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Abstract 

A new method is described for computing free surface flows. The 
method allows for arbitrary wind profiles to be imposed above the sur- 
face as well as arbitrary subsurface current and density profiles. The 
method combines recent advances in projection methods for stratified 
flows with level set strategies for computing the motion of a distin- 
guished interface. High resolution discretization schemes provide ro- 
bust and accurate treatment of advection, even for singular initial data 
and in the limit of vanishing viscosity. The method is applied to the 
modulation of a nonlinear Stokes wave by wind applied at the surface. 
Speeds of 4,6, and 8 m/s relative to the rest frame are considered. The 
initial relaxation rate, p, is calculated. The phase and phase speeeds 
of the complex Fourier coefficient of the fundamental are found to in- 
crease with wind speed. 

*This work was performed under the auspices of the U.S. Department of Energy by 
the Lawrence Livermore National Laboratory under contract W-7405-Eng-48 and under 
contract for the Office of the Secretary of Defense, C31. Support under contract W- 
7405-Eng-48 was provided by the Applied Mathematical Sciences Program of the Office 
of Scientific Computing at DOE. 
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Introduction 
When an equilibrium spectrum of waves on the surface of the ocean is dis- 
turbed by a sudden change in wind speed, or when a wind-driven equilibrium 
spectrum evolves from a flat, undisturbed surface, the change in the spec- 
trum can be modeled by a source term in the evolution equation for the 
wave action, N ( k ,  x, t): 

aN dk dx - at + V k N  - d t  + V,N . - dt  = sw 
Caponi et al. (1988) express the source term Sw as 

where F ( k ,  x, t) is the spectral density function, related to the wave 
action N ( k ,  x, t) by 

W' 

k N ( k ,  X ,  t )  = -F(k ,  X, t )  (3) 

The equilibrium spectrum Feq is determined heuristically. The coefficient 
a! can be 1 or 2 depending on whether the restoring force is taken to be 
quadratic or cubic, and w' is the intrinsic frequency, given by: 

Wl2 = gk(1 + T k 3 )  (4) 

Here, T is the surface tension coefficient and IC = (kl. 
There are a number of models available for the relaxation rate P ,  based 

on different sets of wave growth data collected in the laboratory and on 
the open ocean. Some models consider p to be an initial growth rate. The 
general trend is consistent with physical intuition - that for a given wind, 
,8 is an increasing function of wavenumber (Le. shorter waves have shorter 
relaxation times). The values, however, are spread over an order of magni- 
tude. 

In this study, we calculate relaxation spectra directly using a high- 
resolution discretization scheme for the full Navier-Stokes equations together 
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with a level-set interface capturing strategy for the free surface. From the 
primitive variable calculations, we determine the time evolution of the spec- 
trum of the surface elevation; from that, we extract the evolution of the 
power spectral density of individual wavenumbers. Where possible, we then 
determine P ( k )  from the initial component growth rates. 

We treat the free surface as an internal boundary in a multi-fluid domain 
and soIve the full Navier-Stokes equations using a variable density projec- 
tion method (Bell and Marcus, 1992). Use of higher-order, monotonicity- 
constrained discretizations for the nonlinear advective terms ensure that 
steep velocity and vorticity gradients are resolved without anomalous smear- 
ing or spurious oscillations. 

The motion of the interface is captured using a level set procedure (Osher 
and Sethian, 1988), (Sussman et al., 1994). In this approach, the free surface 
is taken to be the zero level set of a smooth distance function advected by 
the underlying flow field. Density and viscosity fields on either side of the 
interface are reconstructed from this function at each time step. Since the 
free surface is a level set, topological changes (such as breaking waves) are 
handled naturally. 

Physics local to the interface, such as surface tension, is calculated us- 
ing the Continuum Surface Force (CSF) method of Brackbill et al. (1992). 
In this approach, the surface force is expressed as a force density propor- 
tional to the local curvature, acting throughout a transition region of finite 
thickness. As the thickness of this region approaches zero, the conventional 
surface force is recovered. Thus, the interfacial physics can be calculated on 
a finite-difference grid if the thickness of the interface is allowed to remain 
O(Ah) ,  where Ah is the mesh spacing. The use of higher-order advection 
schemes gaurentees that this region does not spread appreciably as the cal- 
culation evolves. 

Numerical Formulation 
In Sussman et al. (1994), an Eulerian scheme was described for computing 
incompressible two-fluid flow where the density ratio across the interface is 
large (e.g. air/water) and surface tension and viscous effects are included. 
We use a scheme similar to that described above except that it has been 
modified for ocean wave applications. 
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Equations of Motion; level set formulation 
In  the work of Osher and Sethian (1988), the zero level set ({ (z, y)/Cp(z, y) = 
0)) of a smooth function Cp is used to represent a sharp interface between two 
fluids. Cp is positive in one fluid and negative in the other. It was shown in 
Osher and Sethian (1988), (for motion by mean curvature) that the equation 
& + ii- 94 accurately moves the zero level set according to the velocity field 
ii even through the merging and breaking up of fluid mass; such as breaking 
waves. 

There are many reasons to formulate the Navier-Stokes equations in the 
level set formulation. Computing spatial derivatives for 4, such as in the 
advection equation and for computing curvature, is more accurate than com- 
puting those values for a non-smooth function. Furthermore, we maintain 
the level set function as a smooth distance function allowing us to give the 
interface a thickness fixed in time. Large density jumps (such as air-water) 
and surface tension both depend on the level set function being a distance 
function. 

We solve the following equations for incompressible flow including gravi- 
tational,viscous, and surface tension effects. The equations in dimensionless 
form are 

1 ifCp>O 
H(Cp) 5 0 i f 4 < O  i 1/2 ifCp=O 
w4 = 

and 

-t -t 1 1 -  1 
Fr W iit = 4- Vii - V p / p  + -6 + EV ( 2 p D ) / p  + --.(Cp)?H(Cp)/p (12) 
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The dimensionless groups used are Reynolds number (R = *), Froude 

We assume periodic boundary conditions on the left and right sides of 
number (Fr = g), and Weber number (W = e). 
the domain, and far field boundary conditions on the top and bottom. 

Projection 
In Bell and Marcus (1992), a variable density projection method was de- 
scribed, in which a vector decomposition to enforce the divergence-free con- 
dition was coupled with high order upwind differencing of the convective 
terms in order to handle high Reynolds number flow. Briefly, we may write 
eqn (12) as: 

We use the fact that ?it is divergence free and hence for two-dimensional 
flow, we can write it as: 

If we multiply both sides of eqn (13) by p and take the curl of both sides: 

- e p a s t  = a x L 

The above equation eliminates pressure from eqn (12). 

Validat ion 
Numerous validation studies have been performed under a wide range of 
conditions, for both the variable density projection (Bell and Marcus, 1992), 
(Marcus and Bell, 1994), and the level set approach (Sussman et al., 1994). 
In order to demonstrate the performance of the method for the class of 
problems considered in this study, we examine two cases. The first of these 
compares the numerical results with a linear model for the viscous atten- 
uation of standing waves (Lamb, 1932). This problem was also used as a 
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validation by Dommermuth (1993). The surface elevation, q(z, t ) ,  is given 
bY 

where w2 = k g tanh (k H ). For Y-' = 500 and 1000 on a lOOzl00 
grid, the mean peak-to-peak errors in the amplitude were 1.6% and 0.9%, 
respectively. Figure 1 shows the analytical and computed solutions for the 
Y-' = 1000 case. In Figure 2, we plot the error as a function of Reynolds 
number. The results are consistent with the O(Y)  error in the Lamb approx- 
imation. 

Using a procedure due to Rienecker and Fenton (1981), we calculated 
the Fourier coefficients to an approximation of a steady Stokes wave. The 
code was initialized with that profile and the calculation performed in the 
wave frame, in the absence of viscosity or surface tension. (The expectation 
was, of course, that the profile would remain stationary). Figure 3 shows the 
time evolution of the surface elevation out to a dimensionless time t = 20. 
There has been a very slight phase shift, but its maginitude is negligible 
over the duration of interest. 

Results 
We begin with the Stokes wave described in the previous section and mod- 
ulate it by imposing a steady wind profile in the air above it. The wind 
profile is given by 

Y - 7 ( 4  
6 v(z,y; y > 7) = -U()tanh( 

where Uo is the free-stream wind speed, ~ ( z )  is the location of the surface, 
S is of the order of the mesh spacing, and # = tan-'(:). The profile is 
transitioned to a purely horizontal wind via a cubic spline interpolation. 

E 
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Three different speeds are considered: UO = (4,6,8) m/s (relative to 
the stationary frame). The domain is 10 m long and 5 m wide. Far field 
boundary conditions are imposed at top and bottom; the domain is periodic 
in x. 

Figures 4-6 show the time evolution of the surface for the three cases. 
There is a discernible phase shift that becomes more pronounced as the wind 
speed is increased. Figure 7 is a plot of the phase of the complex Fourier 
coefficient of the fundamental as a function of time. The phase history is 
quadratic in time. A second-order polynomial was fit to each phase, then 
the derivative taken analytically to obtain a time history of the phase speed 
deviation (Figure 8). The solid lines are for the 4 m/s wind, the dashed 
line for the 6 m/s wind, and the dashed-dot lines for the 8 m/s wind. The 
corresponding accelerations are 9.08e-3 m/s2 for 4 m/s wind, 1.04e-2 m/s2 
for 6 m/s wind, and 1.18e-2 m/s2 for 8 m/s wind. Thus the phases, phase 
speeds, and accelerations all increase with wind speed. 

In Figure 9, we plot the power spectral density of the fundamental mode 
as a function of time for the three cases. Superimposed on the wind-induced 
growth is a “sloshing” mode whose frequency corresponds to that of a deep- 
water gravity wave. The results at first appear counterintuitive; the wind 
suppresses the growth of the fundamental mode. But examination of the 
time histories of higher modes (Figures 10-14) reveals that eventually the 
more strongly forced higher modes overtake and surpass the weaker ones. 

Figure 15 shows approximations of the relaxation rate p ( k )  for the three 
wind speeds. The results were obtained by a straight-line fit through the 
first few points of a semi-log representation of the data. The slope then 
corresponds to a leading-order estimate of the relaxation rate. The trend is 
consistent with expectation; p is an increasing function of both wind speed 
and wavenumber. The influence of the wind is also more pronounced at 
higher wavenumbers. 

Conclusions, Speculations, Ongoing and Future Work 
We have demonstrated a potentially powerful strategy for studying the spec- 
tral evolution of wind-driven surface waves via numerical solution of the full 
Navier-Stokes equations. Our observation have been that the spectral re- 
sults are very sensitive to the modeling of the surface wind profile. Further 
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studies are being carried out to better understand this sensitivity. The re- 
laxation rate, p, is a complicated function of wavenumber, wind speed, and 
time; current models which use p as a leading order term are probably inad- 
equate for fully characterizing relaxation phenomena. Calculating complete 
transitions between equilibrium spectra is computationally very taxing as 
it takes a long time for a new equilibrium state to become manifest. Com- 
plete characterizations of such transitions for wind-modulated waves will be 
the scope of a future paper. Other near-term plans for this work include a 
rigorous resolution study to further validate the technique described in this 
paper, dialogue with experimentalists on wind-modulation of surface waves, 
computational study of Benjamin-Feir instabilities, and detailed investiga- 
tion of pre-and post-breaking spectra. 
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