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ABSTRACT

As model validation techniques gain more acceptance and
increase in power, the demands on the modal parameter
‘extractions increase. The estimation accuracy, the number
of modes desired, and the data reduction efficiency are
required features. An algorithm known as SMAC
(Synthesize Modes And Correlate), based on principles of
modal filtering, has been in development for a few years"?.
SMAC has now been extended in two main areas. First, it
has now been automated. Second, it has been extended to
fit complex modes as well as real modes. These extensions
have enhanced the power of modal extraction so that,
typically, the analyst needs to manually fit only 10 percent of
the modes in the desired bandwidth, whereas the automated
routines will fit 90 percent of the modes. SMAC could be
successfully automated because it generally does not
produce computational roots.

NOMENCLATURE

FRF: frequency response function

SDOF: single degree-of-freedom

wr: natural frequency of r" mode

o; j* frequency line of FRF

¢ damping coefficient of r" mode

v weighting vector

H{w): experimental FRF

H.(w): analytical generalized coordinate FRF
H.(0): predicted generalized coordinate FRF
MIF: Mode Indicator Function

CMIF: Complex Mode Indicator Function
NMIF: Normal Mode Indicator Function

{o}: vector of all frequency components
: modal residue coefficient

*Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the U.S.
Department of Energy under Contract DE-AC04-94AL85000.
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MOTIVATION

To reduce costs, many organizations are demanding higher
fidelity models to be used for design studies. .The prudent
approach is to validate these models so that one has
confidence in the modeling approach and results. This puts
high demands on the modal testing results. Organizations
want accurate results delivered quickly, and they want
resuits to higher frequency ranges than were previously
obtained. When the frequency range is extended, typically
the modal density is higher. To extract these modes, more
force inputs are required to separate the modes in areas of
high modal density. In addition to the number of modes
required being higher, this creates more data to reduce.
The ideal solution is an algorithm that automatically does the
work with less user interaction than has been required in the
past. Part of the problem with automated algorithms in the
past has been the difficulty of separating and eliminating
computational roots from the true modal parameters of the
physical system. The SMAC (Synthesize Modes and
Correlate) approach, in general, does not vyield
computational roots and, therefore, lends itself to a reliable
automation process. When all the important roots are
accurately extracted, then the mode shapes for a particular
degree of freedom can be accurately estimated by fitting a
summation of single degree of freedom systems to the
corresponding experimental frequency response function
(FRF). If there are no computational roots, the confidence in
the modal parameters can be evaluated by comparing a
synthesized FRF with the data or in a more global sense,

comparing the synthesized mode indicator function (MIF)

with the data.
THEORY OF THE EXTRACTION OF ROOTS

The SMAC algorithm is based upon the modal filtering
approach rather than an assumed matrix polynomial form. In
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the strictest sense this means that there must be at least as
many response measurements as there are active modes in
the frequency band of interest. The sensors should be
placed so that the associated experimental mode shape
matrix is well conditioned for inversion. Since the algorithm
is not based on a matrix polynomial, there are no
computational roots, eliminating a major set of decisions the
analyst must make in deciding on the true system roots. The
theory for the SMAC approach has been presented
previously'®. A few equations and an intuitive explanation
will be provided here regarding the SMAC theory.

Assume that a set of FRFs for one reference input are
measured, and the functions are arranged in a matrix so that
each column represents a different sensor, and each row
contains the complex values at each frequency line. This
matrix is called [H,]. Then values for a natural frequency, or,
and a damping ratio, {, of the system are arbitrarily selected
for a number of spectral lines (NS). {H,} is a vector
calculated, using the selected frequency and damping
values, for a SDOF FRF based on a real mode assumption
with an arbitrary amplitude as shown in Equation (1).
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Now a weighted sum of the FRFs will be calculated to
attempt to create a vector that reproduces {H,}. What is
required is that the weighting vector must be found that
suppresses all the other modes except a mode at the
frequency of interest. Theoretically

)=l K2} @)

and the weight vector, {‘I“}, can be calculated in a least
squares solution utilizing the pseudo-inverse of [H,]. After
the weights are calculated, the predicted FRF {H,} can be
generated as shown in Equation 3 below

fH, p=a, K} ®

Now {H.} can be compared with {H,} through calculating the
correlation coefficient™ between the vectors. The selected
frequency and damping is evaluated utilizing the correlation
coefficient. Intuitively a good guess of one of the roots
would yield a good match and high correlation coefficient
between {H.} and {H,}, whereas a poor guess would yield a
worse match and lower correlation coefficient. The computer

is used to make many guesses for frequency and damping,
and the local maxima are found for the correlation coefficient
as a function of frequency and damping. The frequencies
and damping ratios associated with these maxima are the
estimated roots.

After n roots are found by SMAC, the mode shapes are
determined by performing a least squares fit of the residues
for each mode to the FRF for each sensor as shown in
Equation (4).
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To establish this matrix, four frequency lines are selected
near each resonant frequency estimated by SMAC. The
kernel FRF in Equation 4 is made up of all known quantities

as shown in Equation 5
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The modal parameters are then used to synthesize FRFs.
Using these parameters an examination of the quality of the
fit can be made by comparing synthesized FRFs with the
data. A more global quality of fit is obtained by comparing
synthesized MIFs with the MIFs calculated on the actual
data. If a mode has been missed using this automated
procedure, then a manual version of the extraction process .
can be used.

IMPLEMENTATION OF THE EXTRACTION OF ROOTS

The algorithm was first implemented in- MATLAB with an
assumption of real modes, i.e., A in Equation (1) is a real
number. The solution to Equation (2) was constrained to
obtain real valued weights, which should be the case for a
structure with real modes except where out-of-band modes
are significantly influencing the response. Initially the
analyst must choose the frequency range to investigate.
There are no limits except the range of the data itself. Then
a reasonable damping value is assumed, and the correlation
coefficient between {H,} and {H,} is calculated and plotted at
each frequency line in the bandwidth under consideration.
The peaks in the correlation coefficient are indications of the
modes in the bandwidth as shown in Figure 1.




Correlation Coefficient with 2% Damping

TRl WM h

0.7

e
@
T

Corr Coet
o
o

o
>
T

0.3 M

02 “-

0.1r VJ ) 4
0 1 s L 1 . 1 " . L

0 20 40 60 80 100 120 140 160 180 200

) Frequency
Figure 1 - SMAC Correlation Coefficient Plot

The frequency of each peak is saved in a table, and these
become the starting points for the automated algorithm
described below. The analyst may choose thresholds below
which no peaks are considered. In our experience only
correlation coefficient peaks above 0.8 are worthy of
investigation; however, this probably varies considerably
from test to test. The correlation coefficient plot could be
made with any frequency resolution, but the authors have
found the frequency resolution of the FRF to be sufficient.

Next the automated algorithms are executed. The algorithm
starts with one frequency from the table of peaks and the
initial guess of the damping ratio. Two routines, which
operate in the same manner, are used to converge on the
root. In the first routine a narrow frequency band around the
suspected root is selected. The user specifies the frequency
band; the authors have used a bandwidth of 1 to 3 percent of
the root frequency with success. The correlation coefficient
is calculated at five equally spaced frequency points using
the assumed damping. Then a parabola is fit to the five
points, and the frequency of the maximum point of the
parabola is calculated. This becomes the first estimate of
the natural frequency as shown in Figure 2.
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Figure 2 — Parabolic Fit (Dashed) to Correlation Coefficient
(Solid) versus Frequency (Estimated 2 Percent Damping)

Then the second routine is executed, which is exactly like
the first except the abscissa is now a range of damping
ratios, chosen by the user, and the frequency is assumed to
be the estimate just calculated above. A best estimate of
damping (2.8 percent damping) is then obtained from the
parabolic fit of the data shown in Figure 3.
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Figure 3 — Parabolic Fit (Dashed) to Correlation Coefficient
(Solid) versus Damping (Estimated Frequency 149.7 Hz)
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The program oscillates back and forth between these two
routines. With each oscillation the range of frequency and/or
damping is reduced. When the damping ceases to change
more than 0.5 percent of the damping value, the root is
considered successfully converged and is saved. {f the
optimization process attempts to extend beyond the original
frequency range, the root is rejected. Sometimes the same
root is converged upon from two different starting points, so




there is a built-in check to eliminate duplicate roots. Then the
program repeats the process for the second frequency in the
peak table and continues until all candidate roots have been
converged upon or eliminated. Typically, 90 percent of the
roots, which can be found utilizing the SMAC process, are
calculated by the automated algorithms. A manual version
of these algorithms is used to converge on any roots that are
missed. It has been found that the automated process
sometimes misses roots when two roots are within the initial
1 to 3 percent frequency band, or the damping ratio is very
low or out of the range of the damping ratios that the analyst
considers reasonable. These omissions can usually be
discovered in the quality comparisons, and the roots can be
extracted through the manual process.

As reported in a previous paper”, there are an optimum
number of frequency lines over which the correlation
coefficient should be calculated, and this is chosen by the
analyst. From all the data that the authors have analyzed,
10 to 30 lines on each side of the estimated resonance
appears to be adequate. The optimum number of lines will
result in a high correlation coefficient at the true root and a
rapid monotonic roll-off of the correlation coefficient at
damping values away from the true root, Figure 4.
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Too few lines can result in nonmonotonic roll-off as seen in
the 11-line plot. Once this optimum is found for a mode near
the center of the frequency bandwidth, it is generally good
for the entire data analysis. Adding a few extra lines is good
insurance for monotonic roll-off and does not significantly
impact the roll-off rate.

The modal density can become so high that the optimization,
based on the correlation coefficient surface, is not effective.
This is characterized by a flat plot with very high correlation
coefficients, and SMAC will sometimes fail in such a
bandwidth. However, the best approach is to let the
automated algorithms attempt to find the roots, even in the

regions of high modal density, and then examine the results
using the quality evaluations (synthesized versus actual
MIFs). Sometimes the routines work well, even in difficult
regimes.

It has been found that these algorithms will do an amazing
job at estimating the roots for very weakly excited modes.
Sometimes these modes are so weakly excited that their
estimated mode shapes are extremely noisy. Consequently,
the authors recommend publishing the shapes for only the
well-excited modes. Fitling these weaker modes can
improve the fit of the mode shapes of nearby well-excited
modes. Sometimes even weakly excited modes have
satisfactory shape estimates. The analyst’s experience is
required for these judgments.

DATA QUALITY CHECKS USING THE MODE INDICATOR
FUNCTION , :

After the process of automatically extracting modal
parameters using SMAC, it is important to assess the quality
of the extraction. Comparisons of the synthesized and actual
FRF data are a typical method of checking whether all the
modes of interest in a particular frequency band have been
properly identified. This time-consuming approach can
require viewing all or most of the response channels from an
experiment. Thus, the method of verifying the quality of the
extraction by comparing synthesized and actual mode
indicator functions (MIFs) has been explored.

The MIF includes effects of the data from all the FRFs in a
single curve to indicate the modes. If the synthesized MIF
depicts modes in the same way as the MIF using the
experimental data, then there is high confidence in the
modal parameters. The Complex Mode Indicator Function
{CMIF) ¥ is a good tool for comparing the strength of the
modes excited by a particular reference. However, the CMIF
can obscure the effects of the weakly excited modes in the
data. Because the SMAC algorithms have been shown to be
extremely robust in extracting not only well excited but also
weakly excited modes, the Normal Mode Indicator (NMIF) ©
is, typically, selected because it tends to be a more sensitive
comparison for all the modes.

The following figures display CMIF (Figure 5) and NMIF
(Figure 6) comparisons for a set of experimental data and a
SMAC modal extraction synthesis. The CMIF data show
three dominant modes in the frequency band (868 Hz, 976
Hz and 1072 Hz). The mode at 868 Hz is the most strongly
excited mode for this excitation location. It is also apparent
from this curve that there are some weakly excited modes
between 900-950 Hz that have been obscured by the CMIF
analysis. However, by viewing the NMIF, we can see that
those weakly excited modes between 900-950 Hz stand out
more clearly and can be compared more easily using this
function.
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Figure 5. CMIF Comparing Synthesis and Experimental Data

NM{F Comparing Synthesis to Data
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Figure 6. NMIF Comparing Synthesis and Experimental Data

COMPLEX MODES APPROACH AND ADDITIONAL
EXTENSIONS

Another extension made to the SMAC Modal Extraction
Package is the ability to fit complex modes. The real mode
approach tends to work well when the system response is
lightly damped or has proportional damping distributions.
However, when the system is characterized by non-
proportional damping -e.g., concentrated damping sources-
the assumption of real modes is not appropriate. As a result,
the modal extraction can produce muitiple real roots when a
single complex root is actually a more accurate model of the
data.

The following figures (Figures 7 and 8) depict the results of
a SMAC extraction where real modes were initially used to
fit some experimental data. Comparisons of mode indicator

functions (both the NMIF and CMIF) show that the mode
near 800 Hz is not fit very well using the real mode
approximation. However, by reanalyzing the data using a
complex mode extraction, the comparisons indicate a much
better fit of the 800 Hz mode. This mode is dominated by the
mass of an internal component exercising a viscoelastic
spring, resulting in localized damping.
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The complex mode approach for SMAC root extraction is
carried out in a very similar manner to that described above
in Equations (1-3). The extractions are still based on the
modal filtering concept; however, in this case the residue
coefficients of the SDOF FRF {H,} are complex values as

are the weights of the reciprocal modal vector, {¥'}. These




changes do increase the overall computational time of the
algorithms.

The SMAC package includes algorithms for calculating the
residue amplitudes and mode shape coefficients for the
complex modes identified in an extraction. As before these
algorithms are based on a least squares fit of the FRF data.

To establish the matrix for estimating the residues, a user--

specified number of frequency lines are selected near each
resonant frequency identified by SMAC. Eliminating all the
frequency lines except those closest to each estimated
complex root minimizes errors in the residue calculations.
The residue amplitudes are solved using the following
2NL*2n equation for the n unknown problem:

ngwl; (A
Hx :w2 A;
H, (w.NL*n) A
Sl | [ )]
X = n n* A ()
H* (wz) [H (—wj [H (—G)J Ai
X :2
) .

The variable, NL, is the number of frequency lines selected
near resonance; n is the number of modes; and o,
represents the chosen frequency lines of the FRF. The
kernel matrix, H, is of the following form

Hier (@)
Hﬂex:(ab) , (7)

Hi. (@)  Hi (o)
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H}(er (wNL*n ) Hl%er (wNL*n ) o Hi(‘er (wNL*n )

and the kernel function is given in Equation (5). Note that
Equation (6) contains both the positive and negative
frequencies, forcing the residues to be conjugate pairs.
Each FRF is then synthesized from the calculated residue
coefficients and the kernel matrices over a prescribed
frequency band

An additional feature that has been coded into the SMAC
extraction package is the ability to include residual terms
when comparing synthesized and actual FRF data. These
residual terms allow the user to account appropriately for
out-of-band modes in the synthesis. This is more important
when dealing with complex modes because of the effects ‘of
the real parts of the FRFs. When SMAC computes real
modes using a quadrature response” (imaginary part of
FRF only), the residual terms are negligible because the
imaginary part of the FRF approaches zero away from a
resonance. In the coding the residual term is calculated by
adding two columns to the kernel matrix before solving the
least squares problem in Equation (6). The inertance and
compliance residuals are solved for in Equation (9) along
with the residue coefficients. '
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The following examples show experimental data that have
been fit using complex mode extraction with and without
residual terms included in the synthesis (Figures 9 and 10).
Note particularly the lower and higher frequency bands
where the comparison between analytical fit and
experimental data shows much better agreement with the
residual terms included.

APPLICATIONS

A companion paper [4] provides examples and practical
issues associated with the application of the package.
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UNCERTAINTY

The quality evaluation utilizing the normal and complex MIF
provides the most objective quantification of uncertainty for
this work. |f there is a poor match of the synthesized MIF to
the data, then there is high uncertainty in the estimated
modal parameters. Measures, such as the correlation
coefficient and comparisons of synthesized and actual FRFs,
provide additional information regarding the uncertainty of
the modal extraction. The authors have found that the
observation of the mode shape is still necessary to
determine a particular mode’s value for model validation.

FUTURE WORK

The SMAC algorithms are limited to analyzing data from one
reference at a time. In the future a muitireference version

might be of value. This is somewhat contingent on the test
structure being very linear. Many structures of interest are
slightly nonlinear, which results in the frequencies and
damping being amplitude dependent. Inputs applied at two
locations will, therefore, result in two different frequencies
and damping for the same mode. This will provide difficulties
for any multi-input extraction algorithm. A more valuable
addition to the current technology would be some sifting
technique that could take all the results from the SMAC
analyses from several inputs and consolidate the results
down to a single set with some confidence levels.

CONCLUSIONS

The SMAC algorithins have now been automated, allowing
the analyst to spend more time understanding the dynamics
and significantly less time in extraction. In general, the real
mode approach has had excellent results for providing
modal data for model validation. A few cases have required
complex modes, so this capability has been developed. The
effects of residual terms have also been included. The
algorithms are limited to analyzing data from one reference
at a time.
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