCII file) against all the documents in the reference library. It 
simply computes, using the LSI method in a straightforward manner, the 
cosine values of the angles between the input document vector and the vectors 
of all the reference library documents, and writes these values into a file 
name that it asks for. In this process, it also asks for the name of the 
“document magnitudes file” (as does LSIcat) and also for the desired number 
of “factors”. It uses the right number of factors from the two files T.S 
and lav2 in computing the cosine rankings. At  the end it asks if another 
document file is to be matched. It generates and later deletes a temporary 
file named %(o+i .  

__. , . - . ‘..*. . ,  , ,,,:. z.. ‘,. ._,, . - _ - _  , .., . . 
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3.5 The Other Sensors Group 

The creation of a very simple second sensor to the neural net, with the goal 
mainly being a proof of concept, works as follows. The program gensensor2. c 
can create a program that generates a second input vector (viewed as a second 
sensor) for the neural network. It assumes the existence of the file sensor2. c, 
which represents the executable portion of the second logical sensor for the 
neural net (to be described shortly). It asks for the number of categories, and 
also assumes the existence of as many category profile files as the number of 
categories. These files are supposed to contain a number of keywords* which 
constitute a profile for the respective category. These files are assumed to 
have the names cat#. basic, where # stands for the category number (refer 
to the beginning of Section 3). (The words in the profile files are stemmed 
and written to corresponding files, whose names start with the prefix s added 
to the beginning of the category profile file names.) It also creates a tempo- 
rary file (%(0+5. c by adding data corresponding to the category profiles to the 
logic of the sensor2 . c file, compiles it to create the executable sensor2 and 
then deletes the temporary file. It also uses another temporary file named 
%Q+6. 

The program sensor:! asks for the starting and ending file numbers, which 
define the range of the input document file numbers. These files must have 
been created either by aplex or singlex (see Section 3.1). That is, the input 
files to sensor2 must be files of stop-word-filtered, stemmed words, one per 
line. It creates an output file named NEU.S2, in which each line is simply a 
vector (corresponding to an input document), whose size equals the number 
of categories. The components of the vector represent what fraction of the 
terms in the document correspond to the words in the profile. The degree of 
match for the “general” category is negatively related to the best match for 

‘There must be at least two keywords for each category, except for the “general” 
category, which is supposed to just have any single word. 
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any of the other categories. 
The program neural3. c creates a combined neural net input vector from 

NEU.ma and the NEU.S2 files. Recall, from the preceding description of the 
neural  program, that the NEU. ma file contains LSI-based input vector and 
training output (or test reference) values. It actually asks for the two input 
file names and the desired name for the combined file. The latter file is 
created as the output. 

3.6 The Miscellaneous Group 

This group contains several programs: r e su l t s .  c analyzes the neural net 
output and reports the percentage pf correct results; rantest. c creates sev- 
eral random sets of neural net training and test input pairs from a single 
given file of neural net input vectors; h i s t  ca t .  c gives a simple histogram of 
the distribution of files in each category, as indicated by the categories file; 
etc. 

4 Results 
A major stumbling block in this work was the manual categorization of doc- 
uments for training and testing purposes. The neural network is of a sub- 
stantial size, with more than one hundred input nodes and about ten output 
nodes. Such a network typically requires several thousand training inputs, 
and this requirement increases with the number of hidden units. Manual clas- 
sification of thousands of news stories was extremely time consuming, even 
if it was trivial in a number of cases. Such data are not already available 
with the TIPSTER data set. We could manually categorize only 480 news 
stories, which is what we worked with. Consequently, the following results 
are far from conclusive. We believe that they do, however, point out that 
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the approach is promising, in spite of the fact that the neural net is very 
inadequately trained. 

Of the 480 documents, the first 380 were used as the “reference library”. 
That is the term-document matrix used in all LSI/SVD operations has 380 
columns. The number of SVD “factors” used in this work was 112. The 
neural net inputs created by neural, were also based on this matrix. The 
neural net was a simple feedforward net with back propagation, and used the 
delta rule for learning and the tanh transfer function. It was tested in two 
configurations; one with 112 inputs (just based on LSI alone) and another 
with 112 LSI-based inputs plus another 10 inputs based on simple category 
profiles. Both configurations used 10 output units, one for each category. The 
neural nets that performed best for each configuration were chosen, which 
happened when the single sensor neural net (with just the 112 LSI-based 
inputs) has 9 hidden units, and the other, two sensor neural net (with 122 
inputs) had 10 hidden units. 

When LSI method was used by itself to perform classification on the 100 
documents that are not part of the reference library, there was essentially 
just a single experiment. This was so because, generating the SVD for each 
new reference library was computationally very expensive even when several 
megabytes of main memory was used by the program. The results from the 
LSIcat program, which performed the LSI-based classification were some- 
what surprising. Although the performance of LSI in classifying the known 
library documents was a perfect 100%) the percentage of correct results when 
the 100 new documents were used dropped to 54%. 

We present the results of our neural network experiments in two tables. 
The percentages of correct results shown in the tables represent the peak 
performance that did not get any better with more training. For testing the 
neural nets, inputs were created for all the 480 documents, including a correct 
answer for each case. This “answer” was to be used either for training the 
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Data Set 
No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

No. of 
Iterations 
48K 
16K 
64K 
64K 
32K 
48K 
80K 
48K 
64K 
48K 
48K 
32K 

Percent Correct 
with Test Data 
58 
72 
72 
62 
62 
62 
62 
58 
68 
60 
64 
68 

Percent Correct 
with Training Data 
80.70 
77.67 
76.98 
77.21 
76.05 
76.98 
80.47 
78.14 
77.44 
78.14 
78.84 
76.05 

Table 1: Results of Classification with the Single Sensor Neural Net 

neural net or for comparison, in the case of a testing. The rantest program 
was then used to generate a dozen pairs of files from this set of 480 inputs. 
Each pair of files had a training file and a test file. Each of the dozen pairs 
were generated by a different random distribution of 430 inputs into the 
training file and the other 50 inputs into the test file. The same pairs of data 
sets were used to test both the single sensor neural net and the two sensor 
one. 

Table 1 shows the performance of the 112-input neural net on each of 
the dozen different data sets. In each set, the test file was tested after the 
neural net was trained for anywhere between 16,000 and 64,000 iterations. 
On the test set, the correctness percentage ranged from a minimum of 58% 
to a maximum of 72% for the dozen sets. When the training set itself was 
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Data Set 
No. 

~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

No. of 
Iterations 
48K 
48K 
32K 
64K 
32K 
16K 
32K 
16K 
32K 
32K 
16K 
32K 

Percent Correct 
with Test Data 
62 
70 
76 
64 
64 
66 
66 
62 
70 
58 
64 
72 

Percent Correct 
with Training Data 
85.11 
84.42 
84.19 
83.72 
84.88 
83.26 
84.88 
84.19 
83.49 
83.02 
80.47 
83.02 

Table 2: Results of Classification with the Two Sensor Neural Net 

used as a data set, the performance was between 76.05% to 80.7% correct. 
Table 2 shows the performance of the 122-input neural net on each of the 

dozen different data sets. Again, in each set, the test file was tested after the 
neural net was trained for anywhere between 16,000 and 64,000 iterations. 
On the test set, the correctness percentage ranged from a minimum of 58% to 
a maximum of 76% for the dozen sets. When the training set itself was used 
as a data set, the performance was between 80.47% to 85.11% correct. It may 
be seen that in the case of individual data sets, there was an improvement 
in performance with 10 out of the 12 data sets in the two sensor neural net, 
compared to the single sensor version, with marginal decrease of performance 
in the other two cases. But in one of these two cases (data set 2), the 
superficially better performance of the single sensor neural net decreased a 
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few percent with more training. These anomalies can perhaps be attributed 
to the simple-mindedness of the second sensor used (see Section 3.5). 

We believe that one thing the results conclusively indicate is that the 
neural nets need more training. There is a clear improvement of classification 
results in the neural net approach compared to the LSI-method by itself. And 
the two sensor version, with a very simple-minded second sensor, seems to 
do better in most cases than the single sensor version. 

5 Future Work 

The work is far from complete. Clearly the neural networks need more train- 
ing, and more training requires more data. Automatic tools, as described in 
Section 3, are in place for generating data from AP news wire stories, but 
each of the stories needs to be manually categorized to complete the data. 
Once this is done, different possible neural network architectures need to be 
tried for best performance with each different set of input sensors. 

Other important extension to the work here would be in the area of other 
input sensors. LSI is a simple, yet very powerful technique for information 
representation. However, it is limited by the vocabulary seen so far in the 
reference library.’ One way to address this limitation is to add other sensors 
which are sensitive to newer words and other patterns in the input. The sec- 
ond sensor that was implemented attempted to do that using a very simple 
technique. The slight improvement of results even with such a simple addi- 
tion is very encouraging, adding strength to our original hypothesis that a 
multi-sensor neural network approach would be very effective for information 
classification and retrieval. 

’In our data, the vocabulary from the reference library was rather large - about 10,025 
unique stemmed terms. This set, however, includes “terms” like 1, 100th, $2, 1974, etc., 
which comprise about 5 6 %  of the terms. 
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Natural language (NL) processing techniques hold some promise in this di- 
rection [Schank, et al., 811 [Lewis, et al., 891 [Smeaton, 921 [Lewis, 921. The 
depth of analysis using established NL techniques perhaps needs to be con- 
trolled carefully to optimize performance. Deep NL analysis runs into the 
problem of scaling up well; sensors based on shallower NL processing a la 
[Schank, et al., 811 might provide just the right balance. Krovetz suggests 
an approach sensitive not just to words, but word senses (the classic issue 
of polysemy), which adds more discriminatory power, but requires somewhat 
deeper processing[Krovetz, 901. The LSI approach appears to capture some 
aspects of synonymy to the extent that synonyms co-occur in related docu- 
ments, but perhaps does not offer fine discrimination of the different senses 
of polysemous words. 

The basic idea of the second sensor based on category profiles that was 
used in this work can be strengthened by various means. Instead of creating 
profiles manually, as done in our simple version, profiles could be automati- 
cally generated. One way to generate category profiles automatically is using 
LSI itself. The answer to the question how important is term i to document 
j (or how strongly associated are they) can be used appropriately, when the 
category of document j is already known. However, it is doubtful that this 
technique will add substantial new information to the neural net, that is 
not already contained in the LSI input. Another technique would be to use 
existing methods that suggest significant terms for predefined topics, e.g., 
[Zhou and Dapkus, 951. 

The approach may also be adopted to perform related functions, such as 
document filtering and document rertrieval. The categories may be chosen 
to fit individual interest profiles, and new documents can be identified to fit 
particular profiles. Alternately, the neural net can be set up to accept two 
sets of inputs, one corresponding to a query (viewed as a “pseudo-document7’) 
and the other corresponding to a candidate document, with the output in- 
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dicating a degree of match. The net can be run with each document in the 
collection (from which retrieval is to be made) as a candidate. Those docu- 
ment satisfying predefined retrieval criteria (e.g., the top ten documents, all 
documents exceeding a threshold degree of match, etc.) may be retrieved. 

The SVD programs are very memory intensive. In our experiments, they 
took several megabytes of main memory. At one point, the program ran out 
of main memory, and could only be run by reducing precision from double 
to float. This problem can easily become acute, even with single precision, 
as the size of the term-document matrix increases. As the number of doc- 
uments in the reference library increases, so does the number of terms, and 
consequently, the memory problem becomes doubly more acute. The number 
of factors selected in the SVD also directly affects the memory requirement. 
So, when larger matrices are involved, the application may have to be moved 
to a supercomputing or parallel computing environment. 

On the software engineering front, the components of the research pro- 
totype developed in this work need to be integrated together into a system 
that is easy to use, with an effective user interface. 
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