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Abstract 

The strength and astounding simplicity of certain permanent magnet ma- 

terials allow a wide variety of simple, compact configurations of high field 

strength and quality multipole magnets. Here we analyze the important class 

of iron-free permanent magnet systems for charged particle beam optics. The 

theory of conventional segmented multipole magnets formed from uniformly 

magnetized block magnets placed in  regular arrays about a circular magnet 

aperture is reviewed. Practical multipole configurations resulting are pre- 

sented that are capable of high and intermediate aperture field strengths. A 

new class of elliptical aperture magnets is presented within a model with con- 

tinuously varying magnetization angle. Segmented versions of these magnets 

promise practical high field dipole and quadrupole magnets with an increased 

range of applicability. 

1 



I. INTRODUCTION 

Permanent magnet (PM) lenses for charged particle optics are now recognized in many 

applications as being practical, cost-effective alternatives to conventional electromagnet and 

superconducting magnet lenses [I]. High-quality and high-field PM dipole, quadrupole, and 

sextupole multipole magnets are now in wide use [l]. A fundamental advantage of PM sys- 

tems is that the aperture field strength remains invariant as the linear dimensions of the 

system are scaled [2]. On the other hand, for fixed field strength in conventional magnets, the 

current density in the coils must scale inversely proportional to the linear magnet dimensions. 

Thus, compact, high-gradient PM lenses are attainable in parameter regimes where cooling 

problems can preclude the use of conventional electromagnets. Furthermore, PM systems 

eliminate the additional complexity of external power supplies, control systems, plumbing 

for cooling, etc., needed in conventional magnet systems. The iircreasing1y"lportant sub- 

class of iron-free PM systems are characterized by simple, compact, high field strength and 

quality structures with remarkably simple fringe field properties [2,4]. The applicability of 

linear superposition in such systems renders analytical design tractable, thereby enabling 

scaling laws, design innovations, and physical insights to be readily obtained. Moreover, 

linear superposition allows, if necessary, the insertion of these magnets into conventional 

current dominated magnets and other iron-free PM systems to provide some degree of field 

var i abi 1 i ty. 

As a practical matter, iron-free PM multipole lenses can provide an attractive alternative 

to conventional magnetic lenses in situations where adjustability is not strictly necessary, 

clear beam apertures are moderate (circular aperture radii on the order of 5 centimeters 

or less), and maximum aperture field strengths are well within materials limits. For the 

important cases of dipole and quadrupole lenses, these aperture field limits for currently 

available designs and PM materials are of the order of 1 Tesla for dipoles and 2 Tesla 

for quadrupoles 121. Generally speaking, smaller aperture fields and smaller apertures are 

more economical, provided the aperture is not so small bhat materials tolerances become 

*, . 
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problematic. 

11- MATERIAL PROPERTIES AND THEORETICAL MODEL 

In this section we summarize needed theoretical results and practical material limits that 

are presented in detail in the references [2-41. The reader is encouraged to  refer to those 

references for further information. 

We consider classes of PM materials such as rare-earth compounds of samarium-cobalt 

(SmCo) and compounds of neodymium-iron-boron (NdFeB). For such materials, the three- 

dimensional (3D) field components of the magnetic induction B and the magnetic field H 

are related within the medium as BII = B,. + ~ ~ ~ I I H I I  and BI = p o p I H I  in directions 

parallel (11) and perpendicular (I) to the crystalline axis (the so-called easy-axis) of the PM 

material. Both bere and henceforth MKS units are employed, po = 4a x Vs/Am is 

the permeability of free-space, B,. is the so-called remanent field or intrinsic magnetization 

of the medium, and p11 and p1 are differential permeabilities parallel and perpendicular to 

the easy-axis. Both p11 and pL are approximately unity over a wide range of field values 

(pi1 - 1 - p l  - 1 - 0.02 to 0.05 typical) and tlie material characteristics can be approximated 

by the simple vector relation [a] 

f 
1 

B = B, + PCIK 

where B, is a vector of magnitude B, parallel to the easy-axis in the medium and zero 

outside. Consequently, the fields produced by different pieces of P M  material superimpose 

linearly. This property, together with the strong material strength reflected by remanent 

fields B, that can be as large as 1.35 Tesla and 1.0 Tesla for available NdFeB and SmCo 

materials, respectively [5], allows the construction of simple, compact, high-field multipole 

magnets. 
\ 

As a practical matter, the ideal material behavior described above can be violated if 

poH11 is driven significantly antiparallel to B, [a] .  This can result in nonlinear demagnetizing 



effects that damage the magnet. Such conditions must be avoided in both the operation and 

assembly of a practical design. Also, manufacturing techniques constrain the properties of 

available PM material. Currently, PM material is available in blocks of specific and special 

geometric shapes, but the smallest linear dimension of a block cannot be larger than a 

few centimeters. Further, blocks are uniformly magnetized (fixed easy-axis orientation and 

remanent field strength BT). Large magnet blocks can be assembled from smaller blocks, 

but high PM materials cost and labor associated with making and handling a large number 

of individual components can lead to expensive magnet systems. Cost effective PM devices 

need a minimal number of distinct magnet blocks and have small magnet volume due to high 

material cost. Outside of high radiation environments, properly aged PM material exhibits 

good stability in time. The magnet strength is observed to undergo a slow logarithmic decay 

in time that is insignificant for many applications [6]. PM material is also temperature 

sensitive. The maximum temperature T,,, of the medium should be kept a bit below 

the Curie temperature T, to avoid magnet damage (T,,, - 100°C and T, - 300°C for 

NdFeB, and T,,, - 250°C and T, - 700°C for SmCo), precluding all but moderate vacuum 

baking. Also significant temperature coefficients ( - -O.l%/"C and - -O.O4%/"C variation 

in B, for NdFeB and SmCo, respectively) may necessitate operation in a stable temperature 

environment, and the local temperature of a magnet should not be varied rapidly in space or 

time. Finally, oriented ferrites have significantly lower cost and qualitatively similar material 

properties to those outlined above. However, a weaker maximum remanent field strength of 

B, - 0.42 Tesla limits these materials to low-field applications in  iron-free designs. Moreover, 

higher differential permeabilities associated with oriented ferrites (pll - 1 - p l  - 1 - 0.1 

typical) render simple analytic design of iron-free magnets more approximate, but does 

not complicate the design of iron-dominated magnets. Also, higher temperature coefficients 

(- -0.3%/"C variation in B, typical) may necessitate greater care in the control of operating 

temperature. 

The Maxwell equations V x H = 0 and V B = 0, together with the materials equation 

(1) describe the 3D fields of the PM system. The curl equation and Eq. (1) can be combined 

4 
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as V x B = V x B,, where pd = V x B, can be interpreted as an effective "current 

density" that characterizes the PM material. Thus, in the absence of iron, the fields produced 

by PM material can be thought of simply as resulting from an imprinted current density 

poj = V x B, in vacuum [2]. (Similar arguments can be used to show that H can be 

regarded as being due to an imprinted "charge density" -V - B,.) Furthermore, it is clear 

from the field equations that if all coordinates are scaled by a, then B remains unchanged. 

This invariance proves the important property that the field strength of a PM system is 

independent of the actual physical size of the system, thereby allowing the possibility of 

very high gradient structures. 

An iron-free PM multipole magnet can typically be regarded as an axial extrusion of a 

transverse magnetic structure over an axial length e. The applicability of linear superposition 

allows one to derive a rather remarkable property of the fringe fields of such a system [a]. 
We proceed as follows: Let z and XI be axial and transverse coordinates, and let G be 

any 3D field component of the system. Make an infinite axial extrusion of the magnetic 

structure and denote G2d as the field component G in this two-dimensional (2D) limit. 

Referring to Fig. l(a), we divide the magnet at z = 0 into two semi-infinite sections. By 

symmetry, t he  field components G+(xl ,  z )  and G-(xl, z )  due to the sections with positive 

and negative axial coordinates are related as G+(xl ,  z )  = G-(xl,  -z) ,  and their sum must 

equal the field component in the 2D limit, i.e., G+(xl,  z )  + G-(xl, z )  = G 2 d ( ~ l ) .  The fields 

deep within the semi-infinite magnets approach the limiting 2D values for Izl > lo. with l o -  

chosen sufficiently large. Then it follows immediately that J 2 0 d z  G*(xl ,  z )  = i ?oG 'd (~ l ) .  

In addition, the value of G' at the entry planes of the semi-infinite magnets are exactly 

half the 2D limit value, i.e., G*(xl ,z  = 0) = G2d(~ l ) / i ) .  Regard the physical magnet of 

length as a linear superposition of two semi-infinite magnets, magnet A and magnet B, as 

sketched in Fig. l(b). Magnet A is an axial extrusion of the transverse magnet structure of 

the physical magnet, while magnet B is a translated axial extrusion of that structure with 

all remanent fields reversed. The remarkable result 
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dz G(x1, z )  = l G Z d ( x ~ )  L 
then follows immediately from linear superposition of the field integrals of the semi-infinite 

magnets obtained from the l o  + 00 limit of the previous integrals. 

For any axially extruded iron-free PM magnet system, Eq. (2) immediately shows that 

the effective length of any field component defined in terms of the normalized axial integral 

(1l-t) J_"dz - - of the field component is equal to the physical axial length of the magnet, 

and also that the axial integral of any field quantity vanishes if that field quantity is zero 

in the 2D limit. Therefore, the design of iron-free PM magnet systems can be effectively 

carried out within a transverse 2D model since results obtained are concretely related to the 

physical 3D systems of interest. Furthermore, within the 2D model, powerful analytic tools 

ease the development of physical insight. In the authors opinions, the utility of 2D modeling 

should not be underestimated. Henceforth, all analysis will refer to axially extruded iron- 

free PM systems. Finally, Eq. (2) and the consequences immediately following are not 

generally true for magnet systems with iron (PM or otherwise) or for conventional current 

magnets formed from macroscopic current loops. This follows because the simple linear 

superposition arguments leading to Eq. (2) are not valid in the presence of iron due to 

changing boundary conditions or in the presence of macroscopic current loops since such 

loops cannot be regarded as axially extruded structures due to the ends. However, Eq. (2) 

also remains valid if both the 2D and 3D fields are calculated in the presence of a sufficiently 

long axial iron shell of arbitrary transverse cross-section that surrounds the PM material. 

For a PM system that is sufficiently long in the axial :-direction (e >> transverse magnet 

extent), the fields near the axial ( z  = 0) midplane are approximately transverse 2D fields. 

Alternatively, it follows from Eq. (2) that the normalized axial integrals (l/e) J_",dz - 
of the 3D field components are identically the 2D limit field components. We now present 

theoretical formulae for the calculation of 2D fields produced by PM material without no- 

tationally distinguishing between these cases. Results ma; be interpreted as preferred. 

In vacuum regions, the 2D field components B, and By along the Cartesian 5- and y- 

6 



coordinate axes can be derived from a magnetic scalar potential 4 or the axial component 

of the vector potential A as 

These can be considered as the Cauchy-Riemann conditions for the complex potential E G 

A + ipod of an analytical function of the complex variable 2 = x + iy. It follows immediately 

that E = B, - iBy = idE/dz is also an analytical function of z in vacuum regions and the 

power of the theory of an analytical function of a complex variable can be applied [a]. Here 

and henceforth, underlines denote complex variables, e.g., = B, + iBy,  etc., i = G, 
and an asterisk (*) denotes complex conjugation. The complex coordinate 2 = x+ iy should 

not be confused with the axial coordinate z, and it is often convenient to employ the polar 

form 2 = reie, where T is the radius and 8 is the azimuthal angle. 

The 2D field of a current filament at  location g' = x'+iy' is given by = (p0/27ri)I/(g- 

- 2'). Since the fields produced by PM material can be thought of as arising from an effective 

current density poj = V x B,. in vacuum, we may superimpose the fields due to the z- 

component effective current filaments p0jz = dB,.,/dz - dB,.,/dy to express the 2D field 

exterior to the medium as [2] 

Without restriction on the local remanent field B, = B,, + iB,, of the magnet(s), this 

formula can be expressed as [2] 

Equation (4) is used extensively in the analysis of 2D fields from iron-free PM systems. 

The important easy axis rotation theorem is an immediate consequence of Eq. (4). This 

theorem can be stated as follows [2]. If in  an iron-free. 2D PM system all easy-axes are 

rotated by an angle +y, then the local magnetic field outside the PM media rotates by an 

angle -7, without change in amplitude. 
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v If all P M  material is contained within an annular region of inner radius r; and outer 

radius sr;, with s > 1, then Eq. (4) can be expanded within the interior (121 < r;) and 

exterior (121 > sr;) regions to obtain [2] 

. 

(5) 

where 

(6) 
n w ( n )  /& & B,kI 

Ln = p S 1  27T - 

is a complex, 2D multipole expansion coefficient. Here, 121 E and sgn(n) denotes the 

sign of the integer n. Note that interior multipole expansion terms are labeled by positive 

integer n, whereas exterior terms are labeled by negative integer n. Terms labeled by n 

correspond to 2(nl-pole multipole field harmonics in 2D. For example, b, corresponds to 

the interior dipole moments, b2 the interior quadrupole moments, h the interior sextupole 

moments, etc. 

Consistent with the constraints of commercially available material, we analyze the case 

of systems constructed from uniformly magnetized YM blocks. For a single such block 

with remanent field magnitude B, and an easy-axis that makes an angle /3 with the z-axis, 

l3, &ei@ is constant within the block and can be taken outside the integral over the block 

area in Eq. (6). Then integrating once over x, and then once over y and combining with the 

previous expression, one can obtain the multipole coefficients in several equivalent forms as 

- [2,4] 

Here, $dx 

block. 

a,nd $&* are positive sense line integrals around the perimeter of the 

For a system of uniformly magnetized PM blocks, linear superposition of the fields due 

to individual blocks as given by Eqs. (5) and (7) obtains the field of the assembly. It is 

often the case that the geometric location of a magnet block is given as a physical rotation 

8 



of a reference block by an angle a about the origin. For such a block with an easy-axis 

that makes an angle ,f3 + 7 with the x-axis (after rotation), if follows from Eq. (6) that the 

multipole coefficient of the block is related to  the reference block as [4] 

where bn(0, 0) denotes the multipole coefficient of the reference block. 

In practical PM systems, it can be necessary to compensate for construction and ma- 

terial errors to achieve required field tolerances. Typically, tolerances on machining and 

mechanically positioning PM blocks ( f l  mil possible) are such that the dominant source of 

field errors are associated with material errors in the PM medium. The most significant ma- 

terial errors of a uniformly magnetized PM block are errors in the angular orientation of the 

easy-axis (52. typical) and in the remanent field strength (&2% typical) [6,7]. Such errors 

typically dominate errors due to PM nonlinearities, etc. There are many possible methods 

to compensate for these material errors. Included among them are positioning small shim 

magnets, grinding sections of magnet blocks, sorting the magnet blocks into groups with 

compensating errors, and the introduction of small, movable thin strips of soft steel. But 

often the most attractive method is to tune the errors by making small changes in the posi- 

tions of individual magnet blocks. For this purpose, and for estimating expected field errors, 

we summarize first-order perturbation effects for a uniformly magnetized magnet block. Let 

SB, and Sp be perturbations in the remanent field magnitude and easy-axis angle of the 

block, Sz = Sz + iSy be a perturbed linear displacement of the block by Sz and Sy along 

the z- and y-directions with B, fixed in the block, and Sa be a perturbed angular rotation 

of the block about the origin with l3, fixed in the block. Then the corresponding first-order 

perturbations Sbn on the unperturbed block multipole coefficient 4, are easily obtained from 

Eq. (7) as [4] 

I '  1 

Note that the perturbed block displacement SZ = Sr + iSy causes a cascade of higher 
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order multipoles into lower order multipoles as when the coordinate center of the multipole 

expansion is changed. 

111. MULTIPOLE MAGNETS WITH CONTINUOUS EASY-AXIS 

ORIENTATION 

When designing PM multipole magnets, we consider configurations of magnets that max- 

imize one (or several) fundamental interior multipole coefficients and eliminate or hold all 

other interior multipole terms (error fields) and contaminating external fields to acceptable 

magnitudes. Continuous models where the PM material fills a region and has a continu- 

ously varying easy-axis angle and fixed remanent field magnitude allow one to determine 

geometries that ideally meet these requirements [2]. Such continuous magnets cannot be 

constructed due to material fabrication limits, but nevertheless, continuous models provide 

a guide to constructing practical segmented magnets to be discussed. Furthermore, they 

provide simple scaling relations approximately valid for practical segmented magnets, and 

thereby provide a convenient tool to determine regimes of applicability, etc. Here we present 

a continuous model based on an elliptically shaped distribution of PM material [SI. 

Consider the geometry illustrated in Fig. 2, where the PM material is contained within 

a region bounded by an inner ellipse with major and minor radii a and b aligned along the 

z- and y-axes (;.e., x 2 / u 2  + y2/b2 = 1 with a 2 b)  and a nested outer ellipse with major and 

minor radii scaled by a factor s > 1. We choose the remanent field specified by 

in the PM material. Here, B, is the constant (real) magnitude of the remanent field, N 

a positive integer, p = const is a real phase-factor that sets the reference angle of the 

remanent field, and the angular variable ~ is related to the azimuthal angle 8 by tan8 = 

( b / a )  tan 4. This corresponds to a magnetization constant in magnitude and varying in 

angular orientation along each radial vector emanating from the origin 2 = 0. Throughout 
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the entire elliptical regions interior to the aperture (z2/u2 + y 2 / b 2  < 1) and exterior to the 

magnet ( z2 /a2  + y2/b2 > s2), the field resulting from this configuration can be expressed as 

181 
I 

, n - 1  

where denotes a restricted sum carried out over a cascade of nonvanishing terms labeled 

by positive n for the interior solution and negative n for the exterior solution, 

is a dimensionless amplitude, and (:) is a binomial coefficient defined for integer m (positive, 

negative, or zero) and positive integer p as 

For the interior solution, the restricted sum is over the finite even cascade n = 2, 4, 6, . . ., 
N for N even, and the finite odd cascade n = 1, 3, 5, . . ., N for N odd. For the exterior 

solution, the sum is over the infinite cascade n = - ( N  + a), -(N + 4), - (N + 6), . . ., 00 

for both even and odd N .  For the special case of n = 1 the limit n -+ 1 should be taken, 

effectively replacing l / (n  - 1)(1 - l/sn-')ln=l -+ I n s  in  Eq. (11). This and other similar 

replacements are implicit in all formulae that follow. 

For the special cases of N = 1 and N = 2, Eq. (11) leads to single term field solutions 

interior to the aperture corresponding to pure dipole and quadrupole fields, respectively. 

For N = 1 the interior dipole field is uniform within the aperture and given by 

- B* = B,eia .Fl[a/b] Ins, (13) 

while the field outside the magnet has external sextupole ( n  = -3), 10-pole ( n  = - 5 ) ,  . . 
terms. Similarly, for N = 2 the interior quadrupole field is given by 
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while the field outside the magnet has external octupole (n = -4), 12-pole (n  = -6) ,  . . . 
terms. Note that of the quadrupole field increases linearly within the aperture with 

distance from = 0, and the maximum field magnitude is at the farthest aperture extent at 

- z = fa. Higher order N 2 3 with a # b will necessarily yield cascades of lower-order field 

components within the aperture and higher-order field components outside the aperture. 

For example, N = 3 will yield internal sextupole and dipole field components and external 

10-pole, 12-pole, . . . field components. For the special case of a circular magnet with a = b, 

all interior and exterior field components in Eq. (1 1) vanish except the fundamental n = N 

term, yielding a pure 2N-pole field interior to the aperture with 

and exactly zero field exterior to the magnet. This is the familiar result for a perfect circular 

aperture multipole magnet obtained in ref. [2]. 

Note from Eq. (11) that the aperture field as measured by at the maximum aperture 

extent at z = f a  is independent of the absolute size of the system and the same s-dependent 

factor (1 - l/s”-’)/(N - 1) appears in both circular (a  = b)  and elliptical ( a  > b)  dipole 

( N  + 1) and quadrupole ( N  = 2) magnets. It follows that an “equivalent” elliptical dipole 

or quadrupole magnet with the same remanent field magnitude B, and magnet surface scale 

factor s as a circular ( a  = b)  dipole or quadrupole magnet has a larger aperture field for 

ellipticities a/b where the amplitude satisfies FN[a/b] > FN[U = b] = N and vice-versa when 

F N [ U / b ]  < N .  

The dipole amplitude Fl[a/b]  = 4 ( ~ / b ) / [ l + ( a / b ) ] ~  illustrated in Fig. 3(a) has a maximum 

value of unity at  a / b  = 1 and decreases monotonically wi th  increasing a/b.  Since Fl[a/b] < 
F1[l] = 1 for all ellipticities a / b  > 1, magnitude of the constant dipole field within the 

elliptical aperture magnet ( a  > b)  will be smaller than an “equivalent” circular dipole magnet 

( a  = 13) with the same B, and s by the factor G [ a / b ]  < 1. On the other hand, the quadrupole 
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amplitude Fz[a/b] = 1 6 ( ~ / b ) ~ / [ 1 +  (u/b)l3 illustrated in Fig. 3(b) is greater than the circular 

limit (u = b) value of F2[1] = 2 over a range of ellipticities 1 < a/b < 2 + f i  -N 4.236. 

Thus over this wide range of ellipticities, we find the surprising fact that the aperture 

field amplitude IFIz=*a - of an elliptical aperture quadrupole magnet (a  > b)  will be larger 

than an “equivalent” circular quadrupole magnet ( a  = b )  by the factor F’[a/b]/2 > 1. 

Conversely, for a / b  > 2 + 6, F2[u/b] < 2 and F2 is a monotonic decreasing function 

of a/b. Thus over this highly elliptical range, elliptical quadrupole magnets will have a 

weaker maximum field strength than equivalent circular magnets. Note that &[a/b] has a 

maximum value of F2 = 64/27 N 2.37 at a / b  = 2, and therefore the maximum quadrupole 

field of the elliptical magnet is Ig(,=*a - li 2.378,(1 - l/s) rather than the familiar value of 

IFl,.=*a = 2B,.(1 - l/s) for the circular magnet. 

IV. SEGMENTED MULTIPOLE MAGNETS 

So-called segmented multipole magnets are constructed from regular arrays of uniformly 

magnetized blocks of PM material and can therefore be built with commercially available 

materials. A variety of practical segmented configurations can be obtained by discretiz- 

ing a continuous model [2,3]. For fine discretizations these generally result in magnets 

with field strength and quality less than, but approaching the continuous model. Here we 

summarize results obtained from segmenting the continuous elliptical magnet model in the 

circular limit a = b = r;. Several practical multipole configurations obtained are presented. 

More complicated results with qualitatively similar features follow from.-the segmentation 

of the continuous elliptical magnet with a # b [8]. Highly elliptical segmented dipole and 

quadrupole magnets appear attainable with good field quality and aperture field strengths 

on the same order as, or even stronger than segmented circular aperture magnets. These 

magnets promise to increase the range of applicability of iron-free PM systems in  situations 

where an extended field region is only needed along one transverse dirnension of the magnet 

aperture. In such situations, elliptical magnets can result i n  significant savings in magnet 
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volume, possibly offsetting the increased cost associated with their greater complexity. Ellip 

tical magnets will also have a decreased axial fringe field in comparison to circular magnets 

and may prove advantageous in applications with severe space limitations. 

Simple segmented magnets with a fundamental field harmonic N and circular clear- 

bore apertures can be formed from A4 > N magnet blocks of identical geometric shape. 

Individual magnet blocks are labeled with the index j = 1,2,.-. ,M. The j t h  block is 

located by rotating a reference block by an angle 

27r 
M aj = - ( j  - 1) + ACX 

about the origin 2 = 0. Here, A a  = const is an arbitrary segmentation phase. The magnet 

blocks are uniformly magnetized, all with a common remanent field strength B, = const 

and the easy-axis of the j t h  block makes an angle /? + -yj with the z-axis, where /? is the 

easy-axis angle of the reference block and 

This j t h  block easy-axis angle corresponds to the angular orientation of the continuous 

model at the azimuthal angle 8 = aj {for a = b Eq. (10) becomes B, [z] = B,ei[Pf(Nfl)e]}. 

Note that from one block to the next, the easy-axis advances by an angle of ( N  + 1)2n/M 

in the x - y coordinate system, and by an angle of N 2 ~ / h 4  in a coordinate system of fixed 

orientation in each magnet block. Superimposing the fields due to individual blocks as 

given by Eqs. (5) and (8) and summing the resulting geometric series, one can express the 

unperturbed multipole field of the segmented magnet as [2,4] 

where bn(O, 0) is the multipole coefficient of the reference block, and n satisfies the selection 

rules 

n = N f v M ,  
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where v = 0, 1,2,3, - - -, and the + sign applies to the interior ( r  < ri) solution and the - 
sign applies to the exterior ( r  > sq) solution. The interior field described by Eqs. (18) and 

(19) has a fundamental term Mh(0,O)-  ZN-l , and the first interior error field component 

is the term M ~ I ~ + ~ ( O ,  O)e-'MsagN-l+M. For reasonably large M and appropriately shaped 

blocks this interior expansion will be dominated by the fundamental term, and the interior 

error field terms with n = N + vM and v 2 1 have high-order radial powers and will 

decrease rapidly in magnitude with decreasing r within the aperture. Also, for most usual 

parameters the exterior field is high-order and shielding should not be necessary for most 

applications. The intrinsic high-n interior error terms allowed by the selection rule (19) can 

be controlled by using a sufficiently large aperture, and as a practical matter, lower-harmonic 

interior error fields resulting from construction and inaterials errors will typically Be more 

troublesome. Analogously to Eq. (18), the multipole expansion of the first-order error field 

can be expressed as [4] 

where the sum is over positive/negative integer n for the interior/exterior expansions, and 

SB,j, Spj, Saj, and Sgj are perturbations of the j th  block defined with respect to the reference 

block. This equation can be used both to evaluate expected field errors and to determine 

changes in block positions for their correction. 

Explicit formulae for the reference block multipole coefficients L,(O, 0 )  are readily calcu- 

lated for a variety of geometries using Eq. (7). The simple geometries illustrated in Fig. 4 

with circular, rectangular, and trapezoidal block shapes are  practically useful and lead to 

the following expressions [2,4] 

Trapezoidal Block, 

where Im[. . -3 denotes the imaginary part of ' . -, i.e.. Im[xTiy] = y.  All blocks are centered as 

indicated on the x-axis, are inscribed within the annular region r; 5 r 5 sr, with s > 1. and 
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subtend a angular half-width of T about the origin. Note that T and s are not independent 

for the circular block, i.e., the rod radius r, satisfies r C / q  = s inr / ( l  - s inr )  = (s - 1)/2. 

Also, the 5- and y-widths of the rectangular block are l, = ri(s - 1) and ly = 2ri tan r. For 

the special case of n = 1, the limit n + 1 is taken in the rectangular and trapezoidal block 

expressions. 

Cost effective segmented multipole magnets achieve good field quality and high aperture 

fields with a minimal volume of P M  material (except for ferrites, the medium is expensive) 

and have a small number of distinct magnet pieces of simple shape to control costs associated 

with making and assembling a large number of parts. As a general rule, the field strength 

given by the continuous easy-axis model [see Eq. (15) with a = ri] provides an upper bound 

to the achievable field strength of a segmented magnet with PM material confined within the 

annular region r; 5 r 5 sr;. The better the segmented magnet approximates the symmetry 

of the continuous model, and the more the PM material fills the annular region, the better 

the field quality and the larger the aperture field strength of the magnet will be. 
. I  

The reference block multipole expressions (21) together with Eqs. (16)-(20) are straight- 

forward to apply to develop and analyze the fields from a variety of practical multipole 

magnets [a]. Several representative quadrupole magnets ( N  = 2) are presented in Fig. 5. 

Arrows indicate the direction of the magnetization in each magnet piece and a remanent 

field phase of ,B = 3 ~ / 2  is chosen so the principal axes of the quadrupole field align with 

the x- and y-coordinate axes and dB,/dx > 0. In Fig. 5(a) an M = 8 segment square-block 

quadrupole needing only one distinct magnet piece is shown for a block half angular width 

of 7 = 0.8 x ~ / 8  and a segmentation phase of Acu = 0. As drawn, this magnet will have 

a fundamental aperture field strength at r = r; of B, x 0.456. In Fig. 5(b) an M = 16 

segment trapezoidal-block magnet is shown with 7 = T / M  for maximum magnet packing 

and a segmentation phase of ACY = x / M ,  so only 4 distinct magnet pieces are needed (rather 

than 5 with Aa = 0). As drawn, this magnet will have a higher aperture field strength of 

B, x 0.937. 

Properties of the magnets in Fig. 5 along with numerous other practical multipole mag- 
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nets are summarized in Tables 1-111. Magnets obtained from square (e, = ty),  rectangular 

(ez # ty), and trapezoidal blocks are each tabulated for dipole ( N  = l), quadrupole ( N  = 2), 

and sextupole ( N  = 3) configurations. Included for each magnet type is a scaled expression 

for the interior ( r  < r;) multipole field expansion (18) with magnet block parameters given in 

terms of the half-angular width r of each block and (for rectangular and trapezoidal blocks) 

the outer surface scaling factor s. For each specific configuration with fundamental harmonic 

N and M magnet blocks, the following are tabulated: the number of distinct magnet types 

needed for the indicated remanent field and segmentation phases p and Aa; an expression 

for the field amplitude of the fundamental harmonic at the aperture radius r = r;; and an 

upper bound for the amplitude. Only economical configurations leading to a minimal num- 

ber of distinct magnet blocks are tabulated. The fundamental field amplitude is given in 

terms of the remanent field magnitude B,, the block half-angular width T (0 5 T 5 7r/M), 

and (for rectangular and trapezoidal blocks) the outer surface scaling factor s (s 2 1) .  The 

maximum field amplitudes correspond to block half-angular widths of T = R / M  (;.e., adja- 

cent blocks just touch), except for several small A4 trapezoidal block configurations marked 

with os, where the indicated maxima occur T a bit less then the geometric limit 7 = 7r/M. 

For simplicity, the maximum amplitudes of the rectangular block configurations in Table I1 

are given in the infinite block limit with s m. Achievable field magnitudes with finite s 

will be somewhat less than these limiting values. 

“ 0  

Tables 1-111 summarize a large number of configurations leading to practical multipole 

magnets. Various design possibilities can be rapidly evaluated with the information pro- 

vided. Limiting field strengths, components needed, and intrinsic field errors are all easily 

determined. Due to the independence of the aperture ( r  = ri) field harmonics on the physi- 

cal size of the magnets, note that numerous compact, high gradient structures are possible. 

Also, the amplitude of intrinsic field errors due to the harmonics N + VM with u 2 1 de- 

crease rapidly within the aperture due to the ( r / ~ - ; ) ” ~  factors, indicating good intrinsic field 

quality within a so-called “good-field” radius that will be close to the aperture radius. 

Several useful observations pertaining to Tables 1-111 can be made. For given values of 
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s, M, and B,, the maximum field strength of the trapezoidal configurations, which better 

approximate circular symmetry, are larger than for the square or rectangular block configu- 

rations. Thus, for a given aperture field strength, a trapezoidal configuration will always be 

more compact than square or rectangular configurations. Also, trapezoidal configurations 

are capable of achieving higher aperture fields, and for large M approach the continuous 

limit field strength given by Eq. (15) with a = ri [2]. However, since PM material is generally 

produced in rectangular blocks which can be cut into specific shapes, square and rectangu- 

lar magnet blocks can result in little material waste in comparison to trapezoidal blocks, 

and therefore will frequently prove to be more economical. Thus, square or rectangular 

block configurations are more attractive for low aperture fields, whereas for high fields or 

in situations with severe space limitations, trapezoidal block configurations are generally 

appropriate. For a given block type and fundamental harmonic N ,  more magnet blocks M 

will yield better intrinsic field quality. For rectangular and trapezoidal blocks, higher M will 

also result in larger aperture fields, whereas for square blocks larger field strengths will be 

obtained for small or intermediate M due to decreasing square magnet size with increasing 

M. Finally, for rectangular and trapezoidal configurations, one finds that for any value of 

the magnet surface scaling factor s that the first error field harmonic N + M can be made to 

vanish through an appropriate choice of block half-angular width 7, thereby increasing the 

intrinsic field quality [2]. This value of T will be slightly less than T = r / M ,  corresponding 

to small gaps between neighboring blocks. 

Multipole magnets can also be produced from arrays of circular magnet blocks with a 

common radius and remanent field strength, The advantage of such structures are that only 

a single magnet type is necessary for any fundamental harmonic, since any magnetization 

angle can be obtained by rotating a block about its axis. However, significant amounts of PM 

material will be lost when fabricating circular rods and only modest aperture field strengths 

will be achievable, rendering such configuratioxis attractive only for low field strengths or 

perhaps for purposes of error field tuning of other magnet arrays. Employing the same 

procedures and notation as above, the multipole expansion of a rod magnet array is given 



where n = N + vM. Excepting tuning applications, it will be advantageous to employ con- 

figurations with as many rods M as possible to achieve the required aperture field strength 

B,(MN/2) sin2(T)(1 -sin T ) ~ - ’  with T approaching the limiting value T = r / M ,  and thereby 

minimize the waste of PM material and provide higher field quality. 

As a practical matter, nonlinear self-demagnetization effects should be evaluated before 

a particular configuration is deemed practical. The threshold for such effects depends on 

the particular P M  material employed. Generally, demagnetization effects will be an issue 

in magnet blocks where the applied field poH is driven significantly antiparallel to the 

remanent field B,. Avoiding such material thresholds can limit the achievable magnet field 

strength. For example, due to the Ins factors in the dipole magnet strengths in Table 

111, one might naively conclude that arbitrarily large dipole fields are possible by letting 

magnet surface scaling factor s become large. However, the constant dipole field within 

the aperture will be antiparallel (or nearly so) to B, near the aperture surface of at least 

one magnet block. Thus if a PM material is used where the onset of demagnetizing effects 

occurs on entry to  the “third quadrant” of the BII(HII) material characteristics curve (Le., at 

, U ~ H I I  = -El,), then magnet sizes must be chosen such that the dipole field strength does not 

exceed B,. Detailed evaluation of demagnetization effects requires calculation of the fields 

within individual magnet blocks and is beyond the scope of this paper. Calculations of such 

interior fields must be done with great care if discrete numerical methods are employed, but 

fortunately, analytical methods can be employed to exactly perform the needed evaluations. 

Finally, in situations where high field quality is desired, it will often be necessary to 

compensate for material errors. As an illustrative example, we consider an M = 8 segment 

square block quadrupole ( N  = 2) magnet [see Fig. 5(a)]. The block half-angular width 

is taken to be 7 = 0.86 x 7i/S radians, corresponding to a 0.500 Tesla field strength at 
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the aperture radius r = ri, and the first intrinsic error field harmonic is n = 10 with an 

amplitude of 3-05’36 of the fundamental at the aperture radius. This leading order intrinsic 

error harmonic will have an amplitude of less than 0.2% of the fundamental within a good 

field radius of r = 0.7r;, indicating good intrinsic field quality. Magnet blocks are assumed 

to have uniformly distributed errors in easy-axis angle (f2’) and remanent field strength 

(f2%). Mechanical errors are neglected and it is found from Eq. (20) that low-n error 

field harmonics result and the leading-order rms amplitudes of the first few harmonics are 

0.56, 0.82, 0.89, 0.84, 0.72, 0.58, 0.42, and 0.27 percent of the unperturbed fundamental 

at the aperture radius for n = 1, 2, 3, - - -  8, respectively. For this A4 = 8 square block 

quadrupole, these low-harmonic field errors can be tuned by shifting the radial positions of 

individual magnet blocks. One possible procedure is as follows: Since both the magnitude 

and phase errors in the fundamental cannot be simultaneously tuned by simple radial block 

movements [see Eq. (20)], all blocks are first moved radially’in or out an equal distance 

until the fundamental has the correct magnitude in the presence of magnet errors. Then 

individual radial perturbations are found for each block about this tuned aperture radius 

[;.e., Sgj = Szj G Srj in the reference block position indicated in Fig. 4(b)] to zero the n = 3 

and n = 4 error field harmonics to first-order, subject to the constraint that xgl Srj  = 0, 

so the fundamental harmonic remains unchanged by the radial perturbations. It is found 

that these eight perturbations in radial block location are sufficient to eliminate the n = 3, 

4 and 5 harmonics to first-order for all possible errors. Appropriate perturbations { S r j }  

are straightforward to calculate from Eq. (20) for any particular set of magnet block errors 

using a singular value decomposition. One finds that the leading-order rms amplitudes of 

the field errors at the untuned aperture radius T- = r, are 0.38 percent of the fundamenta! 

for n = 1, 0 for n = 3, 4: and 5 ,  and 0.29, 0.39, and 0.25 percent of the fundamental for 

n = 6, 7, and 8. Furthermore, note that the magnitude of the total n = 2 quadrupole 

harmonic is correct by construction, but will in general have a phase error. After this 

tuning of individual radial block locations, the coordinate center can be translated a small 

distance to eliminate any dipole field component, and then these translated coordinate axes 



can be rotated about their center to correct any phase error in the fundamental quadrupole 

harmonic as measured within the new coordinate system. This procedure will leave the 

magnitude of the quadrupole field component unchanged to second-order in the translation. 

As measured in this new coordinate system, the leading-order field errors are zero for n = 1, 

2, 3, and 4, and the rms aperture amplitudes are 0.01, 0.28, 0.39 and 0.25 percent of the 

fundamental for n = 5, 6, 7, and 8. These error harmonics correspond to field errors that 

are below 0.05% of the fundamental within a good field radius of 0.7ri, thereby yielding a 

high field quality magnet. In practice, achievable error tuning will depend on many factors, 

including how accurately the radial positions of the blocks can be adjusted relative to the 

size of the aperture and on how accurately the field errors can be measured. Generally 

speaking, many other error field tuning procedures are possible [2,4,7]. For any particular 

configuration, one must be careful to adopt a procedure that allows all possible errors to be 

tuned to the desired order. Determination of appropriate classes of block displacements and 

other perturbations to achieve this can be nontrivial. 
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TABLES 

TABLE I. Configurations for square block multipole magnets. 

TABLE 11. Configurations for rectangular block multipole magnets. 

TABLE 111. Configurations for trapezoidal block multipole magnets. 
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FIGURES 
FIG. 1. Geometry and field structures of axially extruded PM systems, for 2D and semi-infinite 

magnets (a), and for a magnet of finite axial length t as a superposition of two semi-infinite magnets 

(b). 

L 

FIG. 2. 2D elliptical magnet geometry. The PM material is shaded, and rectangular 2-y and 

cylindrical r-8 coordinates are defined as indicated. 

FIG. 3. Plots of dipole (a) and quadrupole (b) magnet amplitudes F ~ [ a / b ]  and a [ a / b ]  verses 

magnet ellipticity a/b. 

FIG. 4. Reference magnet blocks of circular (a), rectangular (b), and trapazoidal (c) shape. 

FIG. 5. Schematic cross-sections of segmented quadrupole magnets formed from A4 = 8 square 

block magnets (a) and A4 = 16 trapazoidal magnets. 
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Square Block Multipoles 

- B' = BreipM(M/r) e-iA.a(n-N)Im[l/(l + (2 + i} tanT)"-l - 1/ (1+ i tan ~)~ - ' ] / (n  - I), 

Formula 

I n = N + v M  

Max. (T = r / M )  
B, x 0.590 
B, x 0.500 

2 8 arbitrarj 

16 

3 9 arbitrarj 

24 

B; x 0.340 ' 
B, x 0.509 

Aa 

B r ( M / r )  tan(.r)[cos4 T 
-(1+ 2 tan T)/( 1 + 4 tan T + 5 tan2 T)~] 

- < Aa 5 a / M  

B, x 0.627 
B, x 0.625 
B- x 0.556 

Magne - Types 
1 
2 

3 

1 

2 

1 
2 

1 
2 

B;(M/r){T - arctan[tan(.r)/(l+ 2 tanr)]} 

Br(4M/r)(1 + tan 7)sin2(r)/ 
(1 + 4 tan7 + 5 tan2 T) 

Br x U.466 
Br x 0.524 
B, x 0.612 



Rectangular Block MultiDoles 

Aperture (r  = rj) Value of Fundamental Harmonic 

N M  P fh T y p e  Formula r = TIM, s + 00 
Magnet Maximum 

4 ?rlM 1 

1 - 8 0 , 1 ~ , f r / 2  
10 
12 
-I6 
4 
6 
- 

2 8 O , a , f r / 2  
12 - 
16 
6 
8 

Br 
0,TIM 2 
r / M  Br(M/r){r - arctan[tan(r)/s]} 

O,r/M 3 
T I M  

4 1 

O,a/M 1 Br x 0.637 
2 ~ Br(M/2a)sin(2~)(s2 - 1)/ Br x 0.827 

r/M 1 (s2 + tan2 T )  Br x 0.900 
O,r/M 2 B, x 0.955 
TIM Br x 0.974 

O,a/M 1 Br x 0.620 
TIM 2 B, x 0.768 

Br(M/r) tan(.r)x 
Br x 0.891 
B, x 0.950 - x 0.972 I I I 1 

- U , 1 lJ ml I 

LiP ..I 



- B' = B,e ip(M/s)  e - iWn-W [(I - 1/.sn-')/(n - I)] cos" rsin(nr)(zJri)n-l, 
n = N + v M  

Br(M/2r)sin(27)Ins 

4 0,s 'RIM 1 B, x 0.827(1- l/s) 

6 0,s O,s/M 2 B, x 1.240(1 - l / ~ )  
f s / 2  0 

8 0 ,7r , f r /2  r / M  3, x 1.537( 1 - l / ~ )  
2 10 0,s O,'R/M B , ( M / s )  cos2(r)sin(2r)(I - l/s) B, x 1.692(1- l/s) 

TI- s M  3 
f s / 2  0 

'16 0,7r,fs/2 a / M  ' 4 B, x 1.875(1- l / ~ )  
20 0,sr 5 B, x 1.919( 1 - l/s) 

f n / 2  0 

f T / 2  0 
6 0,s B, x 0.696(1- l /~')  

9 0,s O,s/M 2 B, x 1.029( 1 - l/s') 
s / M  1 

i 12 O1T,k7p-qiT- - Br(M/2s) cos3(r)sin(3r)(1 - 1/s2) -B, x 1.217(1- l/sL) 
18 0,s 3 B, x 1.368(1- l/s r 

f s / 2  0 
24 0,a s / M  4 B, x 1.425(1- l / ~ ' )  
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