( L)
v

SANDFB- | ( 2T

The physics of fast Z pinches '9&

D.D. Ryutov O IZ
Lawrence Livermore National Laboratory, szermore, CA 94551, USA 0 &6
)~

M.S. Derzon ,
Sandia National Laboratories, Albuquerque, NM , 87185, USA : . 7

M.K. Matzen
Sandia National Laboratories, Albuguerque, NM , 87185, USA

Abstract

The spectacular progress made duﬁng the last few years in reaching ﬁgh energy densities
in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a
broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion
and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (l.é
MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW
have been obtained. This warrants summarizing the present Imowledge.of physics that
governs the behavior of radiating current-carrying plasma in fast Z pinches. This survey
covers essentially all aspects of the phys1cs of fast Z pmches initiation, instabilities of the
early stage, magnetic Raylelgh-Taylor instability in the 1mplos10n phase, formation of a
transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention
is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry.
Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic
effectg (anomalous resistivity, generati_on of particle beas, etc.) are summarized. Various
applications of fast Z pinches are briefly described..Scaling laws governing development of
more powerful Z pinches are presented. The sﬁrveir contains 36 ﬁgﬁreé and inére than 300

references.
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BASIC NOTATIONS

Throughout this paper we use predominantly the SI system of units. The temperature is
measured in the energy units (for instance, we write the equation of state for the ideal gas
as p=nT, with T measured in Joules, and not p=nkT, with k being the Boltzmann constant
and T measured in Kelvin). In the “practical” formulas we use mixed system of units (for
instance, the temperature will be measured in electron-volts).

magnetic field induction
radial convergence
electric field
. magnetic diffusivity
pinch current
current in an individual wire
ionization energy of an jon in a charge-state Z
anode-cathode distance
temperature
the charge of a fully stripped ion
average charge of the ions in a plasma
Alfven velocity
speed of light
effective gravity acceleration
characteristic thickness of the unplodmg shell
wave vector
azimuthal mode number
mass per unit length of the pinch
mass per unit length of an individual wire

particle number density

pressure

initial pinch radius

pinch radius at a maximum compression
- sound speed

time
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min

" ion thermal velocity
growth rate
the Coulomb logarithm
dimensionless pinch parameter
angle between the wave vector and the magnetic field
ratio of the plasma pressure and the magnetlc field pressure
specific heat ratio :
electric permittivity of the vacuum
electrical resistivity - -
wavelength of the perturbatlon, /'L—Zﬂ/k. ,
characteristic length-scale of the perturbatlon )t—]/k.
permeability of the vacuum
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14 kinematic viscosity

p mass density

X thermal diffusivity

[0} angular frequency

wc,; electron (ion) gyrofrequency
@,, lower-hybrid frequency

@,.; electron (ion) plasma frequency

I. INTRODUCTION

A. A piece of history

Self-constricted plasma configurations are among the most fascinating objects in
plasma physics, both because of their natural occurrence in a number of situations,
including geophysics (lightning) and astrophysics (current channels at galactic scales), and
because of their importance for a variety of applications. The first systematic attémpts in the
analysis of these configurations began in 1934, with the pubhcatlon of a paper by J.
Bennett (1934) on the equilibrium of streams of charged particles with a ﬁmte temperature.
L. Tonks (1937) introduced the term “pinch” to describe these configurations.! Later, in the
1950s, the prefix “Z” was added to distinguish self-constriction by the axial (z) current
from compression of a plasma column by an inductively driven azimuthal (6) current. Only
the former configuration, Z pinch, will be considered in our paper. We note in passing that
the other configuration is called a 8 pinch.

A broad attack on the study of Z pinches began at the early 1950s in conjunction
with research on controlled thermonuclear fusion. The idea was to heat a deuterium-tritium
mixture by an adiabatic and/or shock compression in a Z pinch and then sustain this system
in the equilibrium state until a sufficient amount of fusion energy was released. This early

stage of pinch research is covered in a book by Bishop (1958). It was soon discovered,

! Note the title of Sec.V of his more detailed paper (Tonks, 1939): “Constriction of Arc under its Own
Magnetic Field - Pinch Effect.” According to J.A. Phillips (1987), the term “pinch effect” was in fact first
used in 1907 by C. Hering, to describe what would be now called “a sausage mstabxllty" of a liquid metal
conductor in induction furnaces. .



however, that the equilibrium pinch suffers from a large number of magnetohydrodynamic
instabilities, including salisage and kink. Current disruptions caused by the development of
these instabilities ;gaVe rise to voltage surges and the generation of accelerated deuterons
that, in turn, produced bursts of neutron radiation. Realization that the neutrons were not of
a “noble” thermal origin but were rather a side effect of a disastrous instability, led to
widespread pessimism with regard to the chances for Z pinches to produce fusion-relevant
plasmas. As a result, Z pinches virtually disappeared from the research programs of large
fusion laboratories.

As a legacy of these years, there remained extensive theoretical analyses of the
stability of pinch equilibria, summarized in particular in the survey by Kadomtse;/ (1966),
and realization of the role of a so-called “Pease-Braginski current” (Pease, 1956; Braginski,
1958; see also a nice compact derivation in Pereira, 1990), a current at which radiative
losses can be fully compensated by the Ohmic heating (1.4 MA for hydrogen, independent
of the density and the pinch radius). References to the early studies of Z and 6 pinches can

be found in Kolb (1960).

B. What are “fast” Z pinches? (What is the scope of this review?)

Interest in Z pinches revived in the mid-1970s and early 1980s, initiated by a rapid
development of pulsed-power technology. Various versions of Z pinches were tried, most
notably fiber pinches and imploding gas-puffs. For the fiber pinches (sé;, e.g., Haines,
1982; Hammel, 1983), whose ‘diameter ranged typically from tens of micrometers to a --
couple of hundred micrometers, the time for establishing the radial equilibrium (a few
nanoseconds) was short compared to the duration of the current pulse. In other words, they
were evolving along a sequence of the Bennett-type equilibria, where the plasma pressure
is approximately balanced against the magnetic forces.

By contrast, the annular gas-puffs (see, e.g., Stallings et al., 1979; Spielman et al.,

1985a; Smirnov, 1991) had an initial diameter of a few centimeters, and the driving current




pulsewidth was comparable to the implosion time (which is the time between initial current
flow through the gas puff and stagnation of the plasma on axis). In this case, a free
acceleration of the gaseous shell towards the axis occupies the major part of the total current
pulsewidth. After having reached a certain minimum radius, the plasma bounces back and
ceases to exist; the Bennett-type equilibrium has never been reached. The word “fast” used
in the title of this survey refers just to this class of pinch discharges and specifies the scope
of the survey: our prime focus will be discussion of the properties of those pinches where a
run-in stage is definitive and duration of .the whole process is too short to reach the
Bennett-type state.

There is a significant difference in the important plasma instabilities for these two
systems. Instabilities with an e-folding growth time much longer than the time of the
propagation of acoustic signal over the pinch radius are important when considering quasi-
equilibrium systems and are, obviously, of much less importance in the behavior of
imploding systems. On the other hand, instabilities caused by the presence of large inertial
forces (in particular, Rayleigh-Taylor instability, which will be discussed in much detail in
this paper) are insignificant for quasi-equilibrium systems and become of a paramount
importance for fast Z pinches. A nice discussion of various physics issues related to
implosions of thin shells can be found in Turchi and Baker (1973), perhaps the first paper
specifically devoted to fast Z-pinches.

Despite a short life-time (of order 10 ns in some cases), the plasma assembled by a
fast Z pinch implosion provides unique possibilities for experimentation in a number of
areas of physics. The growing interest in this area of research is reflected in particular by
the fact that, at a recent conference on high-density Z pinches (Pereira, Davis, Pulsifer -
Eds, AIP Conf. Proc., v. 409, 1997), more than half of the papers were directly related to
fast (in the aforementioned sense) Z pinches. The quasi-equilibrium self-constricted
plasma configurations, of the type of fiber pinches, have their own merits and probably

deserve a separate survey. We feel that it would be difficult to cover both subjects in one




paper, partly because of the differences in the dominant physical processes, and partly just

because of the space limits.

As has already been mentioned, the recent progress in fast Z pinches has been
reached, to great extent, because of major breakthroughs in the pulsed-power technology.
Pulsed power technelogy will not be discussed in this survey in any detail. A very brief
summary of the pertinent information will be presented in Sec. I D. This review will
concentrate on the physics issues of fast Z pinches. We will discuss in some detail simple
models of various effects important for pinch performance, so that this sﬁrvey could be
used as a first introduction to the subject. On the other hand, we will consider also more
subtle and complicated issues which could be skipped during the first reading of this paper.

TABLE 1. Characteristic parameters of a fast Z pinch

Height of the column, L (cm) 1-2
Initial radius of imploding cylinder, r, (cm) 2
Convergence, C=r,/r, . 10
Mass per unit length, 1 (mg/cm) 1-2
Maximum pinch current, I, . (MA) 10
Maximum voltage, V,  (MV) 1
Maximum magnetic field on the pinch surface, B, (T) 10°
Implosion time, L (DS) 100
Maximum kinetic energy of the implosion, W, MJ) 1

~ The physics of fast Z pinches is an active area of research. Many elements of this
complex phenomenon are still not well understood and are the source of scientific disputes.
Sometimes, the lack of experimental data and/or of a clear theoretical picture does not allow
the discussion to rise above a qualitative, semi-speculative level. Still, even on such
occasions, the authors take the risk of presenting their thoughts, with the humble hope that

a reader will benefit from comparing her or his viewpoint with authors’.




To give some general impression of the parameter domain of the present-day fast Z
pinch experiments, we provide in Table 1 some numbers (a much more detailed discussion
will be presented later) that relate not to any specific experiment but rather to some
“generic” fast Z pinches. In every particular experiment parameters may vary by a factor
of a few. -

By convergence (the third line in Table 1) we mean the ratio of the initial pinch
radius to the final pinch radius,

C=T o i (1.1)
Note that, because of the skin-effect, the voltage is not a well-defined quantity (for
instance, inside a highly conducting shell there is no axial electric field at all); in Table 1 we
are referring to the integral Fdl between the anode and cathode at the distance from the axis
equal to the initial pinch radius. 4

In addition to the most commonly studied parameter domain shown in Table 1,
there exists another group of expeﬂménf;s; involving implosions of much heavier liners
(with m~ a few gram/cm),- with a -c_I;a_ractéﬁgic ;implosion ﬁﬁe in the range of
microseconds (see the end of Sec. I C). These pinches fall under our definition of “fast”
pinches but will be discussed only very briefly in our survey.

The imploding loaci is ofteﬁ called a —"‘target,” similar to the term used in ICF
research (e.g., Lindl, 1995). 'Irhei ;)thég traditionally used term is “the liner,” which
designates a thin imploding annular shell of whatever nature (gas puff, foil, foam, wire-

array plasma, etc). ...

e

We have tried to limit the references to books and papers in scientific journals that
would be easily accessible to the reader.. However, in some cases we had to cite

conference proceedings.



C. Specific types of fast Z pinches

There exists a variety of initial configurations that are imploded in fast Z pinches.
Depending on the'application (as will be discussed in more detail in later sections) the initial
density profile is chosen to be uniform, annular, or peaked on axis. One initial
configuration that we have already mentioned is a supersonic gas jet, with either an annular
or uniformly-filled gas density profile, originating from a nozzle situated at one of the
electrodes. The gas jet then flows through a fine mesh that serves as the opposite electrode,
or there may be simply a hole that receives the jet (Fig. 1a). More complex multi-shell
gaseous jets are also possible.

To create an initial density profile that is more uniform axially between the

electrodes, thin annular shells made of metal and plastic foils have also been used for the
' initial load configuration. Another way of creatiqg the initial configuration is by machining
a cylinder from a low-density foam (Fig. 1b). Development of the aerogel technology
allowed experinientalists to produce solid cylinders with average mass density as low as ~1
mg/cm® (3 ._mglcm3 have actually been used in experiments) and having very small
deviations from cylindrical symmetry (Antolak et al., 1997). Other foams, such as agar
have a more coarse structure but have the advantage of being more easily machineable; this
allows one to make both uniform and hollow annular cylinders of agar.

For the loads shown in Figs. 1a and 1b, the substance is initially nonconducting.
Before the current will flow throﬁgh the pinch, the breakdown of the material should occur.
Because a breakdown is a statistical -process, -it -may cause considerable -initial non--.
uniformities of the pinch. To try to have a more predictable initiation of the discharge in a
foam, one sometimes uses thin conducting coatings on the surface of the foam. In the case
of gaseous jets, one or another method of pre-ionization can be used. ‘

More recently (e.g., Matzen, 1997), considerable progress in the technology of
fabricating very fine wire arrays has allowed assembling highly symmetrical cylindrical

shells consisting of hundreds of very fine (several micrometers in diameter) metal wires




(Fig. 1c). The initial state of the imploding shell is in this case, obviously, conducting. One
may therefore expect a more symmetric initiation of the discharge. For specific
applications, a foam cylinder, uniform or annular, or a more complex structure may be
inserted into the wire array (Fig. 1d).

Thus far we have been discussing Z pinches with an implosion time in the range of
tens of nanoseconds. There exist devices where the imploding objects are relatively heavy
metal shells and where the implosion time is as long as hundreds of nanoseconds to
microseconds. This kind on pinch also falls under the aforementioned definition of “fast”
Z pinches and will be covered by our surve};. As an example, one can mention spherical
implosions of metal shells (Baker et al, 1978; Degnan et al., 1995). A schematic of the
latter experiment, where quasi-spherical implosions were successfully realized, is shown in

Fig. le. Quasispherical targets may also be pursued in lower-mass configurations.

D. Pulsed power

Remarkable progress made during the last few years in fast Z pinch parameters
became possible by progress in pulsed-power technology and in the development of
sophisticated diagnostics instrumentation. As has already been emphasized, this review is
directed to the discussion of the physics of Z pinches and will not address the equally
important issues of pulsed-power technology and pinch diagnostics. However, to give an
interested reader some guidance in the pertinent work, we briefly summarize the status of

both areas. _ -

The power and current available for Z pinch implosions reached new heights during
the last decade: the pulsed-power generator Saturn (Spielman et al., 1989) allowed reaching
electrical power of 20 TW and a maximum current of ~10 MA; the 50-TW Particle Beam
Fusion Accelerator (PBFA II, now called “Z”) was modified to drive fast Z-pinch
implosions and at currents of ~20 MA (Spielman et al., 1996). Both generators are situated

at Sandia National Laboratories (Albuquerque, New Mexico, USA). The kinetic energy in
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imploding liners that were 2-cm long at an initial radius of 2 cm reached ~0.35 MJ at
Saturn and ~1.2 MJ at Z. A schematic of the Z facility is shown in Fig.‘ 2. There are other
high-power genetators used in Z-pinch research. In Russia, the best known is the Angara-5
generator (Al’bikov et al., 1990), with a maximum current of ~4 MA and a maximum
power to the load of ~10 TW. Generators of a similar size include Double Eagle at Physics
International, Blackjack S at Maxwell Laboratories, and Proto II at Sandia National
Laboratories. Worldwide, about 15 generators operating at the current level of 1-3 MA and
power to the load of ~1-5 TW are used in Z-pinch research (some of them are described in
Camarcat et al., 1985). There are also numerous smaller generators. Most of larger
generators use so-called magnetically insulated transmission lines (MITL) to deliver the
power to the axisymmetric diode assembly. These magnetically insulated lines are, in turn,
fed by transmission lines insulated with water. The power to the water transmission lines is
supplied by high-voltage Marx generators. A wealth of information on these issues can be
found in the proceediﬁgs of pulsed power conferences. A typical geometry of the diode
assembly, where the Z-pinch target is situated, is shown in Fig. 3.

To drive the slower and heavier loads of the type shown in Fig. le with the
implosion time of the order of 1 Ws, slower generators are required. Examples of such
generators are Shiva Star situated at Phillips Labs, Albuquerque, New Mexico, USA
(Degnan et al., 1995), and Pegasus situated at Los Alamos Nat. Lab, USA.

E. Diagnostic -instrumentation — ‘ - e e —n

Electric parameters of the discharge and the current through the pinch are inferred
by measuring the electric and magnetic fields at specific points of the device in the generator
with millimeter-size magnetic loops and capacitive probes. To measure the current through
the pinch column, it would be necessary to measure the magnetic field inside the return
current conductor (Fig. 3). This is difficult to do because of very large magnetic fields in a

region of strong radiation and heat fluxes. Therefore, the maguetic field (and the current)
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are usually measured in the MITL, at distances larger than ~3 cm from the axis of the Z
pinch. The voltage is measured at the insulator stack. A description of the probes and
further references:can be found in Stygar et al. (1997). A possible way of measuring the
magnetic field in the plasma column is the use of a Faraday rotation technique (Branitskii et
al., 1992 a,b; Sarkisov et al, 1995 ¢).

Optical measurements are useful for the characterization of the early stage of the Z-
pinch implosion, when the X-ray radiation doesn’t yet overwhelm the optical detection
system. Optical interferometry and holography allow one to detect low-density blow-off
plasma at an early stage, as well as to observe instabilities of individual wires in the wire
arrays. These measurements have a spatial resolution of a few tens of micrometers to
millimeters and temporal resolution ~1 ns. Further details and references can be found,
e.g., in Hajnes et al. (1997); Muron, Hurst, and Derzon (1997); and Deeney, et al.
(1997a). Emission tomography is described by Veretennikov et al. (1992).

For later stages of the Z-pinch implosion, the x radiation becomes significant and is
successfully used for characterization of the pinch. Total radiation intensity is typically
measured with bolometers, with a temporal resoh.ltion of ~0.5 ns. Calorimeters can be used
to measure the total radiation energy. X-ray diodes (XRDs) and photoconducting detectors
(PCDs) are used to make broadband time-resolved measurements of x-ray spectra
(Spielman et al., 1997). Multichannel scintillation detectors have also been developed for
this purpose (Averkiev et al., 1992).To characterize the radiation in x-ray lines, plasma
tempe_fatures, and ionization states, x-ray spectroscopy is used (Leeper et al., 1997; Pikuz
et al., 1997). X-ray pinhole framing cameras provide a spatial resolution as small as 100
micrometers, with time duration of the exposure as small as 100 picoseconds.

The high-energy electron beams sometimes generated in Z pinches can be detected
by the gamma radiation from electrodes, and high-energy ion production can be observed
by gamma spectroscopy of activated materials. The presence of fast deuterons is inferred

from neutron radiation.
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A complete description of the status of diagnostic instrumentation would require the
inclusion of many tens if not hundreds of additional references and would lead us well
beyond the intended scope of this paper. We point out that many diagnostics papers can be
found in the January 1997 and January 1999 issues of the Review of Scientific
Instruments and in the proceedings of the 1997 Conference on Dense Z Pinches (Pereira,

Davis, Pulsifer - Eds, AIP Conf. Proc., v. 409, 1997). i

II. IMPLOSION IN THE IDEAL CASE OF THE ABSENCE OF
INSTABILITIES SR

In this section we discuss the case of an “ideal” implosion that might occur in the
absence of instabilities. This will give us a kind of a reference point that would allow us to
- more clearly see effects of possible complicatiqns caused by instabilities. Stable purely
cylindrical implosion can be numerically simulated with a great deal of detail and a
considerable amount of information obtained in such simulations is available in published . .
literature (e.g., Hammer et al, 1996; Peterson" et al, 1996). However, we prefer to
concentrate on simple analytical models that allow the reader to more easily follow the chain
of causes and effects. Working in this spirit, we start from the analysis of the simplest
possible system, the structureless perfectly conducting thin shell. After that, we gradually -

add complicating factors, like the finite conductivity, possible rotation, etc.

A. Implosion -of -a thin shell ———-—— - ——

In the simplest case of a thin annular shell (like the one formed by the wire array),

the equation of the radial motion can be written as:
m ., B uP
= _E,l: =T 2.1)

2mr
where B=B(t) is the magnetic field at surface of the pinch, and I=1(¢) is the pinch current.

Let us measure the current in the units of the maximum current, I, the time in the units of

13
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the time T within which the current reaches its maximum, and the radius in the units of the

initial radius r,. In other words, we introduce dimensionless variables

, F=rln, i=tlt, I=1/1_. (2.2)
Rewritten in these variables, Eq. (2.1) converts to: ’ 7
7 = —TII?, (2.3)
where
II= gz'“i‘—'[: (2.4)
4mmr;

is a dimensionless scaling parameter of the problem. Two implosions with the same
functional dependence of the current vs. time (i.e., with the same dependence I=1(@)
occur in a similar fashion if the parameter IT for them is the same. In particular, the time
instant when the pinch collapses on the axis, measured in the units of 7, is the same for
both implosions.

To provide a good efficiency for converting the energy stored in the pulsed power
generator into kinetic energy of the imploding pinch, one should choose an optimum mass
of the pinch material. This mass should be such that the implosion time be approximately
equal to the time within which the current reaches its maximum value: if the mass is too
large, the current pulse ends before the pinching occurs; if the mass is too small, the
pinching occurs before the current reaches its maximum, also implying a poor efficiency.
In other words, for every current pulse shape there exists an optimum value of the
parameter I1.

_ Consider in some more detail the initial stage of the implosion of a thin shell (Eq.
2.1). When the pinch radius has not yet decreased considerably with respect to its initial
value r,, one can represent r as r=r;Ar, with Ar small. In all our semi-quantitative

estimates we will use a simple model of the current through the pinch,

I=I_ sinz(;—“-). 2.5)

T
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At an early stage of the implosion, the pinch current can be with a reasonable accuracy

approximated by a parabolic dependence vs time,

: .
. : Tt
I=1_|—1, 2.6
For the dependence (2.6) one easily obtains for Ar: ‘
Ar _ 411( )“ , @7
r 480 | '

Note that the pinch radius departs from its initial value w)ery slowly, ~. For a load with a
mass correspondmg to the collapse att=t, even at t—( 2/3 )T the pinch radius is decreased by
a mere 10 % of its initial value. Tms dlscuss1on shows that a pinch has a long “latent”
phase followed by a very fast collapse that occurs within a small fraction (~0.1-0.2) of the
total implosion time . Calculated time-histories of the wire an‘ay radius and the pinch
current in one of the shots at the Saturn acceleretor are shown in Fig. 4.

An important characteristics of the system is the kinetic energy W, of the shell at
the point where it reaches some desired minimum radius r,,. This can be a radius
determined by a finite thickness k of the shell (i.e., r,;~h ), or a radius of an inner cylinder

"as in the scheme shown in Fig. 3. To find W,,,, one can use the energy relationship that
can be obtained by multiplying Eq. (2.1) by 7 and integrating by part, from =0 to t=t%,

where t* corresponds to the point where r=r,,. One finds:
o pdl
Wen = —In 13 2.8
T amy dt \ 1y . @8)

mn

W,;, is a kinetic energy per unit length of the pinch at t—t* The mass of the liner enters Eq

(2.8) only 1mph01t1y through the 1mp1031on tltne t*—t*( m), and through the dependence of -

the radius vs. time, r—r( t, m ) '

At large convergences, one can obta1n a simple approx1mate express1on for W,.- TO
do that, one should note that the loganthm in the mtegrand of Eq (2 8) is almost constant
and equal to InC for the most part of the 1rnplosmn The contnbutlon of the part where the_

logarithm begins to change (roughly speaklng, after the pinch radius reaches r/2 ) is small
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because the time within which the pinch implodes from /2 to r,,, is very short compared
to the total current pulse-width (see Fig. 4 and comments after Eq. (2.7)). So, replacing the
logarithm in the integrand of (2.8) by a constant value InC' (corresponding to the final

convergence C=r/r

min?

i.e., typically, to C~10-20) , one finds:
ur*(t%)InC

W, =tf— " - 2.9

kin 472: ( )

One sees that the maximum of the transferred energy corresponds to such a mass
that the time £* roughly corresponds to the maximum of the current. This statement has a so
called “logarithmic accuracy,” i.e., it is valid up to the terms of order of I/InC. To make a

more accurate estimate of the optimum implosion time, one should take a derivative of W,

over m. From Eq. (2.8) one finds:

oW, u'tdl*1or
R e ey 2.10
on 4wy dt rom (2.10)

Obviously, the derivative dr/ds: is positive: a heavier liner implodes slower and, at a given
time, has a larger radius. Therefore, if #* corresponds to the current maximum, the
derivativedW,, /d# is positive. It reaches zero (i.e., the kinetic energy reaches a maximum)
at some point beyond the maximum of the current. This point usually corresponds to the
current that is 20-30% less than the current maximum. For the current waveform as in
Eq.(2.5), the optimum value of the parameter IT is equal to approximately 4.

In a real life, for a given pulse-power generator, the current waveform cannot be
considered as independent of the parameters of the load (because of the contribution of the

load impedance to the overall impedance of the circuit). This circumstance can be taken into

accsﬁ;lt Ey »srolviAng reqliét‘icgr‘lhs forthe p1nch toééther with the circr:uri‘tme-q‘uat-ions; (see, . g
Katzenstein, 1981; Struve et al., 1997). One should also emphasize that the kinetic energy
is not necessarily an appropriate ﬁgure of merit. For example, in the experiments on
generation of radiation the figure of merit could be the radiated energy. The contribution to
the radiated energy comes not only from the kinetic energy of the pinch but also from Joule

heating (see Sec. VII A) and pdV work on the plasma during the stagnation phase
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(Peterson et al, 1997, 1998). Still, the kinetic energy is an important and easily tractable
characteristics of the implosion and we will concentrate our discussion on it.
Using Eq. (2.9), one can derive an expression for the volume density of the kinetic

energy w,, at the stagnation point in the case of an empty liner:

W, .
Wy, = m’;" ~2p.InC, (2.11)

min

where pm* is the magnetlc pressure at the surface of the pinch at r=r, . . If this energy is

converted to the thermal energy of the monatomic ideal gas, then the gas pressure will be

p=(2/3)wy,, or ’
p=%p;,lnC T e e e (2.12)

On sees that, with such a scenario, ;hé gas pressure is lndeed considerably higher than the
magnetic pressure, and the pinch will rapidly expand after ‘stagna_tion._. The pinch rebound
was detected in the experiments.}z/'ith alnminum w1re arrays on the Saturn facility (Sanford
et al., 19972). T | |

- .- I

If one deals with a liner made of heavy'elen:lents then 'in fact, a considerable
amount of energy w1ll be spent on 'the 1omzat10n reducmg 4 compared to the esumate ‘
(2.12). In the implosions of wire arrays, temperature_s in dle range of hundreds electron—
volts and electron densitles in the range of 10 are typical (Sanford et al., 1997b; Maxon et
al., 1996; Matzen, 1997, Deeney et al., 1997b). Tlle radlaﬁve losses also lead to smaller
than (2.12) pressures. : ’_ - vr o |

If the radiation loss time 1s cons1derably ;Eo;tér than the acoustic tlme rm,,/cs (where _
¢, is the sound speed), then, lnwtlie Eﬁ‘s‘ehéé"df’iﬁsiiﬁﬂiﬁe‘s‘zth?lﬁéﬁﬁiigﬁ ‘experience a
collapse to ever smaller radii (a rad1at1ve collapse see, €.g., Me1erov1ch 1986). The Joule
heating, especially with the anomalous res1stance mcluded works in the opposue direction
(Robson, 1991), as well as the radlatlon 1mpnsonment and effects of electron degeneracy
(Haines, 1989; Chittenden, Hames 1990). The rad1at1ve collapse in a real situation may be
prevented from happening also by the constramts 1rnposed by circuit equations (a fast

“ .
o
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increase of the pinch inductance may decrease the current, Haines, 1989; Choi &
Dumitrescu-Zoita, 1997).

i
B. Targets with initially uniform density distribution

In this section we switch to the discussion of implosions of the targets with initially
uniform density distribution, like foam cylinders, or smooth radial density distributions,
like, e.g., gas puffs. In this case, a shock wave propagates ahead the current-carrying
sheath and reaches the axis considerably earlier than the sheath. We assume that the skin-
depth is small compared to the radius of the column, as is the case in real situations.

The converging cylindrical shock, if it possesses a good symmetry, can by itself
produce a strong increase of density and temperature on axis, formally singular (Guderley,
1942; see also Whitham, 1974). After the shock is reflected from the axis and again reaches
the surface of the cylinder, a kind of an adiabaitic compression begins, where the plasma
pressure is approximately equal to the magnetic pressure, and the sound speed in the
plasma is comparable to the Alfven velocity. This means that a kind of a transient Bennett-
type equilibrium is formed for a few acoustic transit times. ‘

In this discussion of the implosion of a uniform density column, we ignored the
role of radiation. This can be the case with imploding DT gas puffs. If, however, one deals
with implosions of heavier elements, then the radiation of the plasma behind the shock can
become important. In the extreme case of very strong radiation losses, the plasma behind
the shock radiates its energ3; much faster than the time within which the shock could
propagate across the radius of the pinch. In this extreme case the shock will not be formed
at all, and all the material impacted by the magnetic piston will just stick to the piston. It
corresponds to a so-called snow-plow model stﬁdied in much detail in fhe early years of
pinch research (1950’s). We will use the term “snow-plow” just in this sense, to designate

a simple model where all the material swept by the magnetic piston merely sticks to it. This
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case is similar to the one discussed in the previous section and we will start from it, leaving
discussion of the second possibility (weak radiétion) until the next section.

In the case where mixtures of gases are used, and the densities are low enough, the
picture may be complicated by a radial separation of the ion species under the action of the
ambipolar radial electric field (Bailey et al, 1982; Barak & Rostoker, 1982; Rahman,
Amendt, & Rostoker, 1985). Gordeev (1987) contends that in a low-density gas-puff
implosion of a multi-spices plasma, the mutual friction between the ion components may
cause an enhanced penetration of the magnetic field. |

LA snow-plow model (strongly radlatmg column)

PUEIRY ~ . —r uy s

Equatmns of motion of the magneﬁc plston sweeping the plasma as a snow-plow

read as: ‘ .
- m* Lol
"’ —F-p)* = 2.13
27z7~r p() 872r? (2.13)
. m*=-2mip(r) . L . ©@14) -

where p(r) is the initial density distribution and /* =sm*(f)is the instantaneous mass
accreted at the piston. The second term in the Lh.s. of Eq. (2.13) describes the momentum
imparted to the piston by the accreting material. We assume that the de;isity at a certain
radius remains unchanged until the very moment of the magnetic piston arrival. For two
implosions with the initial density distributions having the same functional dependence on

r/r,, there exists the same similarity law as for the equation (2.14), i;e., the two implosions

- are similar if the parameter IT for them is the same. =~~~ =" " F ©
- Consider an early stage of the implosion of a uniform cylinder in the framework of

the snow-plow model. In this case, at the same mass per unit length as in a thin shell, the

current sheath moves towards the axis faster than in the case of a thin shell. The reason is

merely. the smaller mass involved in the implosion at an early stage. To illustrate this point
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more quantitatively, consider an analog of Eq. (2.7) assuming that the initial density

distribution is uniform, i.e., p=ri/mr,?. One now has:
Ar_7 JE(.‘_T 2.15)
' rn, 4 \V30\7
This solution is valid until Ar is less than, roughly speaking, r/3. We see that the --
implosion begins faster than for a thin shell. The collapse on axis also occurs earlier than
for the thin shell of the same mass per unit length. Still, the latent period is present in this
case, too.

For the snow-plow model [Eq. (2. 13)], the analog of Eq. (2.1) reads as:

L tdh* %)
T ln—dt s 2.16
i 47:7?:j dt r (2.16)

0 min

where 7 is the total mass per unit length, and 7 * is the mass swept by the current sheath
by the time ¢,
0}
k=27 [rp(r')dr’. (2.17)
r
We assume here that one deals with the implosion of a simple gas-puff or a foam cylinder,
without an external shell (otherwise, one would have to add the mass of this shell both to
7 and 4 *in Eq. (2.13)). Using the same arguments as in the case of a thin shell, one can
show, that, at high convergences and smooth density distributions, W,, is still
approximately determined by Eq. (2.9). From elementary mechanical considerations one
can find that the power released in the inelastic interaction of the initially resting substance
with a moving piston is (per unit length) m*it 2. Integrating this expression over time,
one finds that, at C>>1, the part of the energy that was rfadiated from the accreted mass is,
within an order of magnitude, 1/InC of the final kKinetic energy (i.e., relatively small). This
is so because most of the mass is accreted before the liner reaches the radius, say, r/3,
when the liner velocity is still small compared to its final velocity at r=r,,,.
An interesting feature of Eq. (2.13) consists in that, at the properly chosen radial

density distribution, one can provide conditions where the surface of the pinch does not
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experience radial acceleration. Such a regime may be desirable for the reason that it may be
stable with respect to the Rayleigh-Taylor instability. This idea has been explored by
Hammer et al. (1996). To approach the state of a constant velocity, the outermost part of
the pinch should experience a sudden kick that would impart to it the desired velocity v. As
soon as th1s state has been reached the further evolut10n of the system is descnbed by Eq

2. 13) w1th the first term in the left- hand-31de of this equation ormtted One obtains the

following equatlon for the desired density profile (Hammer et al., 1996)

i

1)()————16%2‘;2 pa

The densrty should rapidly increase near the axis (oc]/rz), and essentlally all the mass

- - +(2.18)

: should be concentrated w1th1n the rad1usr~2r . Fig.5 deplcts the requlred density

drstnbutmns For such sharply varymg den51ty dlStI‘lbllthDS one cannot use Eq (2 9) to

estimate the k1net1c energy The final kinetic energy in thrs case is:

mv: o -

Wk,—T - | 7 (2.19)

with the mass 7 related to the implosion velocity by Egs. (2.17) and (2.18), with r=r,; in
the former equation. The optimum velocity (at which W, is maximum) is the velocity at
which r=r, , is reached at the current maximum. It i is also unportant to note that the radiative

losses W, in this case are considerable. Using the same arguments as the ones that

followed Eq. (2.17) one can show that the total radiated energy is W, =W,

ra kin

(Cf. .
Hammer et al., 1996).

2. Weakly radlatmg plasma
In this case, the shock wave sphts from the piston and propagates in front of it,
heating and compressing the plasma. As the initial temperature of the pre-shocked plasma is

small, the shock has a very large Mach number and can be considered as a strong shock

21

TN 9 ande ERAAE SIS 2 e




(Landau and Lifshitz, 1987). For the gas with adiabatic index v, the plasma density (p,)

and plasma pressure (p,) behind the shock are:

+1
: p=L"p, p=—=pi?, (2.20)

y-1 ¥ +1
where u is the shc;ck velocity. If the magnetlc pﬁst&n is moving witﬁ some constant velocity
v, there is a simple relationship between u and v, a direct consequence of the mass
conservation equation, pu=p (u-v): u = (y +1)v/2. For the ideal monafomic gas (y=5/3),
u=(4/3)v, i.e., the shock velocity is approximately 30% higher than the velocity of the-
piston. This means that the shock conver;ges on axis when the pinch radius is equal,
roughly speaking, to r,/3. This is a crude estimate, as it doesn’t take into account variation
of v and effects of the cylindrical geometry. Still, it doesn’t differ strongly from more
elaborate analyses, in particular from the “slug” model by Potter (1978) and from the
energy analysis by Miyamoto (1984).

Potter’s model assumes that the plasma behind the shock is uniform, with
parameters related to the parameters in front of the shock by Egs. (2.20). The pressure p,
is, on the other hand, equal to the magnetic pressure. This allows one to close the set of
equations and to find position of the shock and the piston as a function of time. The
predicﬁon is that the shock reaches the axis at r=0.3r,. After the shock is reflected from the
axis and reaches the piston, a quasi-equilibrium state is formed in which the plasma
pressure is approximately equal to the magnetic pressure. One sees that this is quite a
different situation from implosions of thin shells where the particle pressure in the final
state is much higher than the magnetic pressure.

Such solutions are of interest in the implosions of low-Z targets, in particular, DT
gas-puffs and deuterated carbon foams. If one deals with the targets of heavier materials,
they may remain not fully jonized behind the shock. In this case the use of the power law
adiabats may break down. As a considerable amount of energy is spent on the ionization,

the temperature behind the shock is lower than in the fully ionized case, and the density
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higher (Zeldovich, Raizer, 1967). In such a situation, the separation between the piston and
the shock front reduces compared to what has been discussed above, and the snow-plow
model of Sec. I B.1 becomes relevant.

As in a plasma with non-fully stripped ions the tail of the electron distribution
function experiences losses caused by excitation and ionization events, the tail may get
depleted, affecting the rate of the excitation and the radiation intensity (e.g., Clark, Davis &
Cochran, 1986; DeGroot et al., 1997a). An example of the analysis of the experimental
data on x-ray spectra from implosions lof the foa.m loads on the Saturn device, with non-
equilibrium effects included, can be found in MacFarlane et al (1997). In quasistatic
pinches, an important channel of the heat loss is an enthalpy flow to the electrodes related
to the pinch current (Haines, 1960). In fast pinches this channel is usually sub-dominant.

We have discussed three limiting cases of the imﬁlosion: that of a thin shell, that of
a non-radiating uniform (not annular) column and that of a strongly radiating uniform
column (snow-plow model). Of course, a whole range of intermediate cases is also
possible. In particular, in the gas-puff implosions with annular gas-puflfs, the initial density
on axis is never zero, because of a finite angular divergence of the jet. A converging shock
would then propagate in a relatively low-density gas in front of the main shell, and would
cause a significant density and temperature increase on axis prior to arrival of the main
shell. Thisis a 1;ossible explanation of an early formation of a dense on-axis column in the

experiments by Shiloh, Fisher, and Bar-Aavraham (1979). .

C. 3D implosions

As has been already mentioned in Sec. I C, one may deliberately implode shelis
with a geometry different from cylindrical. ‘Fig. 1 e depicts an implosion of an
approximately spherical shell whose polar areas are sliding along the conical electrodes.
This scheme was successfully realized in experiments by Degnan et al. (1995). The

magnetic pressure at the surface of the shell is larger in the polar areas (because of the
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smaller distance from the axis). To compensate this effect (that would lead to deviations
from the spherical implosion) the shell thickness was made larger in the polar parts. To
avoid jetting at the point of the sliding contacts of the shell with the electrodes, the angle at
their apex was made greater than45°.- .. . .~: - oo

The other technique for producing quasi-spherical implosions is a proper tailoring
of the thickness of the initially cylindrical liner, with the thickness decreasing from the
equatorial plane to the ends (Fig. 6). The liner implosion then occurs as shown in Figs. 6
a-d, with the volume inside the liner experiencing (at the stages following Fig. 6 ¢) a 3-D
compression. Such scheme has been successfully tested in experiments with relatively
massive aluminum liners by Alikbanov et al. (1977). Numerical simulations of 3D

implosions have been recently performed by Lisitsyn, Katsuki, and Akiyama (1999).

D. Electrode phenomena

So far, we have been considering problems with a pure cylindrical symmetry, i.e.,
problems where all parameters depend only on r. A perfect cylindrical symmetry cannot be
reproduced in a real life, even if the system is MHD-stable. Indeed, the pinch always has a
finite length, and there is a contact between -the pinch plasma and the electrodes. This
creates some axial non-uniformity and thereby violates pure cylindrical symmetry. The
presence of the electrodes may affect the pinch performance in a number of ways.

First, there is some friction between the liner and the surface of the electrode: This
effect may be significant for high temperature and low density pinch plasmas. The presence
of the tangential shear flow in the transition region between the electrode and the liner may
excite the Kelvin-Helmholtz instability (see Chandrasekhar, 1961) and shear-flow
turbulence. This will be a turbulence of supersonic flow (the plasma velocity far from the
wall is much higher than the sound speed in the plasma shell), with strong radiative losses.

Very little is known about the turbulent momentum transfer under such circumstances. First

Y
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observation of the Kelvin-Helmholtz instability in the ICF-relevant environment has been
reported by Hammel et al (1994).

Second, there is a heat flux to cold massive electrodes. Its significance is again
determined by the density and temperature of the liner. This heat flux causes an axial
variation of the plasma temperature near the electrodes thereby violating the cylindrical
symmétry of the implosion.

Third, there may occur some mass influx from the surface of the electrode that
makes the end part of the pinch heavier and-causes its lagging with respect to the equatorial
part of the pinch. R

Fourth, conducting electrodes impose a “frozen-in” condition on the normal
component of the magnetic field. To illustrate the possible role of this effect, consider a
liner implosion in the presence of a weak initial axial magnetic field B, (such geometries
are supposed to be used in experiments on the generation of strong magnetic fields; see,
e.g., Alikhanov et al., 1967). Tf (as it ushally is) the bias magnetic field is small compared
to the azimuthal magnetic field of the pinch, it does not considerably affect the pinch
dynamics during the run-in phase. Consider, however, what happens to the magnétic field
itself. The axial magnetic flux through every element of the electrode and liner is conserved
(because of their high conductivity). This creates a situation shown in Fig. 7: a thin.near-
electrode layer appears where the embedded magnetic field becomes almost radial in
direction; the thickness of this layer is of the order of the skin-depth 8, which is very small
compared.-to the pinch radius.- From the conservation of the magneﬁc flux,-the following - -
estimate of the radial magpetic field inside the skin-layer foﬂowé: B, ~ Br/d. This
estimate corresponds to the intermediate stage of the run-in, where the pinch radius is equal
to, say, a half of the initial radius. For a typical implosion at a time of ~30 ns, the skin-
depth in the electrode material is of the order of 10? cm and, for r~lcm, one obtains
B,~10°B_, Even if the bias magnetic field is small, say, 10*G, the magnetic field in the

skin is very large and may become comparable with the self magnetic field of the pinch.
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This, in turn, will cause a thermal explosion of the electrode skin-layer (because of very
high current density), and also change in the dynamics of the liner implosion near the
surface of the electrodes.

In some experimental settings, in order to provide a better diagnostic access, one of
the electrodes is made with a hollow central part (Fig. 8). This may lead to a different
phenomenon, similar in some sense to the plasma focus effect (for the description of the
latter see, e.g., Sec. 4 in Vikhrev and Braginski, 1986). When, in the course of the
implosion, the liner slides past the edge of the hole, some current-carrying “bridge” should
be formed from the materials of both the liner and the electrode (panel 2). The density of
this bridge is presumably less than the density of the liner itself. Anomalous resistivity may
turn on causing considerable heating and radiation from this region. The bridge experiences
a magnetic pressure directed downward and begins to evolve as shown in (panels 3-4). The
further evolution of the bridge should lead to its early self-implosion in some axial point,
formation of the “neck” (panel 5) and, possibly, the break-up of the current channel, with
generation of high-energy particle beams. The collapse should be accompanied by injection
of the material in both directions from the collapse point. Bright features appearing near the

anode hole relatively early in the pulse were observed by Derzon, et al. (1997a) and they

persisted till late time (Fig. 9).

E. Structure of the imploding shell.

_ The knowledge of the structure of an imploding shell is required for the stability
analysis that will be made in the further sections of this report. Consider the implosion of a
thin shell whose thickness £ is such that the time of propagation of the compression wave
through the distance A, is small compared to the characteristic time of the implosion
process. This assumption is certainly valid for thin enough shells. Then the shell can be

considered as being in a quasi-steady-state mechanical equilibrium which is governed by

the following equation:
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IO
pg= 6’x(p+§;_z)’ (2.21)

where g is the effective gravity acceleration (in the co-moving frame) and x is a coordinate
directed towards t,he axis. We are using here a planar model - because of a small thickness
of the shell. The geo'metry of tile pl;obiem 1s illl:ISHaFed By Fig. 10. T '
There is no magnetic ﬁelq ét thé iﬁﬁe; surf.'flcé'of the shell (no current inside the
shell) and, therefore, the acceleration is related to the ﬁagneﬁc field B, at the oﬁter ;urface
of t}}e shell via equation: .
pgh~B} 21, T 222)
where h is the shell thickneés. | | | | H
First assume that the temperature of the shell is determined by the Ohmic heaﬁng. A
rouéﬁ estimate’ of thé thennél enefg}’l deliv‘ered“tc; the umt area of the shell can ‘be;mia).de by
multiplying the Pbyntiﬁg vector i)y the éﬁéraéterisfic time 7 of the implosion‘pro-ce.ss:
E,Byr! L. (2.23)
The electric field on the surface of the shell depends on the relationship between the skin-
depth A, and the total thickness & of the shell: L | |
E, ~ -B"%max@’%) | . (2.24)

Assume first that heat losses via radiation are negligible. Then, the thermal energy per unit

area of the shell is

Bg R ( - ) . .o e e e -
=% p. . max| 1,2 | . .
2# “skin h . - (2 25)

This thermal energy determines the plasma préssuré inside the shell. For the thickness of =~ -

the skin-layer we take its value in some characteristic pdiht halfway through the impiosiéri.
Note that the estimate (2.25) provides only a general scaling law; the specific numerical
factor depends on the current waveform. ‘

If ionization energy is small, so"‘that the thermal energy per unit volume is of the

order of the plasma pressure (later in this section, we discuss the situation where ionization
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energy is significant), Eqs. (2.22) and (2.25) show that, in a quasi-equilibrium state, the
shell thickness is necessarily of the order of the skin-depth 4, (Fig. 11 a).

Consider; now the other possibilities. If the shell experiences some turbulent
motions produced by hydrodyﬁamié in:sfat;ﬂiﬁés, tﬁet; a new source of heating becomes
available and may deliver much more thermal energy to the shell than follows from Eq.
(2.25). One more situation where 'thermal energy may be large is an implosion of
sufficiently thick gas-puff or foam annulus, where the shock wave propagates before the
piston and heats the plasma. When the th@ﬁnal energy of the shell is considerably greater
than the energy delivered by the Ohmic heating, an equilibrium with the shell thickness
much greater than the skin-depth A, becomes possible (Fig. 11 b). In the region beyond
the skin-layer, the magnetic pressure in Eq. (2.21) is negligible. At a uniform temperature
and a uniform plasma compbsition, one then obtains a familiar exponential density
distribution, |

p o< exp(—x/h), (2.26)
with the scale-length & defined as

h=TImg , (2.27)
and m being an average atomic weightﬂ(lialf a proton mass for the hydrogen plasma).

The opposite limiting case is that of very fast radiative losses and/or of a large
ionization energy, as it may be in a plasma of high-Z elements. This case is of a particular
interest for the shells formed from wire arrays and we discuss it-in some detail, following
general ideas of the papers by Hussey, Roderick ‘and Kloc (1980), Hussey and Roderick
(1981), Grigor’ev and Zakharov (1987), Chukbar (19932) and Hammer et al. (1996).

The plasma thermal energy in this case is much smaller than that determined by Eq.
(2.25), leading to a corresponding decrease of the plasma temperature. At low
temperatures, the skin-depth becomes greater than the shell thickness, Ay, >h. The axial
electric field is then uniform over the shcf,ll thickness. We assume that the temperature is

also uniform, providing a uniform conductivity and a uniform axial current. The latter, in
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turn, means that the magnetic field varies linearly over x. As it must vanish at the inner side -
of the shell (we assume that there is no axial current inside the imploding shell), we find
that i
x
. B= Bo(l— Z) . . (2.28)

where % is the shell thickness. For the further analysis, it is convenient to introduce the
relationship p=s, *p, with s,, = T/ being a speed of the isothermal sound waves. As
follows from Eq. (2.27), the assumption of the skin-depth being greater than the shell
thickness implies that almost all the energy delivered to the shell by Ohmic heating is
radiated to make plasma pressure less than the magnetic pressure, psz, << Bs /2. In this
case, as follows from Eqs. (2.21), one automatically has gh>> 5%, . With this obsérvaﬁon
made, one can find the following solution of Eq. (2.21) (with B as in Eq. (2.28)):

. : ) )
' - S, gx x By \

=po|| 1+22 | 1—exp| -5~ | |[-=} po=—F- 2.29

R ,-p. ‘ Po|:( . gh][ XP[ sizso)] R h:l Po ,'Ug.hr (._: ‘)

We have taken into account that the density should become zero at x=0; then, at x=h, it is

small (in the parameter s,-zso / gh<<1), as it should be. Our simple model does not resolve
the structure of the further transition to the zero density near the inner side of the shell. The
density distribution (2.29) is shown in Fig. 11 c. Note that # now is rot determined by
(2.27), because the magnetic force is now dominant in the pressure; balance.

For the solution (2.29) the mass per unit area of the shell is approximately equal to
PA/2 ; it is determined by the initial conditions of the experiment. However, the solution
(2.29) does not allow one to determing p,and k separately. The additional equation needed ..
is provided by a condition of a thermal balance, which equates Joule heating and radiative
losses. This condition, generally speaking, contains a different combination of the

parameters p, and k and can, therefore, serve as a second equation (provided the

temperature is determined experimentally).
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III. AN EARLY STAGE OF THE DISCHARGE

A. Breakdown: of gas-puffs

Although at present fast Z-pinch research is concentrated on wire array implosions,
other fast Z pinches, in particular, gas-puffs (see, €.g., Stallings et al, 1979; Branitskii et
al, 1991, 1992a,b; Deeney et al, 1993; Baksht, Datsko, Kim, et al, 1995) and pinches with
foam targets (Derzon, Nash, Allhouse et al, 1997) are also of a considerable interest.
Therefore, we start this section with the issues of initializing these types of pinches. What
we present here is not a quantitative theory: it is rather a broad qualitative discussion aimed
at the identifying critical physics issues.

In our discussion of gas-puffs, we will present most of the numerical estimates for
the density range ~3-10"-3-10'® cm®. We mean here peak densities, in the middle of the
gas stream. Taking as a representative value for the cross-section of electron scattering on
atoms, 0,~10"° cm?, one finds that the mean-free path for electron scattering, 4,,=1/n,0,,
where n, is a neutral atom density, is much shorter than the typical height of the pinch. If
the applied voltage is such that the energy acquired by the electron between two collisions
is small compared to the ionization potential, the electron avalanches would develop quite
slowly. The seed electron would experience a random walk with a superimposed average
drift in the direction of the anode; its energy would gradually increase and reach the
excitation threshold; at this point, with a high probability, it would lose energy through
excitation and only with a small probability would reach the ionization threshold I,,, (this,
incidentally, is a standard picture of the gas breakdown at densities above the Paschen
pressure minimum, see Meek and Craggs, 1978; Raizer, 1991). In the situation of fast Z
pinches, where the voltage is rapidly growing, before the aforementioned process produces
sufficient electron multiplication, the voltage reaches the level where electrons acquire the
ionization energy between two successive collisions:

eEA, >1,, (3.1)
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where E is the electric field strength. Then, a typical e-folding time for avalanching will be
only I/ v n 0, where o; is the ionization cross-section).

Before going further, we note that in gas-puff experiments- the radial density
distribution is relatively smooth, with a gradual transition from the nominal density inside
the jet to much lower density at the jet periphery (Fig. 1a). Therefore, with voltage
growing, the condition (3.1) will be first satisfied at low densities. But the density cannot
be too low: in order to produce a considerable charge multiplication on its way to the
anode, the electron would have to experience at least several ionizing collisions, i.e., the
product Ln,0; (where L is an anode-cathode distance) should be greater than, say, 10:

=1 “Lmg,>10. T o (3.2)
Eq. (3.2) imposes a lower limit on the density. At 6~3-10"¢ cm? and L~1.5 cm the
required densities are ~ 2-10'®cm, and this is where breakdown will occur first. The time
for developing a considerable jonization is ~1 0/ v.nn 0, (~5ns at n=2-10"cm?).

With applied voltage rapidly growing, the inequality in Eq. (3.1) will be met in the"
deeper layers of the jet and the ionization front will move’ towafds the higher densities. -
Eventually, the conductivity of the outer current-carrying shell becomes so high that the
skin-effect becomes important. After this time the further increase of the current occurs in
the outer layers of the gas-puff (this skin-dominated stage of ionization has been analyzed
by Vikhrev and Braginski, 1986). At this stage, the further ionization of the inner layers is
produced by radiation from the current-carrying shell and, at the later stages of the

implosion, by the shock heating.

In gas-puffs, the isodensity surfaces are usually not cylindrical but rather conical,
because of the divergence of the jet (see Hussey, Matzen and Roderick, 1986). Deeney et
al (1994), and Barnier et al (1998) developed special nozzles producing almost cylindrical
jets. Superimposed on the regular flow, smaller-scale density fluctuations produced by the
hydrodynamic turbulence may be present. This brings additional complications to the

picture of the breakdown.
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In very low density pinches, where even the maximum density of the jet is less
than roughly 10'® cm?, the electron multiplication factor becomes insufficient (see Eq.
(3.2)) and a different mechanism of breakdown should come into action. It should strongly
depend on the generation of electrons at the cathode (Baksht, Russkikh, Chagin, 1997),
via, probably, photoemission.

Note that, at low gas densities, even a very weak current may cause the
magnetization of electrons, thereby affecting the avalanching process. At the density 10'¢
cm? the electron-neutral elastic collision frequency of, say, 30-eV electrons is 3-10° s™,
and becomes lower than electron gyrofrequency at a magnetic field of only 0.015 T. In a 4-
cm diameter column such a magnetic field would be created by the current of only ~ 1.5 kA
(M. Therefore, even relatively weak axial magnetic field (weak compared to the pinch
" azimuthal field at the maximum current) may affect the breakdown process and, thereby,
the overall pinch performance. The favorable effect of an axial magnetic field ~0.3 T has
been recorded in experiments by Baksht, Russkikh, and Chagin (1997), and Gasque et al.
(1996). Of course, we do not claim that the bias magnetic field does not have other effects
on the pinch bhysics (in particular, on the pinch stability at the later stages of the implosion,
where it increases because of the radial compression). We just emphasize that even a very
weak field can influence breakdown of the gas-puffs and make it more “regular”.

The gas breakdown itself is a statistical process and may lead to a formation of
azimuthally-asymmetric current-carrying channels, especially at lower densities where
electrode effects become important (and bring about a new source of non-uniformities).
Therefore, the pre-ionization of the gas by some external source might be beneficial. This is
shown in the papers by Stallings et al. (1979), Ruden et al. (1987), Baksht, Russkikh, and
Fedyunin (1995), and Baksht, Russkikh, and Chagin (1997).

The presence of a long enough pre-pulse may also be beneficial for creating a
uniformly ionized column. Effect of the pre-pulse is determined by its time duration and its

voltage. In particular, in Baksht, Russkikh, and Fedyunin (1995) the prepulse (1.5 ps, 1
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kV) did not cause the breakdown because the axial line density n,L<3.6-10'> cm? was
well below the Paschen optimum for Ar. Such a prepulse would have caused a breakdown
of Ar with a densiiy an order of magnitude higher. Whether this would be beneficial for the
further fast implosion is not quite clear, because during the long pre-pulse numerous
jonization-radiation instabilities (see Sec. III C) could develop and lead to strong
perturbation of the initial state. The pre-pulse breakdown was reported by Smith and
Dogget (1985) who also studied the currént distribution of argon gas-puffs with a density
below 10' cm?® during the first 20 ns of the discharge. They correctly identified an
important role of the eaﬂ).r electron magﬁetizatiorf, ‘although their use of the magnetized
resistivity to explain a large skin depth does not look right: the fact that the électron |
collision frequency v, is much less than the electron gyrofrequency @, does not mean that
the axial resistivity increaseg by a factor (@ /V,,; )_2; the resistivity ;loes change significantly,

and a radial electric field is established in a plasma (see, .g., Braginski, 1965).

B. Breakdown of the foam -~~~ - = e o - oo

As the commonly used foams of CH,, SiO,, and agar (=CH,0) -are insulators, the
question of the time and quality of the breakdown exists for these loads, too. In particular,
it would be important to know whether breakdown occurs at the outer surface or some
discharge channels are formed in the bulk of the foam. Very little is known at the moment
on these issues and we have to limit ourselves to merely a verbal discussion.

_ To be more specific, we discuss breakdown of SiO, foarn, Breakdown voltage for -
the SiO, foam could be quite large. This can be understood from the following qualitative
considerations. If we substitute the foam with 2 gas with the same average particle density,
i.e., with 6:10%p, (mg/cm®)/A particles per cm’, the gas density would be quite high. For
example, for p,=5 mg/cm’, and A=20 the particle density would be 1.5-10%° cm?. At
room temperature, this density would correspond to a pressure of approximately 5.5 atm;

the Paschen product (pressure times length) will be then, roughly speaking, 1000 times
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higher than its optimum value for the majority of gases. This would correspond to
breakdown voltages in the range of a hundred kilovolts. High voltages needed for initiation
of discharge in the foam loads and the corresponding delay for the onset of the current flow
may cause strong leaks and even a closure of the gap in the magnetically insulating
transmission line (see Fig. 3).

As soon as the voltage reaches ~100 kV, breakdown occurs. At high densities, it -
has a tendency to develop in the form of a narrow channel which, generally speaking, is
not straight (Raizer, 1991). The energy required to jonize a breakdown channel to a singly-
charged state is very small. An estimate from below for this quantity can be presented as:

W,,.>nLa,’1,.p/Am, , (3.3)
where L is the column le;ngth, a, is its radius, I, is the ionization energy, p, is the foam
density, m, is proton mass and A is an average atomic weight. In “practical” units,

W (J)=3-10°L(cm)[a (cm) ]_zpo( mg/cm’)/A. B4
Taking L=1 cm, a;=0.05 cm, p=5mg/cm’ and A=20, one obtains W,,,~ 0.2 J. After the
first breakdown channel is formed, new breakdowns may still occur, because the inductive
voltage induced in the bulk of the dielectric can be quite high until 3-5 channels are formed.
So, one can expect that, after this first phase of the current pulse, the column. will carry
several discharge channels. Though the energy released in the breakdown is very small
compared to the total energy delivered to the pinch during the whole implosion process, the
consequences of the formation of non-axisymmetric breakdown channels can be quite
severe because the channel will have a density different from that of the external medium
and will serve as a strong perturbation during the MHD phase of the implosion. The role of
appearance of thin breakdown channels in fiber pinches with dielectric (frozen deuterium)
fibers was discussed by Meierovich and ‘Sukhorukov (1991).

In the state of single ionization, the plasma should have temperature ~2-3 €V. This
would correspond to relatively low magnetic diffusivity (Huba, 1994), D w~5-10° cm?s.

With this diffusivity, the resistive broadening of the current channel should be slow (for
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t=10 ns the broadening would be ~1 mm). In other words, as soon as several highly
conducting channels are formed, the initial current will be trapped in them. With the
continuing jonization of the column, the further current build-up will occur in a thin skin-
layer at the surface of the column. But, as we have already emphasized, the initial current
will remain trapped within several narrow channels inside the column. The presence of this
current will cause some distortions of the equilibrium; the trapped magnetic field will grow
proportionally to the convergence. Formation of several channels was observed in the
experiments with gaseous liners on ANGARA-5-1 facility (Volkov, Utyugov, and Frolov,
1993). The reason for their formation and persistence during the whole implosion event
could be just the one suggested above. ‘ '

An ideal situation would be, of course, the one where breakdown is produced
uniformly over th!e surface of the cylinder and intercepts so much current that the voltage
drop inside the cylinder becomes insufficient to produce any internal breakdowns. In this
sense, an interesting option is the use of a thin 'éondlfcting coating. The coating should not
necessarily be thicker than the skin-depth. What is sufficient (and -relatively easily
achievable even for the metal coatings with a thickness of order a fraction of a micron), is
that the L/R time of the circuit is considerably greater than 10-20 ns. There are experimental
evidences that conductive coatings and prepulse had a favorable effect .on the quality of the -
discharge (Nash et al., 1997a).

The presence of a pre-pulse can have a gonsiderable effect on the breakdown of the
coated foam. Even if the voltage during the prepulse is in the range of only a few kilovolts, -
it is sufficient, in the time-frame ~1 s, to fully evaporate conducting coating. Depending
on the voltage and the pre-pulse length, the evaporated material can expand by a few
millimeters. The conductivity of this relatively cold vapor will be low and, probably,
insufficient to inductively shield the liner. On the other hand, the presence of a gaseous

corona around the foam load may turn on the same breakdown mechanism as in the case of
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gas puffs (Sec. III A). A small axial magnetic field (~0.3 T) may be beneficial in producing
a more symmetric current-carrying shell.

The aforementioned scenario of evaporation of the coating without its ionization
corresponds just to one possible shape of the prepulse, with a long “pedestal” of a low
voltage. If the prepulse is shorter and with a higher voltage, then a fast transition from
vapor to a highly ionized plasma may occur. '

The effect of a current pre-pulse on the explosion of a single carbon fiber was
studied by Lebedev et al. (1998a) and Aliaga-Rossel et al. (1998). During the first 80 ns
after arrival of the main pulse, the fiber exposed to a pre-pulse showed a less developed
coronal plasma; later on, the differences between the wires exposed and not exposed to a
pre-pulse became insignificant. Mosher et al. (1998) reported of a better uniformity of

discharges in preheated white hot wires. o

C. Thermal instabilities; filamentation and striations

It has been known since the mid 1980s that, early in the pulse, surface layers of the
gas-puff pinch experience fast instabilities that cause formation of bright stripes
perpendicular to the axis and (usually later) parallel to the axis. We call first of them
“striations” and the second of them “filaments”. Such patterns, for instance, have been
clearly observed in the study by Branitskii et al. (1991) at the Angara-5-1 facility (Fig. 12).
In this particular experiment the maximum current was 3 MA, voltage 0.4-0.6 MV and
current rise-time~100 ns. The loads were usually Xe gas puffs with a height of 1 cm, initial
diameter 3 cm, aﬁd mass per unit length of ~0.1 mg/cm. kipples with a wave-length ~1
mm were formed immediately after arrival of the current pulse and were gradually replaced
by filamentary structure with the same wave length; these filaments persisted half-way to
current maximum. Azimuthal instabilities were not affected by replacing Xe with Ne.

These modes develop very rapidly compared to Rayleigh-Taylor instability and

should have a different nature. They are usually identified with thermal instabilities where,
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once the temperature in some fluid element increases (decreases), it continues to increase
(decrease). Possible causes of such behavior are: inqrease of radiation losses at decreasing
temperature, and positive feed-back in the Joule heating. In its “pure” form this instability
does not require mass redistribution and may occur at times short compared to the acoustic
time for the spatial scale of the instability (e.g., Afonin, 1995).

If parameters of the system are such that the growth rate of the thermal instability
becomes cor-nparable with the growth rate of Rayieigh-Taylér instability, they get coupled.
Such a situation was, in particular, discussed by Imshennik and Neudachin (1987, 1988).
In the absence of the gravity force (and, whence, the R-T instability), the slow thermal
instability gets coupled with acoustic motions. This instability can be called “radiative-
condensation instability” because of the formation of clumps of colder matter at its. ﬂon—
linear stage (Aranson, Meerson, and Sasorov, (1‘993»). Various aspects of these instabilities
have been considered by Velikhov et al. (1972), and Haines, (1974).

We discuss here these instabilities for the case where the thickness of the cylindrical
conducting shell is much less than the skin-depth, and where the mechanical motions of the
shell can be neglected (’fast” thermal instability). First, by solving Maxwell equations we
relate the current perturbation to the perturbation of the resistivity and then we plug the thus
found current perturbation into the thermal balance equation. '

For a thin shell, its properties can be characterized by th\e “surface conductivity” o,
which is the product of the shell thickness and the conductivity proper, or by a ‘;sﬁrface

resistivity” 7, =1/0,. The surface current can be presentedas .. ... _ ...

J=Em, B T (3.5)
where E, is the tangential componeht of the electric field. be perturbationé, one has:
5Jt= 6E,/T[:-(6 TL/ 712:) Ex’ (3-6)

where the sign “&” designates the perturbations, and the unperturbed quantities do not bear ‘
this sign. As we are going to consider perturbations with the scale length shortér than the

shell radius, we replace the cylindrical geometry by the planar one, with the axis x
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corresponding to the radial coordinate, and the axis y corresponding to the azimuthal
coordinate. In the unperturbed state, the current and the electric field have only the z
components, while the magnetic field has only the y component. The unperturbed magnetic
field is zero inside the shell (in our geometry, at x<0).

As there are no currents outside the shell, the magnetic field there is curl-free and
can be represented as a gradient of some scalar function v, O0B=-Vy. This function
satisfies the Laplace equation, V?y=0. We consider the perturbations in the form
exp(It+iky+ikz), where Rel” is a growth rate. In addition to the Laplace equation for v,
we will need the x component of Faraday’s law,

ik,0E, — ik, 0E, = —T'6B,. _ 3.7
The solution of the Laplace equation for the x>0 (x<0) half-space reads as:

Y. = A exp(Fhx), (3.8)
where k = W . We need to supplement these equations with the boundary conditions
at the x=0 surface: the continuity of the normal component of the magnetic field (this yields
A,=-A_in (3.10)), and the jump condition for the tangential components of the magnetic
field in terms of the surface current (3.8). Usiﬂg these conditions, after some elementary
algebra one finds the following expression for the perturbation of the current:

& = k2 1 &

: 3.9
: ‘k21+(I‘/1“)ns -9

where I/T, isa characteristic decay time for the current perturbations,
_2kn, _kn

TS

where h is the shell thickness. The yr corrrporrerlr of the eurrerlr_;rerrurbation Vis"(ify=- A

(3.10)

( k/k_‘.)dlz, and k, is related to the azimuthal mode number m: k=m/r. It is also convenient
to introduce the angle o bet\;veen the unperturbed magnetic field and the wave vector:
sina=k/k. Note that, accordmg to (3 9) for hrghly conductive shells, where the resistive

decay time 1s very long compared to the time of the process, the relat1ve current
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perturbation, 6/, /J,, can be small even for considerable perturbation of the resistivity,
(on/m)~1.
Now we switch to the equation of the thermal balance. It can be presented in the
form:
oT) =n,(T)J* —4¢(T), (3.11)
where Q is a plasma energy content per un.it area of the shell, and g is the power loss
(radiation) per unit area. The equilibrium state corresponds to the balance of the two terms
in the r.h.s.: . )
M(L)J* —q(T) =0. . " (3.12)
The equation for the temperature perturbation, written with the account for the equilibrium
condition (3.12), is: : . e . ‘
o s el N D)

4

where the prime designates the derivative of the corresponding quantity over the

temperature, and C, is the heat capacity per the unit area of the shell. Using Eq."(3.11), -

one then obtains the following dispersion relation:

’ 2 ’ ]
r=90 |, 2052 | g (3.14)
CVns 1+ (1"/1"0) CV

with sina: =k, / k.
Instead of exactly solving this (quadratic) equation, we present a qualitative
discussion of possible instabilities described by it in some limiting cases. One extreme case

is that of a strong temperature_dependence of the heat losses and a weak temperature

depeﬂdence of the resistivity. In this cz.ise, one can neglect the first term in ﬂle r.h.s. of Eq.
(3.14). The remaining term predicts the instability if g’ <0, in other words, if the radiative
losses decrease with a temperature incgg:,as_e.ﬂ'vl‘hiﬁs may happen in an optically thin plasma
dominated by free-bound radiation or by line radiation, where some strér;g transitions

disappear with the growing temperature because of the change of the ionization state.
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In the opposite limiting case where the temperature dependence of the resistivity is
dominant, one can neglect the last term in the r.h.s. Instabilities present in this case are
driven by the temperature dependence of the resistivity. Somewhat paradoxically, these
instabilities are present at either sign of 7; what depends on the sign is their spatial
structure. At 177>0, to make the r.h.s. as large as possible (at I" positive), one has to
choose o=m/2 (m=0). In other words, the fastest growing modes at a positive temperature
dependence of the resistivity are axisymmetric modes (“striations”). At 7;<0, the most
unstable modes correspond to =0, in other words, to the purely azimuthal perturbations.

For them one has (with ¢’ = 0):
gl 1=/

cm, 1+(@/Ty)

The largest growth rate corresponds to I';—>ee, in other words, according to (3.10), to

(3.15)

large m number (thin filaments stretched along the axis). Our simple model dé)es not
include the thermal conductivity along the surface of a layer. If included, it will limit from
below the size of both striations and filaments.

The positive dependence of resistivity vs temperature is typical for low
temperatures, where the jonization degree grows and electron-neutral collisions get replaced
by the Coulomb collisions with much higher cross-section. Accordingly, striations should
form predominantly at the early stage of the pulse. This instability, as well as the other
thermal instabilities, can reach a strongly non-linear stage. They will eventually cause

redistribution of matter (the process that we have not included into the analysis presented

above). Such nonlinear structures may exist much longér than 7] is positive and seed the
Rayleigh-Taylor instability.

The negative dependence of resistivity vs. teﬁiperature' takes over later, when
plasma gets singly ionized. Therefore, filamentation should develop later than striations - in
agreement with the aforementioned experimental data by Branitskii et al. (1991) (Fig. 12).

The presence of azimuthally asymmetric structures in the foam loads was recorded on the
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Saturn device (Lazier et al., 1997), although in this case their appearance might also be
caused by a discrete azimuthal structure of the return current conductor.

1
D. Early stage of the wire array discharge; merging of the wires.

Driving pulsed currents through single metal wires and dielectric fibers has been the
subject of numerous experimental ét;ldiCS: Aliaga-Rossel et al (1998), Aranchuk et al.
(1986); Bartnik et al. (1990), Beg et al. (1997), Mosher and Colombant (1992), Sarkisov
and Etlicher (1995); Sarkisov et al. (1995 a,b), Sethian et al. (1987), Skowronek and
Romeas (1985). Theoretical analyses were published.by Coppins et al. (1988), Rosenau et
al. (1988), Bud’ko, Liberman, & Kamenets (1990), Neudachin and Sasorov (1991),
Sasorov (1991), and Bobrova et al. (1992).

An important feature of the discharge in a single wire is that the wire core, at least
for thick wires, may remain cold and expand very slowly. The core is surrounded by a
plasma “corona” that contains only a small fractioh of mass but carries almost all the .
current. This conclusion was made in the paper by Aranchuk et al. (1986) specifically
devoted to experimental studies of single wire explosions (see also an earlier paper by
Aranchuk, Bogolyubskii and Tel’kovskaya, 1985). They have found that, in tl.w
explosions of 20-um diameter copper wires, only 2-7% of the total mass was carrying the
current and radiating. The rest of the mass remained cold. This corona was subject to
violent unstable motions, while the core remained more or less cylindrical. fI‘he maximum
- current through the wire -was 0.5 MA, the current rise time was approximately 100 ns. The _.
halo plasma can be formed because of desorption during a pre-pulse (a point made in
Bartnik et al, 1990) or just because of the evaporatioh of the whole wire. This relatively
low-density halo provides better conditions for the breakdown (Cf. Sec. IIT A). A strong
effect of the wire cleanliness on formation of the corona was reported by Bartnik et al

(1994). A long lasting core of the exploded wire was observed by Kalantar and Hammer

(1993). Sarkisov et al. (1995 a,b) detected a thick core in explosioné of 20-um copper
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wires; they used absorption of the 532 nm laser light to detect the evolution of the
exploding wire. Beg et al. (1997) performed a very detailed study of explosions of carbon
(7- and 33-um diameter) and aluminum wires (25-im diameter) at the maximum current ~
100 kA and current rise time 55 ns. For the thicker wires, the core existed at least until the
current maximum, whereas for the 7-pm carbon wire it disappeared within ~ 10 ns (we
note in passing that the paper by Beg et al. (1997) contains a wealth of information on the
wire pinches, including detailed characterization of the instabilities in coronal plasma, and
detection of electron beams). Detailed numerical simulations of development of the m=0
instability have been recently published by Chittenden et al (1997). The theory attributes
formation of the corona to the Ohmic heating of the low-density plasma due to anomalous
resistivity (Sasorov, 1991; Haines et al, 1996). We will return to this issue in Sec. VII A.

' The behavior of the plasma corona of the wires assembled in a cylindrical array is
very different from that of separate wires. The reason is the presence of a strong common
magnetic field. As a curiosity, one can mention the following: the common magnetic field
of the wire array near its surface is pI/27r, where r is the array’s radius. The magnetic field
produced by a certain wire at the location of its closest neighbor (i.e., at the distance 27r/N,
where N is the number of wires in the array), is ul/{2x)’r, i.e., universally smaller by a
factor of 27 than the common field.

This common field accelerates the light coronal plasma past the wire cores towards
the center of the array and forces the current to switch to the cores. Therefore, there is
reason to believe that the current will be forced to flow in the wire cores. This assumption
is supported by the fact that the dynamics of the wire array implosion corresponds, to a
good accuracy, to a model in which the whole mass of the wire array is involved in the
implosion, at least for a sufficiently large number of wires in the array (Cf. Sanford, et al.,
1999 a,b). The systematic study of the effect of the number of wires on the pulsewidth of
the radiation emission carried out in this paper points also at a significant decrease in

precursor plasma at a large number of wires. There is a good agreement of the radiation
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pulse with the simulations based on the assumption that all wire mass is involved in the
implosion (e.g., Fig 11 in Spielman et al, 1998). It should be noted that, for a smaller
number of thicker'wires, the effect of current interception by the coronal plasma may be
s1gn1ﬁcant with a large amount of a blow-off plasma accelerated to the center of the array
(Aivazov et al., 1988; Lebedev, etal, 1998 b, 1999)

Limiting ourselves to the case of a large number of wires, we assume that
essentially all the mass of the wire is involved into hydrodynamic motions. As is well
'known (see Kadomtsev, 1966; Bateman, 1980), a wire is unstable with Tespect to MHD
sausage and kink modes. For perturbations with wavelengths exceeding the wire radius,
k<ry', growth-rates are: L '

2.2
T~ _B_k_ ST - (3.16)
(m/Nm‘w) ‘ » :

v seme i - wee - -

where B, is the magnetic field mtensrty at the surface of the w1re (we ignore the factor 2—3

difference between the growthjrates of the‘lcmk and sausage modes).;. Numerical results )
pertaining to speciﬁc radial profiles of the current : and the density can be found, e.g., in ;
Felber (1982) and Pereira, Rostoker, and Pearlman (1984). ‘ |

According to what has been said above we assume that all the wire mass is
involved in the hydrodynamic motion. The modes with k~I/r,, where r, is the
instantaneous radius of an individual wire, create perturbations randomly distributed over
the wire length and cause a gradual broadening of the wire (the increase of the_effecﬁve rw).

VAssurning that the growth rate of short-wave perturbations is large compared to the

characteristrc times involved in the problem (so that the perturbations reach a nonlinear _‘
state), the expansion velocity is independent of initial perturbations. In this regime the
expansion velocity can be evaluated (in particular from the dimensional considerations), as

v~IT,. Using expression (3.16) and noting that B, =ul/27Nr,, one finds:

" .
~1j—E— 3.17
. Y N aman G-17)

In “practical” units,
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3.101(MA)

viem!s) ~ JN-rﬁ(mg/cm) )

(3.18)

Solving equation 7 = v with I as in (2.6), one finds that r, reaches a half of the inter-wire

_t_~15[7'r‘t(mg/cm):|1/6[ r(cm) ]1/3. (3.19)
T N 7(ns)lo(MA)

gap, 7r/N, at

For the wire array with the “standard” Z parameters, #/7 is ~0.5. Therefore, development
of the MHD instabilities of the wires can, in principle, cause an early merging of the wires.
Note that at #/7~0.5 the current in the wires reaches only a quarter of its maximum value,
and the array’s diameter experiences only a very small change. This is why we neglected
change of r in the preceding discussion. In a more sophisticated version of this arialysis,
one should take convergence into account.

If the MHD mechanism of the wire merf;ring is indeed the dominant one, one can
make some predictions with regard to the initial state of the thus formed liner: it will be
grossly non-uniform, with the spatial scale of the non-uniformities of the order of a half of
the inter-wire distance. These non-uniformities will be both axial and azimuthal. This
observation may be of some value for the numerical simulations of the R-T instability of the
type carried out by Peterson et al. (1996, 1997, 1999). In a model suggested by Haines
(1998), the perturbations developing‘in the wires are assumed to be uncorrelated. Based on
this assumption, Haines comes to a conclusion that the amplitude of macroscopic
axisymmetric perturbations (which has to be obtained by the averaging over the azimuth),
should scale as N*2, with N being a nurhber of the wires in the array. Experimentally, an
increase of the number of wires had a favorable effect on the implosion symmetry (Sanford
et al, 1996, Deeney et al, 19970, Deéhéy, et al., 19.9'8aj.’ The authors of these papers relate
improved performance to an early formation of a continuous shell in the case of a large

number of the wires (see also a moré.'rééent sfudy by‘San'ford et al, 1999).



In summary, the merging of the wires most probably occurs in a turbulent fashion,
with development of the perturbations with the scale of the order of the instantaneous wire
radius. When méf;ging occurs, the thus formed shell has a thickness of order of the inter-
wire distance anci non-uniformities of the same scale. The amplitude of non-uniformities is
of order of 1. This sets the stage for the further evolution of the liner, where two competing
processes occur: smoothing out the inhomogeneities by virtue of hydrodynamic motions
and thermal conductivity, and enhancement of those modes that are Rayleigh-Taylor

unstable. . - ~

IV. HYDRODYNAMIC STABILITY OF AN IMPLODING LINER

o e o e PP R

The Rayleigh—T;.ylor (R-T) instability plays an important role in essentially all
high-energy-density experiments, including experiments with fast Z pinches and ICF
capsules. This instability is universal and very difficult to stabilize. It is a key factor among
those setting the limit for the perforghance of fast Z pinches and other pulsed power
devices. As one might expect, there are hundreds of publications devoted to the studies of
this instability in general and in the pulsed plasma systems in particular. We will certainly
not be able to cover all the relevant results in this relatively compact paper. The interested
reader can find further references in the surveys by Sharp (1984), Kull (1991), and Lindl
(1995), the latter survey considering specifically the physics of ICF capsules. A summary
of experimental results for ICF capsules was given by Kilkenny et al.-(1994).-As a good - -
general introduction, one could recommend 'Chagla.rasekhar’s book (1961) which,
however, deals only with incompressible systems.

In this section we discuss the instability of an ideal fluid, without accounting for
dissipative processes like viscosity, thermal conductivity, and electrical resistivity in the
body of the fluid (although we allow for the presence of shock waves, which are, of

course, dissipative structures). Dissipative effects are discussed in Sec. V.
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Generally, theoretical analysis of the magnetic Rayleigh-Taylor instability involves
very lengthy calculations which do not match the format of this survey. Still, to give the
reader a possibility to follow more closely some important arguments, we present a
complete derivation of the growth rates for one relatively simple system: a slab of a
uniform, incompressible, perfectly-conducting fluid supported from below by a horizontal
magnetic field (Harris, 1962). After that, mostly on the qualitative level, we will add new
elements to the picture of stability.

One should remember that, in the implosions of thick metal shells of the type used
by Degnan et al. (1995), the structural strength of the material can have a considerable
stabilizing effect at the early stage of the implosion process. These effects have not yet been
studied in great detail and we will not discuss them below. Some further information and

pertinent references can be found in Atchinson et al. (1997).

A. Stability of a slab of an incompressible fluid.

The geometry of the problem is illustrated by Fig. 10: the slab thickness is &, the
gravity force is directed downward in the x direction, with g =-e. g, and g>0; the
unperturbed magnetic field B occupies the lower half-space, x<0, and is parallel to the axis
y. In the geometry of a cylindrical implosion of a thin shell, x would correspond to the
radial coordinate (directed in this case to the axis), y would correspond to the azimuthal (8)
coordinate, and z, to the axial coordinate. The unperturbed magnetic field that supports the
slab, is related to the gravity force and ,tl;e fluid density by the obvious relationship:

B
pgh ='§;l: = Do . (4.1)

where we use the notation p,, to designate the magnetic pressure.
As the unperturbed state does not depend on time or the coordinates y and z, one

can seek the solution of the problem in the form of the harmonic perturbations in these

46




variables, i.e., in the form f(x)exp(—iat+ik,y+ik,z). The instability corresponds to

Imw>0. Sometimes, instead of w, we use the growth rate,

! I'=-io. 4.2)

The linearized hydrodynamics equations are: " ‘
—0'pE=-Vop, @.3)

v.E=0, : @4.4)

where & is the displacement of the fluid element with respect to its unperturbed position,
and Jp is the pressure perturbation. These equations yield V2&p = 0, with the solution
Op = Aexp(kx) + Bexp(—kx), 4.5)

where -

k=K i, (4.6)

and A and B are arbitrary constants. One finds then from (4.3) that

k
5; = e [Aexp(kx) - chp(—kx)]. (4.7)‘

At the upper and lower boundaries of the slab, one should impose boundary conditions of
the pressure balance at the perturbed boundary. These conditions are: -
&p - pg&. =0, the upper boundary, 4.8)
dp — pg&, = dp,,, the lower boundary, 4.9)
with dp,, = BOB,/j1. To find the iriagnetic field perturbation at‘:the perfectly conducting

surface, one should use the condition that the magnetic field has a zero normal component

at the surface, or, in other words, th_at .
R ) : J . -"Sn“é*—”SBﬁ-’B&z;E’ 0,

@0y

where n is the unperturbed outer normal to the lower surface, r=(-1, 0, 0), and

ony = 9E, 1y = ik,£, . Perturbation of the vacuum magnetic field is curl-free, whence

oB=-Vy. (4.11)
The scalar potential satisfies the Laplace equation,
.32 -
Viy s%—k2w=o | (4.12)
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Its solution evanescent at x—>-co is

y = Cexp(kx) (4.13)
where C is another arbitrary constant. Substituting this solution into (4.11) to find 6B,,
substituting the resulting expression for 8B, into (4.10) to express C in terms of the value

of &, at the lower boundary, and returning to Eq. (4.11) to express 6B, in terms of &, one

finds that the magnetic pressure perturbation, dp,, = BB, / /1, at the lower boundary is:

5pm —2_)_"pm§x' (4° 14)

k

This equation shows that magnetic pressure increases (decreases) at the bumps, £ <0 (dips,
&_>0) of the sinusoidally perturbed surface. This can also be rephrased as a statement that
the magnetic energy .perturbation is positive, thereby providing a stabilizing effect (the
perturbation of the gravitational energy, for the unstable perturbations, is negative).

Using relationship (4.14) and substituting solutions (4.5) and (4.7) into the
boundary conditions (4.8) and (4.9), one ﬁnﬁs two linear homogeneous equations for the
constants A and B. From the condition that the determinant of this set of equations is zero,

one obtains the following dispersion relation for the eigenfrequencies of the problem
o\ _ 2Kk 1rexp(-2kh) ” | 2Kk
kg k 1—exp(-2kh) kg k

=0. (4.15)

Introducing an angle o between the magnetic field and the wave vector,

cosa =k 1k (4.16)

one can present the roots of this dispersion relation as:
1/2

2 . _ 2
el =_khcoszali—mh—)—i khqoszalﬂg(—z@—). +1-2khcos’ o 4.17)
kg 1—exp(-2kh) 1-exp(—2kh)

The sign “plus” correspdnds to a stable root. The nature of a stable mode becomes
particularly clear in the limit k —eo, where the eigenmode corresponding to this root gets
strongly localized near the upper surface, with A/B in the equation (4.5) becoming of order

of 1 (this means that, near the upper surface, the second term in the expression (4.5) is

exponentially small compared to the first one). The stable mode is an analog of the gravity
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wave on the surface of a fluid (see, e.g., Landau and Lifshitz, 1987). At smaller k, the
eigenfunction of this mode encompasses the whole layer put still is somewhat stronger
concentrated neal; the upper surface, where the gravity force is directed to the fluid, so that
the stabilizing contribution dominates. -

The second root corresponds to the mode that can be stable or unstable, depending
on the wave number k. The mode is unstable at small k’s and stable at large k’s. The

critical wave number k, at which the mode becomes stable, is:
1

0= (4.18)
For o ~45° the critical wave number is of the order of /7. At large k’s, the magnetic energy
perturoaﬁon (positive) overbalances the gravitational energy perturbation (negative, for a
mode localized near the lower surface). Whence, the stability at large k’s.

An exceptional role is played by the perturbations with a=7/2. In this case, the
system is unstable at all K’s. A perturbation with o=m/2 - is sometimes called the flute
mode. Its remarkable feature is that it does not i)erturb the vacuum magnetic field and
therefore the positive (stabilizing) “contribution of the magnetic energy pertllrbation
vanishes. In cylindrical geometry this mode ’corresponds to axisymmetric perturbations,

with no dependence on the azimuthal angle 6.

At small K's the growth rate reducesto =~

1"=\/kg[\/1+bos4d‘—‘co's‘2a]‘ ' T (419)

and becomes independent of the thickness of the iayef For these —lé'rge—scale I;ertmbations

L —

o e e e

the Iayer can be considered _]ust asa structureless mﬁmtesnna]ly thin grav1tat1ng sheet The
overall dependence of the growth—rate on the wave vector for several values of o is shown
in Fig. 13. Ata=0 (a purely a21muthal mode in the cylmdncal geometry) the growth rate is
equal to 1/kg(«/_2_ ~1) (e.g., Harris, 1962; Kleev, Velikovich, 1990).

These results pertain to constant density‘ distributions. A broader class of density

distributions of incompressible fluids has been studied by Munro (1988). If the lower
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surface of the fluid is free, then, there exist modes with the growth rate (kg)"?. At large k
they are strongly localized near the interface and have large growth rate. If, however, the
transition is smooth enough, the growth rate is limited from above. Some further
discussion of these modes can be found in Inogamov (1985), Bychkov, Liberman,

Velikovich (1990), and Bud’ko et al (1989).

B. Effects of compressibility

The most important new element that emerges from the finite compressibility is the
presence of propagating acoustic waves. Various aspects of the R-T instability in
compressible fluid have been discussed in Landau and Lifshitz (1987), Catto (1978); Parks
(1983), Bernstein and Book (1983), Gonzales and (_3ratton (1990), Lezzi and Prosperitti
(1989), Gratton, Gratton and Gonzales (1988), Budko and Liberman (1992), Ryuto'v and
Toor (1998). We discuss here a slab of plasma whose temperature in the unperturbed state
is constant, supported from below by a uniform magnetic field in the geometry identical to
the one shown in Fig. 10, under the assumption of the perfect plasma conductivity and
vanishingly thin transition layer between the plasma and the magnetic field. Later, in Sec.
IV C, we address the issues related to the finite thickness of the transition layer.

If the composition of the plasma does not change in the vertical direction, then
plasma density and pressure follow the exponéntial dependence (2.26), p,p o< exp(—x/h)
with the scale-length £ (2.27). It turns out that the problem in the case of a sharp plasma-
vacuum transition allows an exact solution (Parks, 1983, Bemsteip and Book, 1983,
Gratton, Gratton and Gonzales, 1988). When acoqsﬁc waves (til# 'ar‘e A_presen@ now ina
fluid) propagate in a plasma with exponentially decreasing density (as is the case of a
constant-temperature slab supported from below), their amplitude grows exponentially.
Therefore, in the perturbation analysis one must ailow for the presence of the solutions

{

exponentially growing in the vertical direction and it would be incorrect to impose a
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constraint of an exponentially decreasing solution. Further details related to this issue can
be found in a comprehensive analysis by Gratton, Gratton and Gonzales (1988).

We preserit a dispersion relation for unstable modes in the form derived in Ryutov
and Toor (1998). Using the same notation as in Sec. IV A, one can write it as:

2
o* -k*g* +2cos’ O(kg[co2 (2 cos’ o kgiz - l) +2k*gh(1- khcos® a)] =0 (4.20)
s

where
»_

sz= =

P

is the sound speed. Its unstable solution behaves very much in the same manner as the

RIS

= 1gh (4.21)

solution of Eq. (4.15): at small k’s, kh<< I, the growth rate is determined by the same
expression as for the incompressible fluid, i.e. by Eq. (4.19), while at larger k’s it
decreases and turns zero at some critical k=k,, which is exéctly the same as (4.18).
Formally, Eq. (4.20) has unstable soiutioqs- even at k>k, However, these
solutions correspond to the modes whose amplitude grows in the vertical direction faster
than exp(x/2h), so that the energy density diverges at large x. On this basis, Gratton, .
Gratton and Gonzales. (-1988) (correctly) consider thesé solutions as unphysical. What
happens with perturbations at k>k,, can be more clearly demonstrated by the analysis of the
initial value problem based on the use of the Laplace transform: if one stirs the plasma near
the lower boundary and creates there perturbations with spatial scales much smaller than
1/h, then a part of the perturbation is radiated as acoustic waves in the upward direction,
‘and a part stays near the boundary as a stable surface wave. __- -0
. Let us discuss in some more df:::tail the reason why, at small &’s, the scale-height &
drops out from the dispersion relation so that all the information on the structure of the
plasma slab disappears from the dispersion relation; the sound speed also disappears from
it. First one notes that the sound speed s is related to the other parameters of the problem
through the relationship (4.21). The sound propagation time over the distance ~1/k is I/ks.

Using Eq. (4.21), one can easily show that for long enough perturbations with k<k,~I/h,
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the instability e-folding time (~1/JE ) becomes shorter than the sound propagation time

(1/ks). Basically, this means that the parts of the slab that are separated by a distance
exceeding 1/k, cannot communicate to each other by acoustic signals propagating inside the
slab; therefore, they evolve independently of each other.

From these considerations we see that, for the modes with a parallel scale-length
exceeding the thickness of the layer, k<I/h, one can neglect the interaction between
different points along the surface of the imploding shell. The shell itself, for such modes,
can be considered as a thin structureless surface possessing some inertia (determined by the
mass per unit area). This is a very important observation which helps one to make some
clear predictions regarding the evolution of the modes with k<I/k (see Sec. IV D).

These arguments allow one also to make some conclusions with regard to the
stability of the wire array before the wire merging: if one considers the m=0 perturbation
with wavelengths much greater than the inter-wire distance, the fact that the array consists
of separate wires does not manifest itself in any way, and expression (4.19) correctly
describes the growth rate. The stability of some modes with wavelengths comparable to the
inter-wire distance has been studied by Felber and Rostoker (1981) and Samokhin (1988).
Felber and Rostoker have shown that there exist two types of modes: the ones in which the
wires remain within the meridianal planes (medial modes, according to terminology
introduced by Hammer and Ryutov, 1999), and the ones where the wires bend along the
surface of the cylinder (called lateral modes by Hammer and Ryutov). A complete linear
stability analysis for arrays consisting of a large number of wires (Hammer and Ryutov,
1999) has shown that a \/-IE scaling holds for surprisingly short wavelengths, approaching
the interwire spacing. The growth rate for the lateral modes is as high as the growth rate for
medial Rayleigh-Taylor modes. For wavelengths shorter than the interwire spacings, an
approximately linear dependence on k& takes over. For the m=0 medial mode, Desjarlais and

Marder (1999) have considered both linear and nonlinear stages of the instability.
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Amplitude of the initial perturbation for the m=0 mode was determined on the basis of
Haines’ theory (Haines, 1998) mentioned at the end of Sec. Il D of this survey.
]

C. Smooth transition between the plasma and the magnetic field; local
modes

The finiteness of the plasma resistivity smoothes the transition between the vacuum
magnetic field and the plasma. Fast development of short-wavelength flute perturbations
(for which the critical wave number is infinite) also smears out the transition. We will use
notation k, to denote the thickness of the transition; 4, can be smaller than or comparable to
the total thickness of the shell # (Sec. .1 G). For perturbations with wave numbers below _
1/h,, one can use the results of the previous section. In this section, we consider
perturbations with the wave number much greater than 1/,, so called local modes. The
growth rate of these modes depends on the local value of the density gradient p’. Since
within the transition layer the characteristic value of the magnetic field strength is of the
order of the vacuum magnetic field, these short-wavelength perturbations can be unstable
only if they are of a flute type (otherwise, perturbation of the magnetic energy becomes -
prohibitively high). The growth rate for the flute perturbations has been derived by Chen -
and Lykoudis (1972): , :
= (a—z% + iﬂ) , ‘ (4.22)

where a2—2p,,/p is the local value of the Alfven speed For p’>0 the local modes are

universally unstable Tak.mg into account rough estimates p'/p ~1/h, and gh a +s2that
follow from the equilibrium condition, one can estimate the growth rate of the loeahzed

modes as A | “ |

I~g/h, . (4.23)

Note that the presence of the magnetic field within the shell does not change the

conclusion made in Sec. VLB regarding the properties of the long-wavelength
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perturbations: at k<<I/h, the instability e-folding time is shorter than the time needed for
the Alfven wave to propagate over the distance 1/k. Therefore, even if the magnetic field
penetrates into the shell, the long-wave perturbations behave as perturbations of a massive
structureless infinitesimally thin sheet.

Another comment is related to the perturbations localized near the interface between
the plasma and the magnetic field. The growth rate of the modes localized near this
interface, at large k’s, doesn’t reach a saturation, because the parameter -p’/p near the
interface becomes infinite. On the other hand, if the interface is smeared and the density
decreases, say, exponentially, the growth rate at large k’s reaches a saturation (see also

comment at the end of Sec. IV A).

D. More on the stability of a thin shell; effects of accretion

As has been shown in Sections IV A, B, the analysis of perturbations with
wavelengths exceeding the shell thickness can be carried out without account for the
internal structure of the shell. This allows one to obtain a relatively simple description of
the instability including effects of the cylindrical geometry of imélosion (Harris, 1962), of
the mass accretion effects (Gol’berg and Velikovich, 1993; DeGroot et al., 1997b), and
even get some insights into nonlinear phase of the problem (Ott, 1972; Bashilov,
Pokrovskii, 1976; Manheimer, Colombant and Ott, 1984; Basko, 1994; Book, 1996). We
derive the corresponding equations in the planar césc. Later, in Sec. IV F, we discuss
effects of a cylindrical geometry.

Consider a thin shell accelerated by a magnetic pressure p in the x direction (Fig.
14). The horizontal line at x=0 depi‘cts' the initial position of the shell. We will analyze only
most dangefous flute perturbations aligned with the magnetic field lines which are directed
along the y axis. In other words, we consider perturbations which do not depend on the
coordinate y. The motion occurs in the (x,z) plane. The magnetic pressure then is uniform

even on the perturbed surface of the shell.
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Following Ott, we denote by &(z,2) and £(z,1) the x and y displacements of a
certain element of the shell (whose initial location on the shell surface was z). In other
words, at this point we are using a Lagrangian description of the peturbations. These
displacements are not assumed to be small: we are going to obtain é non-linear set of
equations. We will also take into account the possibility of mass accretion on the shell from
the gas initially situated at the x>0 h;alf-space, assuming that the gas just sticks to the shell

(strongly radiating plasma, see Sec. II B,C). In the unperturbed motion one obviously has

£=0and .
a 0 a oE°

where p is the density of the cold resting gas swept by the shell, and g, is the mass per unit
area of the shell (varying with time bqéause of the accretion).

Let us denote by Az an initial distance beﬁw_een the two neighboring points at the
surface (Fig. 14). One of them gets disfléced to the point (6 (z.1), £(z,1)), the other to the
point (€ (z,1)+Azd € (z,1)/0z, f(z,t)+Az3 é(z,t)/Bz) Let the mass of this element of the
surface be Am . The change in thc mass occurs because of the accretion. Usmg simple

geometrical considerations (identical to the onés used by Ott (1972)), one finds:

- g_g) |
b p( sh-Gt)e 4.25)
or o .
| % ag) .
&= p(&éuazf =, (4.26)

where the dot designates a partial derivative over the time. Equations of motion can-be

obtained in the same way as in Ott (1972). They read as: - : P
9 (5% ) 9_1.;._‘2( &)__ﬁ
at(aat)—p&z’&c& —paz. 4.27)

If the shell is being accelerated into the vacutim, then & does not depend on time,
and one does not need Eqg. (4.263 fc")r» b‘. 1;1 this case Egs. (4.27) become the linear

equations. This observation was made by Ott: the Lagrangian formulation of the problem in
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this case leads to linear equations describing even the finite-amplitude perturbations. Note
that Bashilov and Pokrovskii (1976) generalized Ott’s nonlinear solution to the cylindrical
case. We will comment on the properties of the non-linear solution later and now will

discuss small perturbations of the shell. To distinguish the perturbations, we will mark

them by a symbol “5”. We get: :
d( _ J6E, 6L, .
—(0'0 5 )=(p—pv2)79y—y—v60';

AN

o 996y __ 90

at(o'o = )— P (4.28)
.@.: Biéy.

o,

where v=0§ %/or.
If there is no material in front of the accelerated shell (p=0), then the set of

equations (4.28) becomes particularly simple:
%8t _ L%, P, _ _ %%
or? d o dy ’

Here g=p/0,, is the effective gravity force. For the perturbations with exp(-ikz) dependence

(4.29)

on the co-ordinates this equation yields a familiar expression for the growth rate (Cf. Eq.
(4.19) with 6=m/2): I'=(kg)"*.

An interesting point here is the surface density perturbation of the shell. The
quantity o that we have been using so far was the Lagrangian density: a mass that
corresponds to a segment of the shell whose end points originated at the ends of the initial
segment Az, divided by this Az (see (4.26)). If there is no accretion, then the thus defined -
density is constant. But the real density of the shell defined as a mass Am occupying some
segment AZ on the surface ofrthe shell, divided by this A/, is changing (because AZ is
changing). One can show that the surface density is redistributed over the shell in such a
way that the density decreases on the tops of perturbations .and increases on the bottoms

(Fig. 15). This contains a hint on the process of a self-acceleration of the instability at the
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non-linear stage: the areas of a lower (higher) density tend to move ahead (lag behind)
faster than in a linear approximation. We will return to this issue in section IV G.

Consider how a linear instability in a more general case where accretion of the
material is substantial and one has to use a general set of equations (4.28). A characteristic
time of changing the parameters of the system, in particular, the mass per unit area and the
acceleration is T

t=0/6=0/(pv). 4.30)
As the e-folding time for short-wavelength perturbations decreases with %, at large enough
k’s it becomes much shorter than 7. This happens at k >> p*v?/go. The magnetic
pressure is related to the ram pressure of the accreted material via pv? ~ p. Using this
relationship, one finds that the limit of large growth rates corresponds to

k>>p/o, - ¢ o o 4.31)
in agreement with DeGroot et al (1997b). At some medium point in the acceleration process
the r.h.s. of (4.31) is of the order of the inverse path travelled by the shell, in other words,
_the inverse pinch radius. In this case one can consider all the unperturbed parameters
enterin;;y the set (4.28) as constant. This yields the following expression for the

instantaneous growth rate:
k 1/2 ) 174
r=\=| [pp~pv)] - (432)

This expression dlffers from the correspondmg express1on of DeGroot et al. (1997b); in

particular, Eq. (4.32) predicts that the growth rate approaches zero at p close to pv when

 the shell is movmg without acceleratlon

For wavelengths that do not satlsfy} condition (4.3,13, the perturbation growth
cannot be adequately deﬁnéd in terms of the instantaneous growth rate; in this domain one
has to solve a full set of differeﬁﬁal equations (4.28). Qualitatively, in tﬁis domain the
accretion still should lead to a decrease of &1e perturbation growth (Cf. Gol’berg and

Velikovich, 1993). Cochran, Davis and Velikovich (1995) have shown ‘by solving
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numerically a 2-D set of equations of radiative hydrodynamics that uniform gas-puffs are
more stable with respect to axisymmetric Rayleigh-Taylor instability than annular gas-puffs

— in agreement with a general trend predicted by Eq. (4.32).

E. The case of a detached shock wave

In the previous section we have been discussing stability of a system where the gas
just sticks to the surface of the piston. As we have mentioned in Sections II B,C such a
model correctly reflects a situation where the gas collected by the piston is strongly
radiating, so that the distance between the shock and the piston is negligible (an ultimate
case of the snow-plow model). For the short current pulsés typical for experiments on fast
Z-pinches and low initial temperature of the matter, a strong shock will form that will
propagate ahead of the piston. In this section, we discuss the situation of a weakly radiating
plasma, where the plasma behind the shock remains hot, with the pressure at the surface of
the magnetic piston equal to the magnetic pressure (Fig. 16). There exists a broad class of
exact (self-similar) solutions describing plasma flow between the shock and the piston in
the planar case, i.e., at the éarly stage of the implosion (see, e.g., Gol’berg and
Velikovich, 1993). Stability of this solution with respect to Rayleigh-Taylor modes was
discussed in Gol’berg and Velikovich (1993) (who, in particular, formulated boundary
conditions at the surface of the shock wave) and later by DeGroot et al (1997b). We present
here only (our own) qualitativ‘e discussion of the prol:;lem: -

_ Denote by k the thickness of the layer between ,t{hgishpfck and the piston. The modes
with k>>1/h localized near the piston do not differ signiﬁc.amtly from the modes considered
in Sec. IV B. Among those, only pérturbations close to flute modes are unstable.
However, for these unstable médes the growth-rate is large,~(kg)"?. These perturbations
will cause a gradual broadening of the transition between the plasma and the magnetic field.

Consider now long-wavelength modes (k<<1/h). For these modes, the transition

layer is “thin” and, according to the results of Sec. IV A-C , can be considered essentially
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as a structureless surface. A growth rate could be estimated again as ~(kg)"”. In the k<<I/h
case, unlike in the opposite case, the modes with an arbitrary orientation of the wave vector
are unstable, The:mass of the layer gradually increases because of the adding of material
swept up by the shock wave. At small k’s (small growth rates) the change of mass within
one e-folding time may become considerable, and the concept of the instantaneous growth
rate may break down (Gol’berg and Velikovich, i993).

The thickness of the layer k is relatively small even for a non-radiating plasrﬁa:
since the shock is strong, the density behind the shock is determined by Eq. (2.20); for a
fully ionized gas with 7=5/3 the density is 4 times higher than the densitj} before the shock
and the thickness of the shocked material is, roughly speaking, 4 ﬁrhes less than the
distance travelled by the shock. If one deals with a weakly ionized gas where a
considerable fraction of energy is spent on the iopization of the shecked gas, “the effective
v “ becomes smaller than 5/3 and the layer of the shocked material becomes even thinner.

At a convergence of~3-4 (for a gas with 9=5/3), the shock reaches the axis and
upon rebounding returns to the piston, leaving behind a hot plasma with the pressure
approximately equal to the magnetic pressure. The furtheI: compression of the hot material
occurs in a quasistatic manner, almost adiabatically, with the plasma pressure equal to the
magnetic pressure (Potter, 1978). This adiabatic compression (in the absence of radiative
losses) may occur only if the current continues to grow. The plasma boundary at this phase

decelerates, and stops at the current maximum. The pinch at this point is very similar to the -

equilibrium Bennett pinch. Of course, ‘the Rayleigh-Taylor instability -ceases to exist. .

Among the hydrodynamic instabilities, only the ones driven by the “curvature “of the
magnetic field lines remain. Their e-folding time is of the order of r/s where s is the sound
speed. Stability analysis of these modes goes beyond the scopé of our survey. A
discussion of this problem in a pur‘ely MHD approximation can be found in Kadomtsev
(1966) and Bateman (1980); among possible equilibria there are diffuse equilibria stable

with respect to the m=0 mode (so called “Kadomtsev equilibria”). Asymptotically, at large
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radii, the pressure in these equilibria decreases as r'%’. Nonlinear evolution of the sausage
instability for an incompressible fluid was studied by Book, Ott, and Lampe. (1976). It
should be remembered that the plasma column after stagnation can be so hot that the MHD
approximation breaks down, and non-MHD effects, in particular, the ones caused by the
large ion orbits, become important. A general characterization of the parameter space for the
stability problem of a Bennett-type pinch, with the identification of the sub-domains where

various anomalies may surface, has been performed by Haines and Coppins (1991).

F. Effects of a cylindrical convergence

As we have seen, the most dangerous modes are flute modes with wave-numbers k
of the order of the inverse shell thickness I/h. Until the very late stage of the implosion,
when the liner is about to collapse on axis, the wavelengths of these modes are small
compared to the liner radius (kr>>1). Therefore, their instantaneous growth rate should be
adequately described by the planar model discussed in the previous three sections. Stili,
effects of the cylindrical convergence may become important earlier in the implosion; two
reasons are discussed below.

The first is the effect of convergence on the mass o per unit area: one obviously has
o=0,ryr) . This may affect the sheath thickness, making it different from what it was in
the case of the planar system with the same time-history of acceleration. Accordingly, the
maximum growth rate changes compared to a planar case. In addition, there is a direct
enhancement of the amplitude of even stable perturbations by thé effect of a cylindrical
convergence (like the growth of an amplitude of a cylindrically converging light wave).

The second effect is the increase of the azimuthal component of the wave vector,
kg=m/r : as the mode number m does not change with time, k, scales as I/r (recall that, in
our notations, k= k,). This causes a gradual decrease of the angle; o between the wave
vector and the direction of the magnetic field and may eventually lead to the stabilization of

the mode by making the product
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sz +k;

less than 1/2h, tht’areby causing stabilization of the mode (see Eq. (4.18)). Remember that,

(4.33)

in a purely cylindrical system, k, does not c;bange with time.
_ The growth of perturbations at the linear stage of instability is determined by the
exponentiation factor (see, e.g., Lindl, 1995),
o) =& expGQ) ' (4.34)
where

{

Gw=[rer, L @)
0

and I' is an instantaneous growth rate (4.2).

A linear approach breaks down as soon as the amplitude reaches certain level
&=€,,. A rough estimate for &y, is Ey~1/n for the fastest growing perturbations (with
k~1/k) and &,,~1/k for long-wavelength perturbations (with k<<I/). The transition to the
non-linear stage.occurs at the time instant determined from equation:

 G)=In(g &) - ~ (4.36)
Since the initial perturbations are small, say, a couple of orders of magnitude less than &,
the logarithm is equal to 4-5, and weakly depends on both §,and &y;.

For long-wavelength perturbations, the growth rate does not depend on the
structure of the shell, and the function G has a universal dependence on time determined by
the solution of Eq. (2.1). In this solution, the radius is a unique functiop of time and,

~ “therefore, G can also be expressed in terms of the instantaneous value of the radius. For the --
current given by'Eq. (2.5), and parameter IT (Eq. 2.4) corresponding to stagnation at the
point of the maximﬁm current (i.e., IT=4), the plot of G/(kr,)"? vs .the convergence is
presented in Flg 17.
However, for the most dangerous perturbatioﬁs with k~1/h, the function G depends

also on the thickness % of the shell which, in general, varies with time. A factor that acts
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towards reducing h is the growing acceleration (the scale-height is inversely proportional to
g, see Eq. (2.27), while factors acting in the opposite direction are the radial convergence
(that increases a mass per unit area), possible onset of the anomaloiis resistivity, and the
increase of the temperature. So, the issue of the transition to the non-linear regime for the
fastest growing modes is more complicated. If one assumes that the thickness » remains
constant during the implosion, one can use the plot of Fig. 17 to roughly find the transition
point by assuming that k~I/h and imposing the condition that G is approximately equal to,
say, 4. For a shell thickness equal to 0.1 of the initial liner radius (and, accordingly,
(kr,)"?=3), the non-linear effects become important (i.e., G becomes equal to
approximately 5) at convergence equal to 4.

. According to our previous discussion we considered here only the modes with
small azimuthal numbers m; the modes with large m are stabilized at a moderate

convergence because of the aforementioned effect of growing &, (k, ~1/r).

G. Nonlinear effects; turbulence and turbulent broadening of the shell

We start this discussion from the local modes with k>1/h. When the displacement
& becomes greater than I/, it changes the density gradient, which drives the instability and
determines the growth rate, by the order of unity (Fig. 18). This signifies that the further
development of the perturbations depends on their ampiitude. In the case of short-
wavelength perturbations, where the growth rate does not substantially depend on %, one -
can expect development of random motions with a broad spectrum of length-scales and the
amplitude of a particular scale of the order of 1/. The characteristic time of turn-around of
the vortices should be of the order of the inverse growth rate 1/I~(h/g)"?. These random
motions cause a kind of diffusion evolution of the density profile with the diffusion
coefficient I7/&%e<1/k° . One sees that the greatest contribution comes from the largest
length-scale compatible with the local approximation (//k~h). But, this means that the

diffusive approximation does not correctly describe the situation, that is, the characteristic
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stép-size is of the order of the gradient length-scale. This is a fundamental difficulty of a
non-linear theory of the R-T- instability. A diffusive description may become relevant if the
mode with the lmgest scale is, for one or another reason, suppressed. We will not discuss
here this rather artificial possibility.

Dimensional arguments similar to the ones used in the theory of mixing at the
interface of two semi-infinite fluids (Youngs, 1991) show that the broadening should occur
according to the law:

h=egt (437)
where € is some numerical factor. In Youngs’ case € is approximately equal to 0.07.

Let us now turn our attention to large-scale perturbations, with £ much less than the
inverse shell thickness. We consider only the most dangerous flute-like (axisymmetric)
perturbations. This type of motion can be prqperly described by Ott’s equations [Eq.
(4.29)]. One can expect that, as there are no other scales in this problem, the non-linearity
turns on when the amplitude of the perturbations becomes of the order of I/k. This
hypothesis can be easily checked on the basis of the exact solution obtained by Ott (1972').
For a single-mode initial perturbation the time evolution of the shell is illustrated by Fig.

19 (Basko, 1994). Strong deformations from a sinusoid appear indeed at € ~1/k.

For a long wavelength perturbation, enfering the non-linear phase does not mean -

stabilization or slowing down. Quite the contrary, effects of the mass redistribution (Fig.

16) cause an acceleration of the mode development. This, in particular, manifests itself in

formation of singular spikes within a finite time (Fig. 19). The time of the spike formation
is equal to 2(kg)"’21f1(2ﬂc§xo). Although the Lagrangian description breaks down after the
formation of singularities, there are no reasons why the lighter parts of the shell should not
continue their accelerated motion to the axis. So, there are no signs of a self-stabilization
here. The picture gets more complex if one takes into account development of the multiple
modes growing from initially random perturbations. The shorter wavelengths grow faster

and reach their strongly non-linear stage earlier than the longer ones. The mode that has the
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strongest effect on the distortion of the shell is the mode with the scale-length comparable
to the shell thickness. There exist a possibility that, because of the presence of some
numerical factors; in the scaling problem, this mode will reach an amplitude several times
greater than the instantaneous shell thickness.

We conclude this discussion on the note that, for shells that are not very thin
(thickness of order of 0.1 of the initial radius), reaching a convergence ~10-20 seems
feasible (Fig. 20). The thinner the shell, the faster do instabilities reach their non-linear
phase. Whether the instability at this non-linear stage will cause a gradual broadening of the
sheath and its mix with the magnetic field or cause more coherent structures of the type
shown in Fig. 21 to develop (causing disruptions of the current and violent destruction of
well-defined shell) is an open question. The numerical simulations and theoretical analyses
(e.g., Peterson et al, 1996, 1997; Thornhill et al., 1997) seem to inoint in the direction of

more violent scenarios (Fig. 22).

H. More on the relationship between flute and non-flute modes

We will present the corresponding analysis for the case where the thickness of the
current-carrying transition region is comparable with the overall thickness of the shell,
h,~h. As we know, one should distinguish between the flute modes, for which the wave-
number is perpendicular to the magnetic field (an axisymmetric mode in the cylindrical
geometry), and non-flute modes. As a representative example of the latter, we consider the
mode propagating at an angle of 45° with respect to the magnetic field. The qualitative plot
of the growth rates vs the horizontal wave number k for these two modes is shown in Fig.
23. The curve for the flute mode lies above the curve for the non-flute mode. At small k’ é,
one can make an exact prediction of the growth rate (Eq. (4.19)), which in this limit is
independent of the specifics of the density and magnetic field distribution inside the shell.

The reason for this has been discussed in Sections IV A, B.
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At larger k’s, the non-flute mode becomes stable. A specific value of the critical
wave number k, is determined by the details of the density and magnetic field distribution
within the shell thickness. Within an order of magnitude, k, ~I/h. For the flute mode the
growth rate at large k’s reaches a saturation determined, within an order of magnitude, by
Eq. (4.22). In fact, the growth rate of the local modes (k>>1/h) is determined by the layer
where the mode is localized. Note that the maximum growth rate of the local modes is a
well defined quantity: it corresponds to the maximum value of the r.h.s. of Eq. (4.22) over
the thickness of the sheath (roughly speaking, it corresponds to the maximum value of
p’/p, assuming that this maximum does exist). <" -

Figure 23 underlines the exceptional character played by the flute (axisymmetric)
mode in the dynamics of imploding liners. The prevalence of the flute mode becomes even
more visible at the nonlinear stage of the instabiﬁty.:When thé shell becomes strongly
distorted with respect to its unperturbed state (Fig. 21 a), the magnetic field at the tips of
the fingers remains the same (or even increases, if one takes into account effects of the .
cylindrical geometry) as in the unperturbed state, while the mass density in the fingers
decreases. This causes a catastrophic self-acceleration of the break-up process and may
cause a total disruption of the pinc-:h. k

This scenario of developing axisymmetric modes at their non-linear stage, that can -
be traced back to Hussey, Roderick, & Kloc (1980), Baker & Freeman (1981), Kloc,
Roderick, & Hussey (1982), and Roderick & Hussey (1986), has found confirmation in
the modern simulations of the randomly distributed axisymmetric perturbations (Peterson et —
al, 1996, 1997, 1999; Matuska et al, 1996, Benattar et al., 1999). Fig. 22 depicts the
isodensity contours with a clearly visible finger-like structure. The break-up of the shell
was found also in the case where the initial perturbation was a single mode or a mixture of
up to three single modes (Douglas, Deeney, & Roderick, 1998).

Nothing like this can happen for non-flute modes, at least for a thin-shell liner,

h<<r. The reason is a very different reaction of the magnetic field to strongly non-linear,
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non-axisymmetric perturbations of the type shown in Fig. 21 b: the magnetic field does not
penetrate to the “fingertips” in this case and is, on the contrary, increasing at the lagging
parts of the liner surface. Therefore, one can expect an early non-linear saturation of the
non-axisymmetric modes and their much weaker effect on the liner implosion. As we shall
see (Sec. VI E), one may even try to deliberately introduce non-axisymmetric perturbations
to destroy too fast a growth of axisymmetric fingers.

The dominance of axisymmetric modes seems to be in agreement with experimental
data. Fig. 20 shows an X-ray pinhole image of the pinch near the point of a maximum
compression in the Z accelerator. The features perpendicular to the pinch axis are most
pronounced - as one should expect in the case of axisymmetric perturbations. Note that in
cylindrical implosions driven by an ablative force (Hsing et al, 1997) the high-m modes
could be a dominant player in the dynamics of the implosion, reaching a non-linear stage
and affecting the maximum convergence. This underlines once again the exceptional role of
the magnetic drive in selecting the m=0 mode as the most dangerous one.

On the other hand, experiments on both gas-puff implosions (e.g., Shiloh, Fisher,
& Bar-Avraham 1978, Burkhalter et al, 1979, Wong et al, 1998) and wire array
implosions (e.g., Spielman et al, 1998, Deeney, et al.,, 1998a) show that the “final”
imploded state always manifests significant deviations from a perfect axial symmetry. They
can be attributed to low-m (m=1, 2) modes with k, of the same order as for m=0
perturbations. According to the discussion at the end of Sec. IV H, development of low-m
alevel comparable to m=0 mode. A quantitative analysis of a degree of non-axisymmetry
late in the implosion may help in the understanding and control of the physics of the

hydrodynamic stability.
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V. EFFECTS OF DISSIPATIVE PROCESSES

A. Viscosity ;

Effects of plasma viscosity are among the ones whose influence on the Rayleigh-
Taylor instability have been studled in the most deta11 startmg from Chandrasekhar s
monograph (1961), where the stabrhty ofa boundary between the two serm-mﬁmte viscous
fluids was studied. A careful analysis of viscous effects in the case of a slab has been
performed by Mlkaehan (1996), see also references therem

" Viscous terms in the hydrodynamrc equahons are most important for small-scale .
motions. Therefore, it is reasonable to consider the1r effect on perturbations with a length-
scale small compared to the charactenstrc scale of the densrty gradrent h (Frg 11 a). If an
element of the fluid is d1splaced by a sma]l dlstance & in the vertical direction, it
expenences the action of the buoyancy force produced by the drfference of the densities

inside this element and the surroundmg substance op= p, p.= —(8p/ 3x)§ The force is
equal to OF = —Vg5p, ‘where V is the volume of the liquid element (~ lllc’) The viscous

force acting on an element of size ~1/k moving in the resting fluid is (Landau and Lifshitz,

1987) OF,, = —pvkzéV where v is the kinematic viscosity. In this way one arrives at the

following equation of motion:

§=%%p-_vk2§'- .( ’ : (5.1)

From (5.1), one gets the following expression for the growth rate:

T r;'\[%[, “j,;("h) m(kh)} RO

with 2™ =(1/p)dp/dx, and

8vi.\'c = ;h—a‘ . (5.3)

The dimensionless parameter &, characterizes the role of viscosity. For implosion |

of wire arrays, the parameter €, is typically very small. Kinematic viscosity is related to
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the mean free path £, of the plasma ions by the relationship v~¢; v;. Then, using estimate

(2.27), relating the thickness of the shell and the gravity acceleration, one finds that

A (2.V
€.~ 1. 5.4
i visc Zeﬁ'*‘l(h) ( )

We have taken into account a relationship: #/m; = A/(Z,g +1). In the implosions of metal

liners, the ion-ion mean-free-path is orders of magnitude smaller than the liner thickness.
Therefore, in this situation €, is universally small.” Only modes with very short
wavelengths are affected by the viscosity in this case, k2 > &, *. Note that for these small-
scale perturbations viscosity still does not provide a complete stabilization, it just reduces
the growth-rate, which now becomes I" = e;éﬁz(kh)"zm .

In gas-puff systems, with lower densities and higher temperatures in the imploding
plasma, one may reach conditions under which ¢, becomes ~1. A transition to the case

visc

€. ~1 may, in particular, occur in the implosion of two coaxial gaseous shells, where the
outer shell hits the inner shell, causing a sudden increase of the temperature and,
accordingly, of the viscosity (recall that the Coulomb collision cross section decreases with
the temperature). At even higher temperatures one may find that the ion gyro-radius
becomes less than the ion mean free path (see also Sec. VI I). This causes a reduction of
the shear viscosity (Braginski, 1965) but the bulk viscosity remains high. The bulk

viscosity appears in a way similar to the thermal conductivity which we will describe

.- shortly.

B. Thermal conductivity and internal relaxation’

Now we switch to a discussion of the effects of a thermal conductivity. The

characteristic time for smoothing of temperature perturbations of a scale I/ is T ~1/k’y,
where Y is thermal ‘diffusivity. Usually, in the unmagnetized plasma, the thermal diffusivity

is large compared to the kinematic viscosity (see Braginski, 1965; Huba, 1994).
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may enter the problem of the Rayleigh-Taylor instability only via the finite compressibility
of the matter. Therefore, we will base our discussion on Eq. (4.20) that takes
compressibility effects into account. The thermal conductivity affects the dissipation of the
mechanical motion by creating a phase shift between the perturbation of the density of a
certain liquid element and the pressure perturbation introduced by this change of the
density. Then, an irreversible part appears in the pdV work.

If thermal conductivity is very large, it maintains uniform terhperature in the
perturbations (1sothermal perturbahons) In particular, the sound speed that enters
expression (4.20) for the growth rate becomes an 1sotherrnal sound speed However, Eq. |
(4.20) still has unstable roots with the growth rates not much different from the adrabatlc‘
case. For short-wavelength perturbatrons, k>1/h described by Eq.(4.22), the thermal
diffusivity has a stabrhzmg effect (Catto 1978) The charactensuc t1me for the heat to
diffuse over the scale-length 1/k of the perturbatlon is 'r~]/k2x The growth rate
s1gmﬁcant1y decreases if this time is less than a charactenstlc growth rate for ad1aba11c -
perturbations, ( g/h 12 There may exist other relaxatlon processes in the system, for

example, estabhshmg the 1omzat10n eqm]rbnum (e g, DeGroot et al, 1997a). They also
affect the growth rate of perturbatrons by causing phase shlft between dp and Op .

C. Resistivity
As has been pointed out by Hussey et al. (1995), Hammer et al (1996), and

Benattar et al. (1999), effects of magnetrc field penetratron through the 1mplod1ng shell may S

influence the R-T instability of ﬂute (a)usymmetnc) modes. An expectahon is that it will
add some dissipation and thereby decrease the growth rate. However, as was shown by
Hammer et al (1996), there may exist modes that do not perturb the currents and therefore
do not induce any additional dissipation. For a profile of the type of (2.28), such mode is
localized near the surface x=0 and has the growth rate unaffected by the resistivity. The

presence of this mode is related to the singularity of p’/ p as x goes to zero.
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As soon as the density profile near x=0 gets smoothed by the development of the
instability, the short-wavelength perturbations become affected by the finite resistivity. The

expression for the, growth rate of these mode reads as (Hammer et al, 1996):

’ 2 2\? 2 2
Fz\/gﬁ—*'(D‘ék ) LA 55)
p a 2 a

where D, is a magnetic diffusivity, D, =1/}, s and a are the sound velocity and Alfven
velocity, respectively. Note that in a strongly radiating plasma, where the magnetic
pressure is much greater than the plasma pressure (see discussion related to Eq. (2.28),
(2.29) in Sec. I G) and where, accordingly; s<<a, the stang effect of resistive losses
contains a small parameter s/ and is relatively insigﬁﬁcmt.

So far, we have been discussing the instability of the purely flute mode, i.e., the
only mode that remains unstable at large wave-numbers in the.case of a perfectly
conducting plasma (see Sections IV A-C). The short-wavelength modes that ﬁave a Cross-
field (azimuthal) component of the wave vector are stabilized in such a plasma by virtue of
the restoring force produced by a curved magneticA field which is frozen into the plasma and
follows its displacements. It is clear that the high plasmall resistivity decouples the plasma
displacement and the magnetic field. A complete analysis of this pr'oblem goes beyond the
scope of our survey. Here we restrict ourselves to the notion that in the case of plasma
pressure comparable to the magnetic pressure and the skin-depth comparable to the whole
thickness of the layer (Alfven velocity comparable to the sound velocity), the resistive

uncoupling becomes significant at D,>sh where s is the sound velocity. In other words,

the ﬁ:ﬁte }c;sistiviq;;ﬁa& i;a& not oniy to stabiﬁzing but also té; Elestabiliziné effects¥
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VI. POSSIBLE WAYS OF MITIGATING THE RAYLEIGH-TAYLOR
INSTABILITY
:

A. General comments

In the previous two sections we discussed in some depth the physics of the
Rayleigh-Taylor instability. One important (and already mentioned) difference between the
stability of an imploding liner and the stability of a steady-state object (like a plasma in
devices with magnetic confinement) is that- implosion takes a finite time, while a steady-
state plasma configuration is supposed to last essentially forever. Thereforé, if some
instability is present in the steady-state' system, the perturbations certainly reach a nonlinear
stage, which is independent of the initial perturbations. A saturated turbulence then exists
as long as the plasma formation (sustaineil by the extexjnal particle and energy sources). In
imploding systems, on the other hand, the exponentiation factor. G introduced by Eg.
(4.38) is finite and sométimes not very large (in the range of 5). Under such circumstances, -
one can hope to reduce the deleterious role of instability by making more perfect initial
states, with the relative root-mean-square berturbations less than 102 Conversely, if the
growth rate can be reduced by, say, 20% (AG/G~0.2) the requirements for the symmetry
of the initial state couicl_ be reduced by a factor of 2.

Therefore, one possible line of defense is to create more perfect initial states

(smaller initial perturbations) and look for the means to reduce the linear growth rate. If this

approach fails and the instability reaches 2 nonlinear stage,-one can try to prevent the most ——— - - -

disastrous scenarios associated with d'self-accelerating growth of the “bubbles” and gross
violations of the cylindrical symmetry of the liner (Fig.21 a). In the further discussion, we
mention various effects that may influence the linear and nonlinear stages of the problem.
We emphasize that the original stability aﬁalyses that we are referring to were often not

directly related to fast pinches.
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Mitigation methods discussed below do not provide an ultimate solution in making
the instability effect insignificant. Moreover, many of them introduce complications into the
experimental setting. Still, we present a more-or-less complete set of existing suggestions
with the hope that they may help in finding an efficient solution. One more general
conclusion that can be drawn with respect to the mitigation problem is that very little can be
done to affect the linear stability of long-wavelength perturbations of an “empty” thin shell
(t>>h, where h is the shell thickness): the linear behavior of these perturbations is

described by Eq. (4.19) which does not contain any free external parameters.

B. Magnetic shear

As was mentioned in Secs. IV A and B, the most dangerous modes are
axisymmetric modes that do not create any ripple in the magpetic field. lines, maintaining
their circular (straight in the planar geometry) sﬁape. These modes remain unstable at high
wave numbers k~1/ and have a large growth rate ~(g/h)". Conversely, the modes with a
finite azimuthal component of the wave number become stable if the wave number is high
enough. It is well known from the theory of magnetically confined plasmas (see the
original paper by Suydam, 1958, and general surveys by Bateman, 1980, and Freidberg,
1982) that one may reach reduction of the growth rate or even stabilization of flute modes
by creating a magnetic shear, i.e., by creating a situation where the magnetic field vector,
remaining normal to the gravity force, would change direction over the depth of the
transition layer. In the Z-pinch geometry this would- require introducing the axial magnetic
field B,, possibly, varying over the thickness of the shell.

From the outset, for the reasons discussed in the last two paragraphs of Sec. VLB,
one can conclude that the magnetic shear will have no effect on the stability of long-
wavelength modes, £>>h. One can, however, hope that the growth rate of the modes with
A~ (and these are the most dangerous modes) will be reduced. Indeed, applying a general

approach based on the energy principle (Suydam, 1958), Gratton, Gratton, and Gonzalez
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(1988) have shown that, for the local modes (A< <h), the presence of the shear leads to the

appea{rance of a stabilizing contribution to the expression (4.22) for the growth rate:

' -2 ' 2t
r2= 2g 2+gp - g .
- a+st p 4

6.1)

The parameter { is the z derivative of the angle formed by the magnetic field with the
direction of the wave vector at the point where. the magnetic field is normal to the wave
vector. If the z component of the magnetic field is zero, then shear is also zero. If the z
component of the magnetic field is comparable to the azimuthal component, then {~1/4. In
this case the magnetic shear can considerably reduce the growth rate of the local modes and
can even completely stabilize them. In other words, the magnetic shear stabilization has °
some promise for local modes. .
As we have already mentioned, the shear does not stabilize the large-scale modes
with >>h. Still, the presence of the axial magnetic field enclosed by the liner may have
some effect on the stability. Using the approach similar to that developed by Harris (1962),
one can show that, if the magnetic field on the outer side of the shell has components B,,
and B, and on the inner side of the shell B, (there is no y component of the magnetic field
inside the shell if there is no axial current inside the shell), the dispersion relation for the

4>>h modes (an analog of Eq. (4.19)) becomes (Cf. Bud’ko et al., 1990):

B2 cos® o +(B2% + B%)sin*«
w* - 2kga* = . (;‘ ;‘) -
BL+B.-B.

k*g* =0, 6.2)

‘where « is defined according to Eq. (4.16), and " the acceleration is
g= (B)z,e + Bzze - Bzze)/ Ho . Disperéion relation (6.2) uni;/ersally has an unstable root that
scales as 1/—kE (we‘r assumé tha_t the accéleraﬁor; is directed inward, i.e.

B)z,e +B§e - BZ‘,- > 0). On the other hand, if Bz,.>Bu, the growth rate for the =0 mode is

reduced compared to (4.19).
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One should remember that it is undesirable to have an axial magnetic field enclosed
by the shell, because then part of the energy of the imploding liner would be spent on the
compression of this magnetic field. The other difficulty with imposing the axial magnetic
field is that, in the time-frame of the implosion, the axial magnetic field remains frozen into
the conducting electrodes. Therefore, strong distortions of the cylindrical symmetry of the
type shown in Fig. 7 are inevitable. One could reduce this effect by introducing radial cuts,
but, as the skin-depth is very small, the axial magnetic field would remain frozen into the

segments of the electrode between two neighboring cuts.

C. Rotation

The possibility of using rotation of the shell for stabilization purposes (see Book,
Winsor, 1974; Barcilon, Book, CooiJer, 1974; Turchi et al., 1976). The stabilizing effect
comes from the centrifugal force that is directed oppositely to the effective gravity force
near the stagnation point. In the early works, it was sﬁpposed that rotation will be set in by
mechanical means. The concept of centrifugal stabilization has been recently reconsidered
by Rostoker, Peterson, and Tashiri (1995), who sﬁggested using a cusp magnetic field to
create an azimuthal torque that would appear because of the intéraction of the z component
of the current and the r component of the magnetic field. Hammer and Ryutov (1996)
suggested using an ablative torque by producing a left-right asymmetric structure at the
surface of the shell. Ryutov (1996); One cén also use left-right asymmetric coatings on the
surfaces of wires (Fig. 24): an ablation of the coating early in the pulse would produce a
torque acting on the wires and imparting an angular momentuﬁ to them.

To have an appreciable effect on thc;, instébiiity, the rofation should change the radial
acceleration by an order of 1. This, in turn, means that, ﬁear the point of maximum
compression, the rotation energy should be comparable to the total implosion energy (see

Sec. I1.D). This is the energy penalty associated with this method of stabilization.
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Stability analysis of the imploding rotating liner compressing the axial magnetic
field was carried out by Barcillon, Book, and Cooper (1974). The critical point in this
system is the turning point of the radial motion of the rotating liner. They concluded that it
is difﬁcult to reach a strong stabilizing effect, especially in the case of a thin liner.
Velikovich and Davis (1995) studied stability of a steady-state configuration, r=const,
where the centrifugal force is exactly balanced by the magnetic pressure (in the Z-pinch
geometry). The stabilizing effect in this case was relatively modest. Althotigh these results
are somewhat discouraging, it is probably-worth considering the stability of the Z pinch
under realistic assumptions with regard to the time-history of the pinch radius r{z).
Although it is not very probable that rotation will entirely stabilize the system, it may reduce
the growth rates to an admissible level.

D. Velocity shear

In princip;le, one can introduce an azimuthal shear flow instead of a solid-body
rotation. The possible stabilizing effect of shear flow on the Rayleigh-Taylor instability was
mentioned as early as 1961 by Chandrasekhar; in conjunction with fast Z pinches it was
discussed by Hammer and Ryutov (1996) and Shumlak & Roderick (1998). To
qualitatively understand the role of the shear, consider a slab geometry, with the slab of an
incompressible fluid supported from below by a massless fluid. Let the unperturbed flow -
velocity be directed along the y axis and be linearly dependent on x: v,=u(x/h). The shear
flow will have the strongest effect on perturbations with their wave vector directed along -
the direction of flow. For such perturbations, the shear flow will lead to their stretching in
the y direction and thereby to strongly changing their eigenfunction. One can hope that
stretching of the “fingers” typical for the Rayleigh-Taylor instability will reduce their
growth, The time of the stretching of the perturbation is of the order of h/u, independent of
the scale of the perturbation, while the growth rate of the gravity-driven perturbations is of

the order (kg)"?. Obviously, the shear flow can have a significant effect on development of
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the perturbations if condition (A/u)(kg)”*<1 holds. For the most dangerous perturbations

with k~1/A, one can rewrite this condition in terms of a so-called Froude number,
2

u
: Fr= Eﬁ >1 (6.3)
Taking as an example #=0.1 cm, and g=3-10"° cm/s’, one finds that the velocity of the
shear flow should be rather high, greater than 107 cmy/s. It is difficult to produce such a
velocity directly. One can, however, expect an enhancement ‘of the azimuthal velocity
during the implosion because of the conservation of the angular momentum of every
cylindrical shell. (For the “canonical” wire array implosions, the viscous damping of the
shear flow is insignificant). If the initial velocity of shear flow is 10° cm/s, the desired
value will be reached at a convergence equal to 10. One can also speculate that the actual
time required for the perturbations to grow from the initial small level to a nonlinear phase
constitutes at least several e-folding times (kg) 2. Accordingly, one could hope that, in the
r.h.s. of inequality (6.3), one should write, instead of 1, some small number. Numerical
analysis by Shumlak and Roderick (1998) seems to point in this direction.

Unfortunately, the shear flow does not have any effect on perturbations with the
wave vector perpendicular to the direction of the flow. In other words, if the shear flow is
in the azimuthal direction (the differential rotation), it does not affect azimuthally-symmetric
perturbations (m=0). To stabilize these perurbations, one has to generate an axial shear
flow, with v, varying with x. This type of shear motion cannot be enhanced by the angular
momentum conservation; therefore, requirements stemming from inequality (6.3), become

more stringent. S e mm e e e

To generate the shear flow, one can use a target consisting of two nested liners
(Hammer, Ryutov, 1996). If the left-right asymmetric features are embedded into one of
these liners, theén the ablation will cause its rotation; when the two liners collide, a

differential rotation emerges. If up-down asymmetric features are created, then the axial
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shear flow is formed. Shumlak and Roderick (1998) discussed the use of a conical gas-
puff to generate the axial shear.

The axial 'shear flow may have a stabilizing influence on quasi-equilibrium Z
pinches that can be formed near the stagnation point. This stabilization mechanism for
equilibrium Z pinches was discussed by Shumlak and Hartman (1995). Their conclusion
was that, if the initial profile is not very fér from the Mgmaﬂy stable “Kadomtsev
profile,” then even a weak velocity shear can produce considerable stabilization. On the

other hand, Arber et al. (1995) have not found significant stabilization by the shear.

E. Hourglass effect

Douglas, Deeney, and Roderick (1997) have discovered in numerical simulations
that, by makmg the initial surface of a uniform-fill Z pinch concave (Fig. 25), one can
suppress the growth of Rayleigh-Taylor perfurbatiéns. Because of the characteristic shape
of the sheath, one can call this effect an “hourglass effect.” Douglas, Deeney, and Roderick
considered implosions of high-Z (strongly radiating) gas-puffs (Ne, Xe), where the
transition layer between the magnetic piston and the shock front is thin (Cf. Sec.II B). For
a sufficiently large initial curvature, the stabilizing effect is quite strong. The authors
attribute this effect to either the advection of perturbations to the electrodes (there is
tangential flow along the curved surface, in the direction of electrodes) or the presence of
the axial shear flow. In principle, one could discriminate between these two possibilities by
changing the sign of the curvature (making the surface convex instead of concave): the flow— -
would have changed its sign, and would advect perturbations to the equatorial plane, while

the effect of shear should have remained the same as for the concave surface.

F. Deliberate violation of the azimuthal symmetry
As already mentioned in Sec. IV, the most dangerous small-m modes show a trend

to strongly nonlinear development, with the finger-like structures penetrating deep to the
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axis of the device (Fig. 22). Self-acceleration of the “fingertips” occurs because the mass
density at the “fingertips” decreases, while the driving azimuthal magnetic field freely
penetrates into this area through disk-like slots—a characteristic feature of axisymmetric
perturbations. Derzon, Nash, & Ryutov (1997) suggested reducing the growth rate of the
axisymmetric perturbations by' deliberate introduction of a periodic azimuthal asymmetry,
as shown in Fig. 26, with a large-enough amplitude and a large-enough mode number m.
The idea is to destroy the azimuthal coherence of the finger-like structure and to create
conditions for short-circuiting (crow-barring) the disk-like slots in many (m) points over
the azimuth.

For this closure of the slots to occur at a moderately nonlinear stage of the growth
of axisymmetric perturbations, when the peak-to-valley distance becomes of the order of
their axial period A, one has to produce the azimuthal perturbations for which amplitude, &,
satisfies, roughly speaking, a condition:£ > A/2. One can conceive of several ways of
creating azimuthal perturbations in a controlled way. One way is by assembling the wire
array with wires of azimuthally varying thickness (i.e., of varying mass), similar to what
has been shown in Fig. 26b: the heavier wires will lag behind the lighter ones, thereby
creating a corrugated structure. Another possibility is to use wires of different materials
(and, accordingly, of different mass). Still one more possibility is to use a kind of
“imprinting” produced by the discrete structure of the return current structure (which
typically consists of ~10 separate posts; the gaps between the poéts provide a necessary
diagnostic access). At the early stage of the discharge, when the separation of the current
sheath from the posts is comparable to the inter-post distance, the radial driving force is
varying over the azimuth, giving rise to formation of the corrugated s&uc@e. Such a
structure has been observed experimentally Derzon, Nash, and Ryutov (1997).

In wire array implosions, the axial period of the most dangerous modes is in the
range of 1-1.5 mm. Therefore, according to condition£ > A/2a, relatively modest

amplitude of corrugation (0.5-0.75 mm) could be sufficient to produce considerable
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stabilizing effect. The mode number of the corrugation should be made large.enough to
provide many short-circuit channels over the radius. This is limited from above by the
constraint that, 4t a given' amplitude, the high-mode-number perturbation become
nonlinearly stabilized by the effect of expulsion of the magnetic field from the tips of
azimuthal perturbations (Fig. 21b).The upper limit on the mode number set by this
constraint is: m < r/2& ~ r/ A. For the typical set of parameters of a wire array implosion,

the optimum mode number is ~15.

G. Accretion

As mentioned in Secs. II and IV, in implosions of gas-puff loads one can, in
principle, create an initial density distribution such that the sheath will converge on axis
without any acceleration (Fig. 5). In the clearest form, this idea was expressed by Hammer
(1995) and, later, by Hammer et al. (1996), ané Velikovich, Cochran, and Davis (1996).
The energy penalty is associated with the radiative losses of the accreted material. The
stabilizing effects are caused merely by the absence of acceleration. The interface between
the magnetic field and the plasma remains stable with respect to exponentially growing
modes, even for very shortAwavelength‘s (shorter than the distance between the shock and
the interface). Another source of stabilization is related to the presence of a detached shock,
as discussed by Gol’berg and Velikovich (1993): because the shock front itself is stable
with respect to the ripple perturbations, it extends its stabilizing influence over the whole

- s - s 2

area between the shock and magnetic piston, > -« - F-ov < WE TS <

One can think of a discrete version of the scheme proposed by Hammer et al.
(1996) where, instead of a continuous density distribution, one would create a set of nested -
wire arrays, with the masses approximately following the desired density distribution. Thi§
would mean that the lightest arrays would be on the outside and that their mass would
gradually grow towards the inside. Whether the improved stability will outweigh the added

complexity is a question that can eventually be answered only experimentally.
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It has recently been discovered experimentally (Deeney, et al., 1998b) that a
considerable improvement of the quality of the implosion can be reached by using a two-
shell wire array, v,vith the inner shell situated at a half-radius of the outer shell and having a
mass smaller (not greater as in the aforementioned scheme) than the outer shell. The best
result has been reached with the inner mass as small as a quarter of the outer mass. It is not
clear yet what specific mechanism is responsible for this improvement. One can speculate
that a strong heating during collision of the two shells causes a rapid viscous and thermal

damping of perturbations developed in the outer shell by the time of their collision.___

H. Enhanced thermal dissipation

Suggestions have been made (Ryutov, 1996; Ryutov, Toor, 1998) to increase the
rate of viscous and thermal dissipation by replacing a uniform medium with a finely
structured medium, with a scale £ of pre-existing nonuniformities that is small compared to
the scale A of the most dangerous perturbations. In the case of wire arrays, this could be
done by replacing uniform wires with bundles of interwoven finer wires, or by alternating
the composition of the wires in the array. The hope is that the presence of the fine
structures will introduce small-scale motions (and temperature variations) overlaid on the
“averaged” motions (and temperature variations) on the larger scale of the most dangerous
perturbations. Because the dissipation rate by both viscosity and thermal conductivity
scales as 1/Z, one could expect that the growth rate of the instability will be substantially
reduced. The effect of enhanced dissipation is certainly present, but in the examples studied
SO faf it causes only a relatively sma1-1‘ d&re%e of: the‘l'inear grow_th- rate (see also Sec. V
B). A new element that emerges in the picture is the appearance of the modes of oscillatory
damping (in addition to the “standard” Rayleigh-Taylor modes). One can expect that the
presence of these modes may favorably affect the nonlinear stage of the instability.

However, this issue hasn’t been studied thus far.
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' VIL. 'NON-MHD PHENOMENA

1. Finite Larmor radius (FLR) effects

The ion gyroradius is small compared to the typical sheath thickness during the run-
in phase. At this stage, the ion component can be well described by fluid equations. The
situation changes dramatically after the stagnation, when the ion thermal energy increases
by orders of magnitude. Arber et al. §}995) stﬁdied the stability of an equilibrium pinch
with the ion Larmor radius comparable to the pinch radius. They conclude that even if the
m=0 mode is almost stable by virtue of reaching the Kadomtsev profile, the m=1 mode still
remains strongly unstable even wig} FLR effegts taken into account. The growth rate is
reduced by a factor of a few with respect to an ideal MHD, b?t this is insufficient to have a
long-lasting steady-sate equilibrium. Scheffel et al. (1997) have shown that the effects of a
finite electron temperature have a@estg}l_)i;izing effect on the fl;ﬁte Larmor radius plasma.

Isichenko, Kulyabin, and Yanfkov (19?3:9) considered the pinch column with a
skin-layer much thinner thar_l‘tt‘p 1on gyroradms —(sol that @e ioP motion in the pinch interior
is unmagnetized). They have found t};a; the growth ;)f short-wavelength perturbatior-lsv, with
A<<r, reaches a saturation ~vT/.r, ie., bﬂeco.mes‘ §lpwer thankip the MHD approximation
(where i_t is ~(v /rX /7). H,qngfgri rthe , rgosj; di-sruptive;mo.de with A~r remains
essentially as unstable as in the MHD approximation. Therefore, the effects of a large
Larmor radius do not provide sufficient stabi[iéaﬁon in the stagnation phase. Velikovich

(1991) has come to a similar conclusion.
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A. Microturbulence and anomalous resistivity =~
A potential source of microinstabilities is the relative motion of electrons and ions.

The velocity u of this motion is directly related to the current density, j = enu where n is

the electron density. In the case of itﬁpiésions of thin shells (like the ones formed in wire
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array implosions), assuming that the current occupies the whole shell thickness, one can

express u in terms of the total pinch current I:

u(cm/s) ~ 10* AIMA)

Zeffﬁz(mg/ cm)’

7.1)

)

The assumption that the current flows through the whole thickness of the shell is quite
plausible for the run-in phase of strongly radiating liners (Sec. IL G).

In Z pinches, the cumrent is directed across the magneﬁc field; the electron
temperature is comparable to or lower than the ion temperature. Under such circumstances,
the most probable instability that can lead to the appearance of anomalous resistivity is the
lower hybrid instability, described by Krall and Liewer (1971), and Davidson and Gladd
(1975). The early studies of this instability have been summarized in the survey by
Davidson and Krall (1977). More recent results, specifically addressing the issues of
nonlinear stabilization, can be found in analytical studies by Drake, Huba, and Gladd
(1983) and by Drake, Guzdar, and Huba (1983) and in numerical analysis by Brackbill et
al. (1990). Possible effects of this instabilify on tﬁe Pease-Braginski current in a fiber pinch
was studied by Robson (1991) and Chittenden (1995).

The “natural” frequency of the lower-hybrid oscillations is (see, for example,

Davidson and Krall, 1977):
Zym

(4

Am

4

wLH = (Oce (7'2)

where m, is the proton mass. Expression (7.2) for the lower-hybrid frequency pertains to
the situation 0, >0, which is typical for Z pinches (a)pe and @, are electron plasma and
electron cyclotron frequencies, respectively).

In the analysis of the lower-hybrid instability, usually only perturbations with k=0
are considered. In order for such perturbations to cause electron scattering and contribute to
the anomalous resistivity, their transverse scale-length should be comparable to or shorter
than the electron gyroradius p,. Otherwise, because the perturbations are slow, @,,<<®,

ce ?

the electron magnetic moment  will be conserved, and the electrons will experience only
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adiabatic (reversible) variations of their velocity thereby making impossible the appearance
of énomalous resistivity.

The other current-driven microinstability is the ion acoustic instability, which
typically has a higher threshold in terms of the relative velocity of electrons and ions.
Exstensive studies of this instability are summarized in the. surveys by Vedenov and
Rynitov (1975) and Galeev and Sagdeev (1979). In 2 singly charged plasma this instability
can be present only if the electron temperature is much higher than the ion temperature,
T.>>T;: at T~T; the jon sound speed is comparable to the thermal velocity of the ions, and
acoustic waves ’experience a strong ion Landau damping. However, in a plasma with
Z,;>>1, this instability can be excited even at T,>T,. Indeed, the sound speed in a plasma

with high-Z ions is equal to
T ’ R ZyI+T,

L

. o @a3)
while the ion thermal speed is. W - Imposing a constraint that the sound speed exceed
the ion thermal speed by a- factor of 2, one finds the condition of weakly damped ion
acoustic waves in a high-Z plasma:

LL>TL1Z;. ‘_ _ (7.4)
One sees that, at Z >>1, the weakly damped ion acoustic modes can exist even at 1}>i‘e.

The critical current velocity for the onset of the ion acoustic instability under such

conditions is several ion thermal velocities,

Uerit =6VTi» _ @ —~ =~ ) (7.5)
with ¢ equal to 2-4

. ﬂfthe case of hydrogen-containing substan;:es (f;; ;:;{amplé: ;éﬁ;), tt;e
hydrogen ions, because of their high therrﬁal velocities, can considerably increase the
Landau damping and push the critical velocity to higher levels.

If the condition (7.4) is violated with a large-enough margin (so that the ion-
acoustic instability does not exist), the relative electron-ion velocity u may reach an electron

thermal velocity, and a modified two-stream (or Buneman) instability may develop. Its
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growth rate is higher than that of the ion acoustic instability. However, reaching so high
w’s for the typical parameters of the dense pinches is not very probable (see Sec. IX)._

The effect of microinstabilities on plasma resistivity is traditionally described in
terms of the effective electron scattering frequency v, that should be added to the electron-
ion collision frequency 1/7,; in the expression for the plasma resistivity,

m,(Vy+1/7,)
n= 5 . (7.6)

! ne

An estimate that is commonly used for the effective collision frequency produced by the

lower- hybrid instability is (Davidson and Gladd, 1975; Drake et al., 1984):

2
Ve = glcoLH(—u—J , 1.7)

Vi
where ¢, is a numerical factor of the order of 1.

At low plasma density and l}igh pinch currents, when u reaches the threshold of the
ion-acoustic instability, this latter instability becomes dominant because it usually results in
a higher effective collision frequency approaching: the ion plasma frequency. Under
condition @, >@,,, typical for Z-pinch environment, ‘the ion plasma frequency is much
higher than the lower hybrid frequency. Therefore, if the threshold for the excitation of the
ion acoustic perturbations is reached at all, this instability takes over in establishing the
anomalous resistivity. Upon reaching the instability threshold, u=wu,, the effective
scattering turns on so sharply that, in most cases of interest for Z pinches, it just keeps the
: relative velocity at the threshold level, so that the current density is

- Jj=enu,, (_7.8)
with z;m., as in (7.5); if the threshold fér the Buneman inastability is reéched, then one has
u,,~Vg. Bquations (7.6)-(7.8) can serve as a basis for the analysis of the effect of
anomalous resistivity on the properties of Z pinches.

Microfluctuations produced by the plasma current, in addition to the anomalous

resistivity, may cause acceleration of a part of the plasma ions to suprathermal energies (see

Sec. VII.B). The anomalous resistivity, if present, affects the skin depth and, therefore, the
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Rayleigh-Taylor instability. The heating rate of the electrons during the implosion phase
may grow considerably and therefore lead to enhancement of the radiation losses compared
to classical estimates. In the case of quasiequilibrium pinches, the anomalous resistivity
affects the Pease-Braginski current (Robson, 1991).. We will not try here to consider a
completely self-consistent picture. Our discussion provides only a general framework for
the analysis of the corresponding processes. As we shall see, in the fast Z-pinch
environment the velocityu is typically smaller than or comparable to the ion thermal

velocity. Therefore, we concentrate our attention on the lower hybrid instability.

1. Run-in phase
To be specific, we begin this subsection with a discussion of wire array; later in this

subsection we also mention gas-puffs. The velocity u of the relative motion of the electron

and jon fluids is typically comparable to the jon thermal velocity. For a set of characteristic -

parameters of the run-in phase of tungsten wire array implosions (A~180, T~ 40 eV, Z_~7, -

I=10 MA, #~3 mg/cm), one finds that u~I(° cm/s, roughly equal to vy For the
“canonical” lower- hybrid instability, according to the paper by Davidson and Gladd
(1975), the growth rate at u<v; scales as

(W o o (7.9)

In the aforementioned numerical example, it is of the order of @),,~1.5-10" s, i.e.; the e- -

folding time for this instability is orders of magnitude shorter than the duration of the run-in

phase. Accordingly, the instability reaches its nonlinear saturation. — .

There is a subtlety here: for the set of parameters chosen above, and n~10" cm?,
one finds that both the products @,,7,; and @,,T,; are considerably less than 1. In other
words, with respect to the lower-hybrid modes, the plasma is strongly collisional. B‘y
itseif, this does not necessarily mean that the instability is totally ~impossi_ble. Instead, this
.means that the theory presented in the aforementioned references should be reworked to

include a hydrodynamic description of both electrons and ions, where the distribution
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functions would be nearly Maxwellian, with the deviations from Maxwellian determined by
the classical resistivity theory (e.g., Braginski, 1965). It also makes it very difficult for the
instability to affect the classical estimate for the plasma resistivity (because the anomalous
collision frequency has to compete with classical collision frequency, which is very high).

In gas-puff implosions with a smaller particle density, the role of the lower-hybrid
instability can be more important. However, the classical electron-ion collision time
remains shorter than the expected anomalous collision time. Therefore, again, the current
penetration should be determined by a classical resistivity and/or by gross hydrodynamic
instabilities. The anomalous resistivity can possibly play some role in the behavior of a
very low-density halo plasma that may surround the main discharge.

The effect of anomaléus resistivity can, in principle, be used to reduce the current
rise time in a wire array. The idea is to surround it by another, lower-density shell where
the current would be sharply terminated by development of the anomalous resistivity as in
Branitskii et al., 1996a. Experimentally, these authors studied implosions of gas-puffs on a
thin agar cylinder in the Angara-5 facility; Xe, Ar, and C,H; (propane) were used as
working gases. The annular jet had a radius of r,=1.6 cm and a mass of 0.07 mg/cm; the
maximum current was ~3 MA and the half-width of the current pulse was ~100 ns. The
inner cylinder was made of agar, with a radius of ,=0.5-1 mm, and a mass of 0.05-0.07
mg/cm. The switching of the current indeed occurred, but it didn’t have a sharp front. The
authors concluded that the current disruption in the outer shell is probably caused by the
Rayleigh-Taylor instability, although other factors may have also contributed.

Baksht et al. (1997) also studied a multiwire array surrounded by an outer gas
shell. The dimensions were larger than in the previous work: the diameter of the gas jet
was 8 cm and the diameter of the wire array was 3 cm, with wires 20 um in diameter (68
Lg/cm). .Reproducibility of the current switching was not very good. To improve the
symmetry of implosions, the authors are going to introduce preliminary ionization of the

gaseous shell (Cf. Sec. III of this paper). Note that another way of switching the current
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(not based on the phenomenon of anomalous resistance) is to use a light external wire array
imploding on a smaller-diameter heavier wire array: the current through the inner array will
be small until the ;c>uter array reaches it @avis, Gondarenko, Velikovich, 1997).
2. The stagnation phase. R

Iﬁ' the stagnation phase, the temperatures of both plasma species are much higher,
with the ion temperature considerably exceeding the electron temperature. On the other
hanci, the relative velocity u, according to (7.1), only decreases because of the increased
Z,; Therefore, the ratio u/v; should drop by a factor ~100 compared to the run-in phase.
This decréase more than compensates for the growth of the magnetic field caused by a
reduced pinch radius, so that the growth rate (7.5) decreases to, roughly speaking,10® s™.
The corresponding e-folding time is léng compared to the duration of the stagnation phase,
‘and this instability can hardly have a si;gniﬁcant effect on the plasma resistivity during this
phase. ' w

It is interesting to note that, for the sfagna;ion phase, the ratios of the relative
velocity u to the ion thermal velocity is equal to the ratio of the ion gyroradius to the pinch
radius and can be expressed in terms of \'rery few input parameters. One can show that,

assuming that the current flows uniformly over the cross-section of the stagnated plasma,
e Py U e A e 3 A

~

win Vi ZegRC\iph | ZogJAmgTem)”

(7.11)

~where p; is the ion gyroradius, rap=1.6;10'1:6 cm is a classical radius of the proton, and C .

. is the 'convergence (1.1). The estimate (7.11) corresponds to the ion temperature before the
equilibration with electrons began, i.e., to the ion thermal velocity approximately equal to
the liner velocity just before the on-axis stagnation.

Of course, if the current is concentrated in a thin shell, or flows through the low-
density plasma halo, the;rohle of microinstabilities may become more important. The other

place where anomalous resistivity may become important is the neck (Fig. 21 a) formed as
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a result of the development of a sausage mode (we discuss this latter situation in Sec. VII
B). A discussion of the effects of anomalous resistance of the neck and some further
references on this issue can be found in Sasorov (1992).

The study of the effects produced by anomalous resistivity in the equilibrium pinch
can be found in Chittenden (1995). In the equilibrium Z pinches, where plasma density is
typically lower than in fast Z pinches, the instability can become quite important because of

a higher ratio u/v;; and much lower frequency of the Coulomb collisions.

B. Generation of suprathermal particles and particle beams

As mentioned in section IV, development of the Rayleigh-Taylor instability may
lead to a situation where one or several constrictions of the type shown in Fig. 21a will be
formed. Most commonly, the formation of high-energy particles in Z pinches is related to
formation of m=0 constrictions. Various versions of theories are discussed in Haines
(1983), Trubnikov (1986), Vikhrev (1986), and Deutsch & Kies (1988). These papers
contain also an extensive further bibliography. Experimental results from fast z pinches are
essentially unavailable. For experiments pertaining to generation of high-energy particles in
fiber pinches see Mitchell et al (1998) and references therein.

One can distinguish three mechanisms that lead to the formation of high-energy
particles in the constrictions. First, there is a direct acceleration mechanism related to the
generation of a high inductive voltage during the current break-up after the neck formation.
This mechanism was the first to be suggested to explain the generation of the neutrons in
the experiments of early 1950s (see Vikhrev, 1986, and Deutsch & Kies, 1988, for
references to experimental works). Second, there is a mechanism related to compressional
heating of the substance situated in the neck, accompanied by ejection of the hot material
from the ends of the consiriction. Third, if a microturbulence is excited in the constriction
(because of a high current density), there may occur a stochastic acceleration of the tails of

the ion distribution function leading to generation of the higli-energy ions. It is quite
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conceivable that all three mechanisms for the formation of fast ions may act simultaneously.
This is what makes the analysis of experiments on the generation of fast ions so difficult.

The chain of events that leads to inductive acceleration is as follows. After
constriction develops, its impedance grows, and the current through the neck diminishes,
causing the generation of a large inductive voltage. Spatial and temporal evolution of
electric fields that can be generated in such an event have been analyzed in great detail by
Trubnikov (see a summary of these results in Trubnikov, 1986).

Some qualitative conclusioﬁs that can be drawn from Trubnikov’s analysis are as
follows. Consider the motion of an individual jon in the time-varying electric field
perpendicular to the azimuthal magnetic field. If the ion gyroradius is small compared to the -
neck radius a, and the electric field varies with a time scale exceeding @™; , the electric
field does not accelerate ions but rather causes their drift motion, with the velocity
proportional to the electric field strength E. This‘is an adiabatic process in the sense that the
drift velocity grows when electric field (in the location of the ion) grows and decreases .
when electric field decreases (either because of the temporal variation of the electric field, or
because the ions leave the zone of a strong elecqic field near the neck). Therefore, to ensure
an efficient nonadiabatic energy &msfer to the ioﬁé, one has to assume that the electric field
varies on a time-scale short compared to the ion gyro-period. Another possibility is the ion
acceleration near the axis of the discharge where the magnetic field is small. (An interesting

question is what sets the lower limit for the pinch radius in the constriction. One can think .

_ that this is the ion gyroradius, see_the_ trajecto;y,_analysis in Haines, 1983). To sustain the .__.

current through the neck with a rapidly growing resistance, an inductive electric field is
generated directed along the pinch current. Accordingly, the ions should be accelerated
predominantly in the direction of the pinch current at the time just before disruption.
Collisions between the beam and plasma ions would cause scattering of the beam. To reach
the electrode, the beam should be formed at a distance not greater than a couple of mean- .

free paths. The drag against plasma electrons in a cold plasma may also be substantial. An
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analysis of the experimental measurements at the Angara-5 from the viewpoint of their
compatibility with the beam source of the neutrons is presented by Imshennik (1992).

One can note in passing that it is conceivable that the currents possibly present on
the galactic scales, form pinch-like structures, and development of the sausage instability
gives rise to the generation of high-energy cosmic rays. This viewpoint was presented by
Haines (1983) and Trubnikov (1990) (see also further references in the latter paper). The
arguments pointing out the presence of currents up to 10 A in the galactic environment
were presented by Peratt (1986, 1990). Fig: 27 (Yusef-Zadeh, Morris, and Chance, 1984)
depicts an object near the center of our galaxy where the presence of filaments may be a
reflection of the pinch-effect.

The second mechanism, most completely presented in the paper by Vikhrev (1986),
attributes the generation of fast particles to an adiabatic comipression of the plasma in the
neck. This process is conceived as a gradual compression of a plasma along the sequence
of Bennett equilibria, with a gradual decrease of the linear particle density N (the number of
particles per the unit length of the pinch) in the constriction by virtue of the axial ion losses
through the ends; the hot ions escape in both dizrections. The Bennett equilibﬁum condition,

=M

e 7.12
4N ( )

shows then that the plasma temperature in the constriction grows. If the constriction is
short, with a radius r comparable with its length ¢, the hot plasma would escape very
rapidly through the ends, and no significant amount of hot patticles would be formed.
However, if the length of the constriction is large, £>>r, then the number of hot particles
would increase, and conditions for generation of a éonsiderable number of neutrons (in the
case of a deuterium or a deuterium-tritium plasma) would be reached.

If the ion-ion collision frequency is high enough, then the ion distribution is almost
isotropic, and therefore the neutron radiation generated in the constriction would also be

isotropic. Still, if some hot ions do escape along the axis, an asymmetry in the number of
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the ions reaching the anode and the cathode may appear (leading to the asymmetry of the
neutron generation on the electrodes). The situation is illustrated by Fig. 28, which depicts
two ion trajectoriés originating on the axis. If the initial ion velocity is slightly tilted to the
axis and directed towards the cathode, the magnetic field produces a focusing force, and the
ion rapidly moves alor_lgithe axis to.wardsr the ca?hode. On the other hand,» 1f the initial
velocity is directed toward the anode, the magnetic force is defocusing, and ﬁle ion gets
involved in a gyromotion with a slow drift towards the anode (Cf Hames, 1983) A
collisionless version of the ion acceleratlon by pinch “walls” converging on axis was
discussed by Deutsch and Kies (1988).

The third mechanism can be efficient in a plasma of a relatively low density, where
the plasma resistance is dominated by microfluctuations (Sec. VIL. A). The ion scattering
on microfluctuations usually leads to formation of a hiéh—energy tail of the: ion distribution
function (see surveys by Vedenov and Ryutov (1975) and Galeev and Sagdeev (1979)).
The evolution of the high-energy tail of the ion distribution function is governed by a
Fokker-Planck-type equation,

o 19 I

—— 2 - . N N .
2 =S VDM L a1

with the diffusion coefficient proportional to the energy density of fluctuations. The

distribution function in (7. 13) is normahzed accordmg to the relat10nsh1p dn =4nf (V)vidv,
where dn is the number of ions per interval dv of the ion velocmes For 31mp1101ty, we

present Eq (7.13) for the case of an 1sotroplc spectrum of the ﬂuctuatlons Equatlon (7 13)

"‘descnbes the diffusive broadening of ‘the mgh-energy tail of the ion distribution. The

majority of the ions remain in the ion core dominated by Coulomb collisions. Despite the
small number of ions in the tail, they may be responsible for nuclear reactions with a high
energy threshold and may thereby be used for diagnostics purposes (to identify regimes

where suprathermal particles are present). . S
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Consider in more detail the ion acceleration in the ion acoustic turbulence in a high-
Z plasma. Assuming approximately equal temperatures of the electrons and ions, one finds

that the oscillations excited by this instability near its threshold (7.5) have the wave-number

k~JZy Doe (119

vTe

Based on the standard equations of the quasilinear theory, one finds that ‘the diffusion
coefficient in (7.13) is directly related to the effective electron collision frequency v,z that

enters the expression for anomalous resistivity:

T 5/2
D~v vﬁzﬁ’ (mvzj K (7.15)

The characteristic energy W* of the tail ions at the time ¢ after the onset of the anomalous

resistivity will be .
W ~ T(zfﬁfveﬁt)zls(me/m,-)” ° (7.16)
Equation (7.16) directly links the ion energy with the anomalous resistivity (7.6) and
provides thereby a phenomenolgical link between the two phenomena: the anomalous
resistivity and the formation of the ion tail.
The maximum energy is limited by the duration of the turbulent state or by the
residence time of the ion within the neck. An absolute upper limit is set By the condition

that the ion gyroradius becomes comparable to the neck size. This yields the following

estimate for the maximum ion velocity v;: v;m;/ Z geB ~ a, where a is the neck radius. As

B~ul/2ma, one finds that
v  Zoy I(MA)
L=, 7.17
¢ A 30 - (10)
At a current ~ 20 MA, the protons, in principle, - can be accelerated to subrelativistic
energies (Eq. (7.17) corresponds to nonrelativistic energies; at higher currents it breaks
" down). Of course, this is an estimate from above. Still, it shows the significance of the

pinch current in providing conditions for generating high-energy particles.
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So far we have been discussing the generation of fast ions. Fast Z pinch discharges
often are accompanied by bursts of hard x rays, pointing to the presence of high-energy
electrons. As a cdriosity, one can mention the generation of multi-MeV electrons in high-
altitude lightning (Fishman et al., 1984). Formation of electron beams is strongly
suppressed by the presence of the transverse magnetic field of the pinch. It is hard to
expect formation of an electric field exceeding cB, as this would require a complete current
breakup within the time of the order of r/c. At E<cB, on the other hand, electrons cannot
accelerate; they experience a elow nonrelativistic drift motion, with a velocity E/B<<c. For
this reason, the models that attribute the formation of high-energy electrons to the
mechanism of a local adiabatic compression are of some interest. They predict the
formatxon of hot (possibly relativistic) electrons near the necks (Vikhrev, 1986). These
areas then could serve as sources of hard x rays. It is interesting to note that electron beams
were detected in so called X pinches (a dlscharge through two or more crossed wires),
where they were generated near the intersection point (Ivanenkov et al., 1996).

Formation of beams of runaway electrons is possible near the pinch axis where the
magnetic field is weak and the condition E>cB can be satisfied. At a given density and a
given electric field strength, there exists a group of electrons experiencing runaway. To be
involved in a runaway process, the electron should have > high-enough initiel energy so that,
before the first scattenng, it doubles its energy. This condmon, 1f expressed in terms of the

[T R

effective collision frequency, reads as .

9 : .o ) s
IS "%J”;V _ e (118)
M Cff s N - . > - - M

We have explicitly included the dependence of effective collision frequency on the electron
velocity. Electrostatic fluctuations of the lower-hybrid or ion acoustic type give rise to a
dependence of 1/v* in v, very much like for classical Coulomb collisions. If the classical

collisions are important, v, should include them too. From Ohm’s law, one finds that
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I (7.19)
meveﬂ‘ (vTc)

Because the current is carried by the main body of electron distribution, the collision
frequency that enters this equation corresponds to “thermal” electrons. For the 1/v?
dependence of the collision frequéncy, one finds from (7.18) and (7.19) that the critical
energy above which the runaway process begins is (Benford, 1978): w,,; = Tvr,/u..The
drift velocity u usually does not exceed a few ion thermal velocities. Therefore, only a
small fraction of the total electron population can be involved in a runaway process. The
spectrum of the runaway elcctrong can be found in Benford (1978).

Phenomena discussed in this section can be strongly affected by the presence of
even a weak axial magnetic field. In particular, the neck formation can be stopped because
the axial field would grow inversely proportional to the square of the neck radius, while the
azimuthal field would grow inversely proportional to the first power of the radius. On the
other hand, an axial magnetic field considerably broadens the zone where the runaway
electrons can be accelerated.

In the implosions of hollow shells (e.g., the wire arrays), favorable conditions for
runaway formation may be met inside the shell, where there is no magnetic field and the
plasma density is low. An axial electric field may be present inside the shell if the skin
depth exceeds the thickness of the shell (see Sec. II. G). The beam of accelerated electrons
will be formed then much earlier than the on-axis stagnation occurs. An early appearance of
the beam (detected by the x-ray radiation from the anode) can serve as an indicator of a
great skin depth. At high enough beam-to-plasma density ratio, the beam may experience a
two-stream instability. A survey of the effects caused by this instability can be found in
Breizman and Ryutov (1974).

In addition to acceleration mechanisms related to the neck formation, the
mechanisms based on the ion acceleration through the sheaths near the electrodes have also

been studied (see Haines, 1983, and Trubnikov, 1986, for further references).
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C. The Hall effect

When the electron gyrofrequency becomes greater than the electron collision
frequency, the Lorenz force in the electron momentum equation becomes dominant over the
electron-ion friction term. In a uniform plasma, the electron momentum equation should be
written as:

meV,u =—eE—e(u+v)XB . (7.20)

Here the electron-ion collision frequency includes, generally speaking, both the Coulomb
collisions and anomalous scattering; v is the ion velocity (which almost coincides with the
velocity of the center of mass); u is a relative electron-ion velocity. If lul is greater than the
characteristic velocity of the ion motion, then equation (7.20) shows that the magnetic field
is convected together with electron fluid (not with 2 plasma as a whole). In the limit of a
low collision frequency, the magnetic field is frozén into the electron fluid. The possibility
appears then that the magnetic field will be redistributed at a time-scale that is short
compared to the time-scale of the ion motion. Because the ion density within this short
time-scale remains constant, only those electron displacements are allowed that do not
perturb the electron density. This type of motion is described by so-called “electron
magnetohydrodynamics” (EMHD), or “Hall magnetohydrodynamics”. The latter name is
related to the analoéy of the last term in (7.20) to a Hall term in the theory of current flow
in solid conductors. A general sufvey of EMHD has been published by Gordeev, Kingsep,
and Rudakov (1994). A set of criteria defn_ling the parameter domain where the effects of
EMHD are ‘important -has -beeh*sum;narized ~ in - ‘more Tecent Fpéper by -Kingsep and ————
Rudakov (1995)'. Dissipative phenomena m EMHD were discussed by Sevast’yanov
(1993). Roughly speaking, the effects of EMHD become important if the following two
conditions are satisfied: @,>V,; u>s, a, where s and a are the sound and the Alfven
velocities, respectively.

The motions of an electron fluid become particularly interesting when the plasma

density is nonuniform. If the plasma density varies in the z direction, the skin-effect
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becomes dependent on the direction of the current (see Gordeev, Kingsep, & Rudakov,
1994). Fast axisymmetric striations can be self-generated (Rudakov, Sevast’yanov, 1996).
The streamlines of the 'current become wavy, with the axial wavelength of the order of the
shell thickness. This happens within a time that is short compared to the time within which
the ions would react to the firld perturbation (the ion background is assumed to be steady).

An interesting and so far unsolved issue is that of the influence of these fast
phenomena on the quality of the shell implosion and the development of slower instabilities
involving the ion motion (in particular, the Rayleigh-Taylor instability). In this respect, one
should note that the current perturbations discussed by Rudakov and Sevast’yanov
propagate along the axis with a velocity approximately equal to ; therefore, although the
instantaneous force acting on the ions is strongly z-dependent, an averaging that occurs
because of the travelling nature of these perturbations should make the average force z-
independent and the possible seed for m=0 hydrodynamic instability decreases.

For the flute-type mode, with the wave vector orthogonal to the magnetic field,
even the presence of a strong Hall effect does not change the K'” scaling of the growth rate
(Gordeev, 1999 a,b).

An important issue is the electron flow at the boundary between the electrode and
the plasma: at the electrode surface the tangential component of the electric field vanishes,
and the electron flow becomes almost parallel to the wall. Weak collisions gradually shift
the electrons in the direction of the wall. Because this (axial) motion is slow (at weak
collisions) the resistivity of the transition layer becomes anomalously high. More details on
these issues can be found in the aforementioned survey by Gordeev, Kingsep, and
Rudakov. A 2;D effect in electron magnetohydrodynamics may lead to increased plasma

resistance (Esaulov, Sasorov, 1997).
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D. Spontaneous generation of the magnetic field

In implosions of uniform gas loads, where a shock wave propagates in front of the
magnetic piston, there exists a zone of highly ionized plasma behind the shock but before
the piston where the magnetic field is zero, at least in the ideal case where no stray early-
time breakdowns occurred at the beginning of the shot. It turns out that, if the system does
not possess a perfect symmetry, high magnetic field can be spontaneously generated in this
zone. The mechanism we are referring to was identified a long time ago in conjunction with
experiments on laser plasma heating and is associated with non-collinearity of gradients of
electron temperature and density (Stamper at al., 1971). When Vr and VT aren’t parallel,
an electromotive force is generated in a plasma that drives the current and' produces
magnetic field. This term should be added to the standard induction equation, which

acquires the form (Stamper at al., 1971):

%:vaxB—Vx(DmVxBﬁM .

en

(7.22)

The first term in the r.h.s. describes fhe‘convecﬁbn of the magnetic field with a plasma
flow (line-tying), the second term describes joule dissipation (in the case of a uniform
magnetic diffusivity it reduces to a diffusion term D,,V?B), and the last term is the thermo-
electromotive force. Non-collinearity of Vn and VT in the problem under consideration
may emerge from the waviness of the piston caused, in turn, by the Rayleigh-Taylor
instability. e » ‘
Let us for a while neglect the ohmic losses (this is equivalent to a statement that the
* skin-depth is much smaller than the spatial scale of the perturbations). Then the max1mum
magnetic field is determined from the balancing of the first and the third terms in the r.h.s.
of Eq. (7.22). Estimating the w;elbéitji:(;f a ﬁlasrhé flow as a sound velocity s, we find that,
within an order of magnitude, B~T/ 'es7.i., where [ is a spatial scale of nonuniformities.
The magnetic field will vary (réndomly,;if the perturbations are random) at the scale A.

Assuming that one deals with an Ar plasnia with a temperature of 100 eV and Z_~10, one ‘




finds that for A~ 0.5 mm, the magnetic field is B~10 T. Under typical Z-pinch conditions,
this magnetic field does not lead to magnetization of electrons, @),7,; remains less than 1.
However, this field will be compressed at later stages of the implosion, when the shock
wave has already converged on axis. This happens if the resistive dissipation time is longer
than the compression time. In the opposite case, the magnitude of the magnetic field will be
considerably decreased. The estimates for the conditions of a particular experiment can be
made on the basis of Eq. (7.22). This mechanism of the magnetic field generation was
possibly observed by Afonin and Murugov, (1998).

Although this random field is usually small compared to the pinch magnetic field, it
may play a significant role after the quasiequilibrium configuration js formed (Sec. II) and
necks develop. In particular, this random field may prevent the runaway electrons from
' being freely accelerated along the axis of the column (Sec. VII. B).

The other situation where this mechanism for magnetic field generation may play a
role is a blow-off plasma filling the interior of the imploding shell. One can expect that this
plasma will be strongly nonuniform, and that the conditions for the appearance of the
thermal electromotive force will be thereby satisfied. The presence of the random magnetic

field will affect transport properties of the blow-off plasma.

VIII. APPLICATIONS OF FAST Z PINCHES

A. Radiation sources
1. Hard x rays

One of the traditional applications of fast Z pinches lies in generating short pulses of
intense kiloelectron-volt radiation, with the energy of the quanta in the range up to 10 keV.
For such applications, one can use a wire array made of some high-Z material (say,

nickel), or an annular gas-puff of gases like Ar or Kr. If the parameters of the pinch are

properly chosen, a plasma with an electron temperature of several hundred electron-volts 0
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over 1 keV can be formed, and the excitation of the L or K shells becomes feasible. A
survey of the studies in this area prior to 1988 was published by Pereira and Davis (1988).
A rough oﬁtimizat’ion of the Z-pinch parameters for the highest yield in the desired
K or L transition can be made based on the following arguments. The efficiency of
converting the magnetic energy into the kinetic energy of the imploding shell is determined
by the condition IT=IT,,, where ITis a dimensionless parameter defined by Eg. (2.4). As
is clear from Eq. (2.4), for a given pulse-power generatdf,'i.‘e., for given values of I, and
7, the product 7ir; must be kept constant: This means that the pinch mass’ m and the
initial pinch radius r,can be varied only subject to the constraint
irl=const . 8.1)
- The kinetic energy per ion scales as the implosion velocity square, i.e., as (r/7)%. The
electrons acquire their energy from the ions, and the electron temperature therefore
correlates with (r/7)%. According to Eq. (8.1), the heavier liners have smaller initial radii,
i.é., the electron temperature at ste{gnation decreases with increased mass of the liner.
Eventually the electron temperature becomes insufficient to excite a certain K or L
transition. Converseély, for the liners with less mass (larger initial radii), the kinetic energy
per fon grows. At first sight, this means that the lighter liners are better as the sources of
kilo-electronvolt x rays. However, if one goes too far in this.direction, the radiation yield
starts to decrease because the radiation power per unit volume scales as the density squared
and, at small masses, decreases. Because of this, the pinch plasma begins to éxpand and
- cool down before any substantial fraction of the thermal energy géts converted into the
radiation. Thé slower ehergyié)'(‘c;héng»e between electrons and ions at highér‘tefnperatures
also acts in this same direction. These two opjﬁosité treﬂds — decrease of the electron
temperature at high masses, and decrease of the radiation power at low masses —
determine the optimum mass of the imploding liner. At higher masses, a self-absorption
may reduce the K-shell radiation yield (Apruzese et al, 1998). More detailed discussion of

these issues, together with supporting experimental information, can be found in Pereira
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and Davis (1988), Thornhill, Whitney, and Davis (1990), Deeney et al. (1993, 1994)
Deeney et al (1997a), Deeney et al., 19982) , and Whitney et al. (1990, 1994).

In the recent experiments at the Z facility (Deeney et al., 1997b), the energy radiated
in the K-shell transitions of Ti was well over a hundred kilojoules (Fig. 29). In Deeney,et
al. (1998c) , it was shown that reducing the height of the pinch from 2 to 0.75 cm did not
change the total radiation power or radiatioAr-l energy. As the shortening of the pinch resulted
in the decrease of the pinch inductance and some increase of the pinch current, the authors
increased the mass per unit length to keep the load match in terms of keeping the parameter
(Eq. (2.4)) more or less constant. . 7

In real life, although a considerable fraction of the kinetic energy can be converted
to radiation upon stagnation, the plasma column still has sufficient pressure to somewhat
expand and to be compressed agaip by the magnetic pressure. This process may explain the
presence of a longer, lower-amplitude, and lqngér-wavelength radiation pulse that follows
the main peak (Peterson et al., 1997, 1999). Another phenomenon that may effect the final
radiation yield is a short-circuiting of the transmission lines later in the pulse (Giuiliani et
al, 1990).

The stability of the Z-pinch implosion is important for efficient x-ray generation,; it
sets the minimum effective size to which the pinch can-be compressed. A more stable
implosion would allow one to increase the initial pinch radius and to reduce the mass while

still having high density at stagnation (sufficient to radiate the thermal energy before the

pinch rebounds).

To obtain harder x rays, in th_e range of ten's' of kilqelectronvolts, one could use an
alternative approach based on the adiabatic compression of a hydrogen plasma seeded with
heavy impurities; the plasma temperature could possibly be made as high as 10 keV,
allowing excitation of the K-lines of such elements as Xe. We discuss this possibility in

some more detail at the end of Sec. VIII D.1.
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2. Black-body radiation

Fast Z pinches with high atomic number materials are also used as a source of a
thermal radiation with a temperature from tens of electronvolts to ~200 €V (and, in future, -
over 300 eV). If the implosion occurs in the center of a closed cavity (sometimes called a
“hohlraum”), the radiation from the pinch, after several reflections from the walls', becomes
almost black-body radiation (Matzen, 1997). The wall (and the radiation) temperature can
be roughly evaluated from the equation: P, = (1-)AcT *, where P,, is the power
radiated by the pinch, A is the surface area of the cavity, and s the albedo of its walls. In
the experiments at the Saturn facility at Sandia, the radiation temperatures were in the range
of 80-90 &V (Matzen, 1997; Matzen, 1999). In the experiments at the Z facility,
temperatures in the range of 120-140 eV (Porter, 1997) and, more recently, 15510 eV

(Matzen et al, 1999) have been obtained.

B. Studies of material properties under extreme conditions

Thermal radiation generated by the just-described method can be used to drive
shock waves in various materials. By studying the shock velocity, one can gain
information about the equations of state of the materials under study. A typical geometry of
such an experiment is shown in Fig. 30. Thermal radiation causes ablation of the material
from the inner side of the sample, and the ablation pressure drives a shock whose velocity
can be measured by measuring the time of the shock arrival at the outer side of the sample.
To be sure that the radiation spectrum is indeed close to the black-body spectrum (and, -
therefore, that the drive can be characterized by a single function 7(2)), small cavitif;s can be
attached to the main one in such a way (Fig. 31) that the samples are protected from direct
irradiation by the pinch, and only the radiation from the walls of the cavity hits the surface
of the sample (Matzen, 1997). Several configurations have been proposed that increase the

uniformity of the radiation on the sample under study.
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The hohlraum technique has been successfully used to study propagation of shocks
in the materials that will be used in ICF capsules (Olson et al., 1997) and to study
equations of state; (EOS) of metals in the pressure range of ~3 Mbar (Branitskii, Fortov et
al., 1996). The same technique is broadly used in physics research with laser-driven
hohlraums where it has reached a high degree of sophistication. A general survey of this
approach can be found in Rosen (1996). It has been successfully used for studies of the
structure of shock-compressed materials (Kalantar, Chandler, et al., 1999), of
hydrodynamic Rayleigh-Taylor and Richtmyer-Meshkov instabilities with controlled initigl
perturbations (Remington, Budil, et al, 1997), of the effects of a material strength on
hydrodynamic phenomena (Kalantar, Remington et al., 1997, Remington, Budil et al.,
1997a), and for astrophysical simulations (Remington et al., 1997b). An advantage of Z-
pinch-driven hohlraums is a larger size and considerably higher total radiation output
(centimeters vs. millimeters, and hundreds of kilojoules vs. tens of kilojoules). This, for
example, allows one to use thicker hydrodynamic packages, minimizing problems with
radiation preheat. Larger sizes of the samples and longer times would also lead to better
accuracy of the EOS measurements. Gasilov et al (1995) suggested generating
multimegabar shocks in a central rod (~ 1 cm long) hit by an imploding liner. For yet
larger experimental volumes, other techniques, based on magnetic compression driven by

chemical explosives, are feasible (Hawke et al., 1972).

C. Generation of high magnetic fields = = = =

The use of an imploding cylindrical shell for generating high magnetic fields had
been suggested many years ago (Fowler et al., 1960; Sakharov et al., 1965). High fields
are generated by compressing an initial modest axial field by an imploding, conducting
cylindrical shell. Experiments with explosively driven systems have been reported in the

1960s (Fowler et al., 1960; Sakharov et al., 1965), reaching magnetic fields as high as 20

MG. Implosions of metal shells in the Z-pinch geometry were studied by Alikhanov et al.
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(1981); a maximum magnetic field of 3.5 MG was obtained in a volume of a few tens of
cubic centimeters.

We preserit a qualitative consideration of the magnetic field compression in the Z-
pinch setting, assuming that the thickness of the shell is negligibly small and that the shell
has a high conductivity. The condition of the conservation of the axial magnetic flux
enclosed by this plasma shell is:

Br=B,7,, (8.2)
where B, is the initial axial magnetic field. When the convergence ratio is high enough, the
final axial magnetic field can be considerably greater than the initial one. Here we neglect
the edge effects of the type discussed in Sec. ILF. This is correct if the length of the pinch
is greater than its radius. ~ -

The compression of the ax1al magnetic field can be analyzed in a particularly
stra.lghtforward fashion in the reference case of a constant pinch current. Then, the energy
conservation law shows that at the point of the maximum compressmn where the liner is at
rest and its kinetic energy is zero, the followmg relationship holds:

2 B 2 By _ 255 (

Y1}
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where B, is the azimuthal magnetic field at the surface of the liner. At a convergence
C>>1, one can neglect the second term in the 1 h.s. of this equation. One then ﬁnds that, at

U e

the stagnatlon pomt the (ax1a1) magnettc ﬁeld ms1de the hner 1s related to the (azunuthal)

magnetlc field of the pmch current by the equation

S B,= B«/Zlnv )

Taking C—?.O one finds that the magneuc ﬁeld msxde the hner can be made apprommately

~ PN N
o "\L"

2.5 times higher than the azimuthal Z_:pmch ﬁeld at the point of the maximum
compression. In other words, this AScheme leads to relatively modest enhancement of the
internal field compared to the external ﬁeld that would be reached at the same convergence

ratio. Still, this factor is non~neghg1ble especmlly because it is topologlcally more
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convenient to use the magnetic field inside the shell for the studies of interaction of super-

high fields with matter.

From Egs. (8.2) and (8.4) one can see that the initial axial magnetic field required to
reach this state is: B,g = B(po«/ 2InC/C, where B, is the initial azimuthal magnetic field.

Taking, as an example, B ,,=0.5 MG, and a modest convergence C=20, one finds that the
initial axial magnetic field should be ~60 kG, and the final axial magnetic field will be 25
MG. Accounting for the finite thickness of the imploding shell leads to somewhat smaller
enhancement factors, because paﬁ of the implosion energy is spent on the plasma heating
and compression. These and other pertinent effects have been discussed, e.g., .- by. Felber,
Liberman, and Velikovich (1985).

In experiments carried out during the last decade, annular gas-puffs have been used
to produce conduct{ng imploding shells (Wessel et al., 1986; Baksht et al., 1987; Felber, et
al., 1988 a,b). Magnetic fields in the range o-f 40 MG were reported in Felber, et al.
(1988). In summary, an axial .implosion of the seed magnetic field is a proven way of
reaching an axial magnetic field a few times higher than the azimuthal magnetic field at the

stagnation point.

D. Controlled thermonuclear fusion (CTF)

There are two significantly different ways for using fast Z pinches for reaching
CTF. The first is based on the direct shock and/or adiabatic heating of an imploding DT
plasma (possibly nested inside a liner made of a heavier material). The second is based on
generating high-temperature black-body radiation by colliding the liner with some inner
shell; the black-body radiation then drives a spherical pellet in very much the same fashion
as in the indirectly driven laser fusion systems (for a survey‘ of those see Lindl, 1995). We
discuss these two schemes in the next two sub-sections.

As was mentioned in the Introduction, quasi-equilibrium pinches (not the fast

pinches that are the subject of this survey) have also been considered as a potential
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candidate for fusion reactors, but we will not discus§ that approach here. Surveys of
quasistatic pinches in conjunction with fusion applications have been published by Haines
(1982), Dangor i(1986), and Robson (1989, 1993).

A well-known difficulty with using fast Z pinches in a future commercial fusion
reactor is related to the considerable neutron and thermomechanical damage that would be
suffered by the pulsed power generator if the pinch is not separated from the generator by a
large-enough distance. A possible solution to this problem was suggested by Robson
(1989), who envisaged using two long liquid lithium jets that would serve as electrodes for
the Z-pinch. Drake et al. (1996) considered another technique that could possibly be used if
the energy to bé delivered to the Z pinch is less than ~1 MJ per pulse. For this case one
could conceive of dropping miniature diode assemblies, consisting of fusion targets and the
necessary circuitry, to the reactor chamber and energizing them by a charged particle beam
or even by a fast projectile (in this latter case, the assembly would have to carry a seed
magnetic field that would be compressed by a fast projectile and drive the Z-pinch circuit).

The whole issue of stand-off energy sources has not been explored in any detail. It
would therefore be premature to write off the Z pinches as a prototype of a fusion reactor
solely on the basis of the absence of proven solutions for the power supply problem. In
addition, even if such solutions are not found, the fast Z pinches can still be very useful for
the fusion program; they could provide a reiatively inexpensive demonstration of fusion
ignition in a variety of pulsed power fusion concepts. 7T

PR ——

1. Plasma heating by implosion

First consider implosions of thin shells made of a DT mixture (e.g., Nedoseev,
1991). Cryogenic DT fiber arrays can serve as such shells. The lifetime 7 of the hot plasma
column formed at the stagnation point will be of the order of r,,,/v;; where r,,;, is the radius

of the column (related to the initial radius of the shell by Eq. (1.1)), and v is the ion
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thermal velocity corresponding to the temperature ~10 keV (i.e., v;~10° cm/s). The
Lawson criterion reads as

: n(cm™)7 (s)>Q0-10" (8.5)
where n is the DT plasma density and Q is the ratio of the fusion energy to the thermal
energy of the imploded plasma (the gain factor). This condition can be rewritten as
W(/ecm)>10*Q*n(1/cm®), where W is the energy per unit length of the plasma column.
Even with a relatively modest assumption with regard to the required gain, Q~10, this
condition means that one has to reach a density level of ~10% cm™ to keep the energy of the
plasma below 10° J/cm. According to Eq. (2.9), to reach this energy, one would have to
generate unrealistically high pinch currents, ~10° A. 'On ‘the other hand, increasing the
density in the imploded state above 10 cm® would require attaining unrealistically high
convergences. A possibility of improving the implosion stability and, thereby, the axial
convergence was analyzed by Golberg, Liberman and Velikovich (1990), with a
conclusion that a break-even requires a radial convergence ~ 30, with the energy release in
the range of hundreds of megajoules/cm.

These observations point out the desirability of using a heavier shell to confine the
DT plasma near the stagnation point. In this case, however, another difficulty surfaces:
high electron thermal conductivity in the fusion plasma. Because the thermal capacity of the
heavy shell is much greater than that of a fusion plasma it confines, there will be heat losses
from the DT plasma to the confining shell. It turns out that this heat-loss mechanism leads
to the approximately same energy limitations as discussed above and, for this reason, does
not make this fusion concept more realistic.

Potentially, very high densities can be achieved in 3-D implosions with a linear
convergence of ~30 (typical for laser-driven fusion). The whole concept then becomes
similar to that of laser fusion, with the only difference being that the implosion of the
capsule is driven by magnetic pressure. In principle, almost spherically symmetric

implosions are feasibie in the magnetic compression scheme, despite the fact that the
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magnetic pressure cannot be made spherically symmetric. This had been demonstrated in a
multi-megajoule explosively driven experiment by Mokhov et al. (1979). More recently,
quasispherical implosions in the Z-pinch geometry have been experimentally studied by
Degnan et al. (1995). A linear convergence ratio of ~6-7 has been reached. It remains,
however, unclear whether the very fast, high-convergence implosions needed to ignite the
fuel in the center of the capsule are actually feasible. This issue requires further analysis.
One more school of thought (e.g., Yan’kov; 1991) pursues the detonation wave
approach, in which the nuclear burn wave would be ignited in some point of a cylindrical
column and would propagate along the axis. The detonation could be ignited in a “neck”
that could be deliberately produced at a-certain axial location. Linhart et al. (1993) consider
even the possibility of detonating a column of pure deuterium (not a DT mixture) by
imploding a short section filled with DT. These schemes would give rise to very large
energy release per pulse, in the range of 1 GJ (approximately equivalent to 250 kg of high
explosives). A strong heating of a CH fiber plasma in the zone of a deliberately created
constriction was observed by Aranchuk et al. (1997). Numerical simulations by Lindemuth
(1990) have shown a spontaneoué formation of hot spots as a result of the devel;.')pment of
a sausage instability in cryogenic deuterium fibers. Alikhanov et al. (1984) observed a

spontaneous formation of 10 pm diameter necks in gas-puff pinches with the initial radius
of a few centimeters. et R A S o S

Very high densities of DT fuel can be reached in the so-called staged pinch

(Rahman et al., 1995), where a liner would implode onto a DT fiber situated near the liner - ..

axis and carrying an initial axial current. Compression of the azimuthal magnetic field has
an interesting feature; the rate of its growth becomes very high when the outer liner comes
close to the inner fiber. This is a result of the fact that, when the gap between the fiber and
the liner is much greater than the fiber radius, the fiber inductance ldependsv on the gap only
lc;garithmically, whereas with gaps smaller than the fiber radius, this dependence changes

to linear. Therefore, the current in the fiber experiences a very sharp rise, compresses the
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fiber and ignites the fusion fuel. Numerical examples presented in Rahman et al. (1995),
show that the fiber density may reach the values ~10% cm? even at a relatively modest
current of 2 MA,in the imploding liner with an initial radius of 2 cm. However, this
optimistic conclusion is based on the assumption that the inner surface of the liner remains
cylindrical within an accuracy of a few micrometers at the time of the maximum
compression. This does not seem easily achievable.

Probably, the most straightforward approach, if not to ignition then to break-even,
could be based on adiabatic compression o_f a magnetized plasma. It has been understood
for many years that, to suppress heat losses from the fusion plasma to the walls of the
imploding liner, one can use a relatively weak magnetic field, such that its pressure is small

compared to the plasma pressure, i.e., the condition

=" >>1 (8.6)

is satisfied. This condition is, in fact, almost mandatory because, if the inequality (8.6)
reverses its sign, the liner implosion becomes inefficient: the liner works predominantly
against the magnetic pressure, and the liner energy is converted predominantly to the
energy of the compressed magnetic field (not the thermal energy of a plasma).

As was pointed out by Drake et al. (1996), a 3-D implosion of the liner is preferable
to a purely cylindrical implosion. This can be understood in the following way: the z-
component of the magnetic field inside the shell scales as the square instantaneous
convergence C%; in other words, the magnetic pressure scales as C*:

Pu=PwCs - T (8.7)
where p,,, is the magnetic pressure of the axial magnetic field at the beginning of the
implosion. The pressure p of a fully ionized hydrogen plasma scales as a volume to the
power (-5/3), orp = p0C10/ 3 for a purely cylindrical implosion. Clearly, the magnetic
pressure grows faster than the plasma pressr;re, and, at the high convergence ratios that are

of interest in this problem, becomes greater than the plasma pressure. On the other hand,
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for a 3-D implosion, the scaling for the magnetic pressure remains unchanged (Eq. (8.7)),
while the plasma pressure now scales as C° and grows faster than the magnetic pressure.
Plasma confinement under condition (8.6) was discussed many years ago by
Budker and his coworkers (see Alikhanov et al, 1967; Budker, 1973). In the context of a
laser heated plasma it was discussed by Pashinin and Prokhorov (1971). Since then, it has
been studied in a lot of detail theoretically and numericall}" (e.g., Vekshtein, 1987). The
general conclusion was that, because the plasma pressure is almost constant over the
radius, the plasma density becomes very *high near the cold walls. Magnetic field gets
convected to this high-density region from the plasma core, and a “cushion” of a very high
magnetic field is formed near the walls. At moderate plasma betas (see Eq. (8.6) for the
deﬁnition’ of beta), below 10-20, the resulting confinement of the hot plasma core proves to
be quite sétisfactory: the confinement time. exceeds tens of the Bohm confinement time. At
high densities typical of the system under consideration, this confinement time does not
substantially limit the plasma gain (see Drake et al., 1996, for more details). This concept
is sometimes referred to as magnetized target fusion (MTF), Lindemuth and Kirkpatrick,
1983. A high-energy (many tens of megajoules) variant of this system is the MAGO device
under study at Los Alamos National Laboratory and the All-Russian Scientific Research
Institute of Experimental Physics (Lindemuth et al., 1996).
Among magnetic configurations that could be imploded are the field-reversed
configuration (FRC), the spheromak, and the diffuse Z—pinch. Figure 32 shows an FRC
“nested inside the liner."To make ‘the ‘implosion -3-dimensional, -it 1\:)vas -suggested. that the
liner mass deﬁsity vary over the leng,'"th,'zwith a maximum density near the equatorial plane
(Cf. Alikhanov et al, 1977). The liner would be theﬁ squeezed near the ends faster than
near the equator, and the FRC would be compressed both axially and radially. What is yet
to be proven in this approach is the formation of a FRC suitable for the subsequent
compression. The experience here is limited to relatively large (tens of centimeters in

diameter) FRCs with a plasma with a density ~10" cm?®, Preliminary scaling analysis
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(Ryutov, 1997) shows that creation of a much smaller (1-2 cm diameter) FRC with a
plasma density ~10'® cm™ and temperature ~100 €V is feasible.

In Drake gt al. (1996) this scheme has been analyzed for relatively slow (1-2 Us)
implosions of heavy (at least a few grams) liners that could be driven by relatively simple
condenser banks. The conclusion was drawn that a 10-keV DT plasma under break-even
conditions can be formed at as low a plasma energy contf:nt as ~100 kJ. No analyses have
been made with regard to potentialities of this scheme with much lighter liners and faster
drivers, such as the ones used in the Z facility.

Note that, if seeded with heavier impurities, this plasma could serve as a high-
power source of hard x rays. If the atomic number of the impurities is chosen in such a
way that they are completely stripped at 10 keV, one can generate a smooth bremsstrahlung
spectrum, corresponding to a temperature ~10 keV. If the impurities are heavy (like Xe),
then a considerable fraction of energy could be ‘radiated in K-shell lines with energies ~20
keV and higher (Toor, Ryutov, 1997). B
2. Generation of a black-body radiation to drive a fusion capsule

A very different way of using Z-pinches for fusion (Smirnov, 1991; Matzen, 1997;
and also earlier unpublished reports from both Sandia and Troitsk) is based on the scheme
resembling indirect-drive laser inertial confinement fusion (ICF); a nice qualitative
discussion of this application of fast Z pinches has been recently published by G. Yonas
(1998). When an imploding liner collides with an inner shell situated near the axis, the
impact energy is converted into thermal energy in both shells. If the imploding plasma
shell is sufficiently thick, it will trap the radiation produced by the stagnation (Fig. 33). In
analogy with the terminology used in laser fusion, the interior of the shell filled with
(almost) black-body radiation is called a “hohlraum.” To emphasize the fact that the walls
of the hohlraum continue to implode after the impact between the two shells, a term “flying

radiation case” or “dynamic hohlraum” is often used (Matzen, 1997; Brownell et al, 1998,
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Matzen et al., 1999). A spherically symmetric capsule filled with DT fuel is situated in the
center of the dynamic hohlraum. The thermal radiation causes the ablation and implosion of
the surface layers ';)f the capsule. We will not discuss here issues of capsule design and its
implosion physics (see Olson et al, 1999, and Hammer et al., 1999, “for capsule designs),
but focus on some issues related to Z-pinch-driven hohlraums.

The radiation temperatures required for ignition of an indirect-drive DT capsule are
in the range of 250 eV for designs similar to ICF capsules driven by lasers (Lindl, 1995)
The temperatures presently reached in the Z-pinch experiments are in the range of 130-180
eV (e.g., Nash et al, 1997b, 1999; Leeper et al, 1998). These ICF ignition and high yield
capsules also require precise pulse shaping and a high degree of radiation symmetry.

The temporal dependence of the radiation flux can be controlled by adjusting the
shape of the inner and/or the outer shells. For example, the configuration shown in Fig.
34a will produce a long “pedestal” caused by the interaction of the ends of the two shells,
followed by a sharp pulse produced during the impact of the central, almost parallel, parts -
of the shell. The minimum attainable duration of the impact (and, accordingly, the
maximum possible radiation flux) is determined by the thickness of two shells at the time of
their impact. In the overall context of pulse shaping and radiation symmetry, the importance
of eliminating gross hydrodynamic instabilities becomes quite clear.

For these ICF capsules to reach ignition, the radiation field at the location of the

capsule ablating surface should be spherically symmetric to within an accuracy of ~ 1% in -

- the -Jower azimuthal “modes.- Because -the -Z-pinch -geometry -does -not -possess -this —- -

symmetry, the size of the capsule should be a small fraction of the size of the radius of the " -
dynamic hohlraum. One method of isolating the radiation source from the capsule is to fill
the dynamic hohlraum with a low atomic number, low density material that creates a large
plasma f)ressure but is relatively thin to the radiation produced by the stagnation of the
imploding plasma. A more radical solution of this problem is an overall spherical

symmetrization of the implosion, as shown in Fig. 34b. Although the problem of the
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irradiation symmetry is difficult, it does not look insurmountable. Detailed studies of laser-
driven hohlraums have shown that one can reach quite satisfactory results by a proper .
shaping of the hohlraum, by using optimally placed passive screens, and by reducing the
pellet diameter to approximately one-third of the diameter of the hohlraum.

An attractive feature of Z-pinch-driven dynamic hohlraums is the relatively low cost
of the pulsed-power generator and the high total impact energies (ip the range of a few
hundred kilojoules to a few megajoules) available in the existing devices like Z, Saturn, or
Angara-5.

In addition to radiation temperature, pulse shaping, and symmetry, several other
issues should be considered in the design of dynamic hohlraums. We mention some of
them here without attempting serious analysis. (1) The ablation surface of the capsule must
be isolated from the imploding liners and the shocks that they generate. For example, if the
hohlraum is filled with a foam, the shock wave excited in the foam by the impact with the
liner must not interact with the ablation surface of the capsule before the capsule implodes.
In the case of an empty hohlraum, the low-density ejecta can be of some concemn if they
reach the capsule before the ablation process is well established. (2) Some low-density
blow-off plasma will almost certainly be present inside of an empty hohlraum during the
early phase of the Z-pinch implosion (its source can be the radiation preheat during the run-
in phase or inductive splitting of the drive current). By itself, because of its low density, it
will probably have no significant effect on the pellet. However, if the axial electric field
penetrates through the liner, it coﬁld generate particle beams in this low-density plasma,
which might then cause considerable preheat of the pellet and violate its spherical
symmetry. (3) A magnetic field may be generated inside the plasma filling the hohlraum
that may affect pellet performance.

All these issues are in a relatively early stage of assessment. On the other hand,
none of them seems to pose insurmountable problems for the dynamic hohlraum concept in

general. In particular, one could eliminate most of them altogether by using geometries of
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the type shown in Fig. 35, where the Z-pinch implosions occurs at the ends of the main
hohlraum.

'
E. Other possible applications ’

In some modes of operation, especiallv if the neck formation could be triggered in a
controlled way, Z pinches could serve as sources of high-energy, high-intensity beams of
charged particles, in particular protons and deuterons. Such beams could then be used for
the generation of short-lived isotopesfd'Ihe ‘p’roton-rich isotopes required fcr‘ positron
emission tomography for medical purposes chuld possibly be produced (see Dawson,
1993, for a discussion of a different"method of producing these isotopes). The beam could
also be used for measuring the nuclear ctoss-sections fot very short-lived isotopes.

Rudakov et al. (1991) and Kingsep: et al. (1997) discussed the possibility of
creating a very-high-power flux to the electrodes by an adiabatic compression of a plasma
by an imploding liner. The heat losses to the liner would be suppressed by an axial
magnetic field. The amplification of the flux to the electrodes would occur because of a

very strong dependence of the electcon thermal d1ffus1v1ty on the electron temperature
(o< T2, see Hub, 1994).

[asreta cee— s

The fact that a Z pmch produces h1gh-mten31ty radiation with a spectrum that is at

least crudely controllable canbe used for generatmg populahon inversion m vanous acuve

media. Porter et al. (1992 a b) have successfully used the rad1at10n of a sodium wue array

i

- -~ T

to pump a Ne gas cell and create a populatlon mversmn for the transmons wnh wavelengths e -

near 11 A. , ‘ o o

Z pinches have a]ready been used for collectmg mformahon that could be of interest
in astrophysics. Very encouragmg results have been achieved in the studles of the opacities
of the iron plasma (Sprmger et ald 1597) Interestmc possibilities exist for simulating
various high-energy-density astrophysmal phenomena — for example, the formation of

high-energy intergalactic jets. For thlS purpose, dehberate creation of jets of the type shown

113

PR P < A SR R 2 e A N S s i M i UM RO




in Fig. 8 could be made, and their propagation could be detected through the gas or plasma
filling the space beyond the anode surface.

i

IX. SUMMARY AND A GLANCE TO THE FUTURE

The fast Z pinch is a fascinating object, vyhose behavior is determined by a variety
of processes of magnetohydrodynamics, radiative transport, atomic physics, plasma
microinstabilities, and beam phys1cs A partlcular “shot” is formed by a chain of
mseparable stages, from the current 1mt1a110n and fast early-time instabilities, through the
run-in phase where hydrodynamic instabilities distort and broaden the imploding shell, to a
final on-axis stagnation,. accompanied by a burst of interlse radiation, by the possible
formation of a transitional quasi-equilibrium configuration, and, sometimes, by disruption
of the plasma column and the generation of fast particles. The Z pinch is to a high degree a
self-organized object, where a change of a single input parameter may trigger a long chain
of tightly interwoven processes occuring on various temporal and spatial scales and leading
to an outcome very different from simple “mechanistic” predictions.

We believe that all pieces of physics that are important for the Z-pinch performance
have been identified in this survey. Theory and simulations correctly descnbe many sides
of these phenomena. In particular, the gross dynarmcs of implosions of wire arrays is
nicely predicted by 1-D hydrodynamic simulations, which provide a correct value of the
time of a pmch collapse on axis (or on the inner cylinder). On the other hand, it is still
difficult to predict, based on first principles, the temporal evolution of the thickness of the
shell and the experimentally observed shape of the radiation pulse (although, by playing
with a few adjustable parameters, one can reach a reasonable agreement). In addition,
experimental information on the development of hydrodynamic perturbations during the

run-in phase is relatively sparse. More generally, one can say that, aithough the key
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physics phenomena have probably already been identified, their sometimes subtle interplay
still requires a much better understanding.

One area 'where experimental information is almost nonexistent is the direct
detection of microturbulence that may be responsible for the anomalous resistance and other
effects. Any measurements of this kind are particularly difficult at large facilities, where the
huge energy release in the diode region requires heavy shielding and forces one to move the
diagnostics equipment to large distances from the pinch area. In such a situation, indirect
information can probably be used to detect-anomalous plasma resistance. If it is actually
present, then one éan expect a considerable axial electric field to exist inside the empty
imploding shell, leading to gerieration of electron beams early in the pulse. The other way

of making indirect measurements is related to the possibility of changing the composition of
the pinch material. For instance, varying the relative amount of a light (say, deuterium)
component may considérably affect microturbulence and may interfere with the phenomena
of electron magnetohydrodynamics. Effects of electron magnetohydrodynamics can be
controlled to certain extent by a weak axial magnetic field that would lift the restriction
associated with the current flow across the field lines in the outer part of the pinch. The
present survey contains some information and refe_rences necessary for the planning of
such dedicated experiments, which seem to be quite important. They would allow one to
define the parameter domain where fast Z pinches are governed by standard MHD
equations, and would éstablish tt{e 51gn1ﬁcance .(o‘r> %nsigx}iﬁcance) of the anomalies outside
that domain. Smaller univgrsity—scqli ‘f‘acil‘it_ies’ :(of:'tl}q t‘yp?(‘ie:??ﬂbe-d m Haines, 1997 and
Bauer et al., 1997) where one can stuc}y speciﬁ; phenomena in a more benign eznvironment
canalsobeyofgre,athel_p.‘,M _ . V - '

Previous advances in fast-Z-pinch physics were reached in direct correlation with
progress in pulsed power technology: the highe‘r pinqh current has always led to a
considerable increase in the maximum kinetic energy of the imploding liner and maximum

radiation power, A good recent example is the progress made in the transition from the
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Saturn facility to the Z facility. The current pulsewidth was increased over a factor of 2
(from ~ 50 to ~ 110 ns) and the current was increased by ‘a factor of ~2.5 (from
approximately 7 to approximately 18 MA), resulting in an increase in the radiated energy of
a factor of ~5 and an X-ray power increase of a factor of ~3 (see Matzen, 1997). Therefore,
it is interesting to discuss what one can expect from a further increase of the pinch current if
new facilities become available (as an example, one can refer to a disc;ussion of a 60 MA
generator X-1 by Leeper et al., 1998 and of a 50 MA-range facility based on the inductive
energy storage by Azizov et al., 1998). In the discussion that follows, we assume that the
current can be represented as - e :

=1 f(t/7), ‘ (.1
where fis some given bell-shaped function with a maximum equal to 1; in other words, we
assume that the shape of the current waveform does not change, only scaliﬁg factors over
the horizontal (7) and vertical (I ) axes change (7 has a meaning of pulse-width). For
discharges with similar current waveforms, the optimum set of parameters is related by the

equation (2.4): X
%—’—‘;;xroi; = I1 = const 9.2)
Provided the parameter IT is kept constant, the time-histories of the pinch radius are
similar for similar current wave-forms (i.e., for the same function fin (9.1)). One can
expect that, if the shell thickness 4 is determined by the hydro&ynanﬁc instability, then the
thicknesses of two shells with the same value of the parameter JT will also have similar
time-Histories, i.e., the shell thickness will be proportional to 7, times some function g(#17),
identical for two systems with similar current wave-forms. This would also mean that, in
two implosions with the same function f and the same IT, the attainable convergence C,,,
will be the same.

The velocity of the shell scales as /7,

V~r/T. 9.3)

116




According to (9.2), this means that the kinetic energy of the shell (per unit length) at the
instant of the on-axis collapse scales as I,,,”:
1 Wy o< I (9.4)
" Remarkably, the radius, mass, and implosion time do not enter this relationship. The
maximum power Q (per unit length) that can be released in the stagnation is of the order of
0~W,(v/h) (9.5)
where £ in this equation is a shell thickness at the instant of the stagnation. For similar
implosions, & scales as r,. Therefore, according to (9.3), _
QoI’ IT 9.6)
The initial radius of the pinch and the mass 7 do not enter this equation (provided the
parameter ITis kept constant). Equations (9.4) and (9.6) provide a rationale for increasing
the current in the generators used to feed the pinch discharge; both the maximum at:tajnable
implosion energy and the maximum power scale as P, .. They also show that the
maximum power is inversely proportionai to the current pulse-width.

Some additional constraints on the parameters of the systems with a higher current
may stem from the obse_rvation that, at higher currents, some of the applicability conditions
of the hydrodynamic description of the system may break down. In particular, at higher
currents one may enter the parameter domain where the relative velocity of the electrons and
ions would considerably exceed the ion thermal velocity, triggering the onset of anomalous

resistivity and increasing the Ohmic losses during the implosion phase. The relative

(see Eq. (7.1)). The plasma temperature during the implosion of liners of heavy materials is
not sensitive to the other parameters of the system and is in the range of 30-40 eV (i.e., the
ion thermal speed is essentially constant). For a tungsten liner with 7=40 eV and-Z =6,
one finds that the constraint u<4v,; (Eq. (7.(5A)} Ac)an be rewritten as:

—mxt <10 7
m(mg/ cm) ®-D
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The electron magnetization parameter @,7,; at a constant temperature (characteristic

of the run-in phase), and for liners made of the same material, scales as Iyn//. As we

have seen in Sec; VILA, in implosions of tungsten wire arrays at the Z facility (=20
MA, #=2 mg/cm, rz=2 cm), the magnetization parameter is ~0.5. Accordingly, the

condition that this parameter remains less than 1 can be presented as:
Inax (MA)rp () _ 4, (9.8)
m(mg/cm)

It is not obvious that violation of the conditions (9.7) and (9.8) should necessarily
lead to any catastrophic consequences. Still, to remain in the domain where a relatively
simple hydrodynamic description is valid and where successful experiments at the existing
devices Z and Saturn have been carried out, it is probably reasonable, in the planning of the
future experiments, to take into account constraints (9.7) (9.8). Figure 36 shows the split
of the parameter domain by the constraints (9.7)-(9.8) for I_.=20 MA, 7=100 ns (Fig.
36a) and I =60 MA, 7=150 ns (Fig. 36b). -

. At higher currents, constraints on the dimensions of the diode assembly may
become important. If the magnitude of the surface current in the magnefically insulated
transmission line (MITL) is too high, an explosion of the skin layer in the MITL may occur
within the pulse duration, resulting in a great increase of Joule heating losses in the line.
The surface current in the MITL scales as the current divided by the diode radius. To keep
this current below its critical value, one would have to increase the diode radius
proportionally to the current. The increase of the radius of the return current conductor
should be accompanied by a proportional increase of the initial pinch radius (to maintain the -
parasitic inductances at a low level). Therefore, one concludes that the parameter I,,./r,
should remain below some critical level. Taking this value from the current experiment at
the Z facility, we obtain one more constraint on the parameters of the experiment with a

higher current:
L MA) _
1y (cm)

5. 9-9)
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An inspection of Fig. 36b reveals that there is a broad area in the parameter space
where a Z pinch with a current several times higher than the presently-reached level of 20
MA can operate with a high efficiency characteristic of tile existing experiments. Taking as
an example an operational point shown in Fig. 36b, one finds that, at a liner mass 10
mg/cm, the optimum radius is Aapproximately 4 cm. With the assumed pulse-width of 150
ns, this would give an implosion velocity only 30% higher than in the current experiments.
This is beneficial in the sense that collisional relaxation times will remain short, and no
further deviations from local thermodynamic equilibrium than in current experiments will
occur. At the same time, the total liner energy will increase by a factor of 9, and the power
will increase by a factor of 6.

Reaching a higher current may be interesting not only for provid;ing a means for
generating higher radia;tjo;l power pr'z; higher témperature of the dynamic hohlraum but also
for a range of problems of more general intere'st. In particular, it is worth noting that the
presently achieved current is only several timAes-Iess than the» so—ca]led‘proton Alfvén

current,
- 2mm p€ - :
I pA = =30MA , (9.10)

At currents exceeding I ,, the gyroradius of a subrelativistic proton becomes smaller than
the radius of the current channel. The attainment of this current may bring about some new
interesting phenomena in the generation of high-energy ion beams at the stagnation phase -

(Sec. VILB). This may be of great value for the better understénding of the mechanism of

. the geﬁeratlon of cosmic rays.

In summary, during the past decade, the physics of fast Z pinches has made
significant progress, both in terms of pinch parameters attained in experiments at large
facilities and in the identification of key physics issues governing pinch phenomenon. In
the coming years, one can expect further progress related to: (1) development of diagnostic

instrumentation; (2) dedicated experiments at smaller, university-scale facilities; (3)
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advances in computer simulations, ‘and (4) development of schemes of mitigation of the
most dangerous instabilities. Fast Z pinches will continue to play an important role as the
sources of kilo-electronvolt radiation, as drivers for fusion-related experiments, and as
sources of information on material properties at extreme conditions. With the development
of better means of control of the neck formation at the point of a maximum compression,
new possibilities can open for generating high-current beams of heavy jons. Fast Z
pinches may also provide important insights into the mechanisms of astrophysical

phenomena.
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Figure captions.

Fig. 1 Various types of fast z pinches: a) An annular gaseous jet (Stallings et al.,
1979); the axis of the diode is horizontal; the nozzle is a cathode, and the mesh is an anode;
the plot at the right shows the radial density distribution; b) A cylinder made of agar foam
in a Z-pinch diode (Derzon et al, 1997). An anode in this experiment was a transparent wire
mesh; the cylinder (1 cm diameter) is surrounded by eight return-current posts; c) a
photograph of a 4-cm diameter tungsten wire aray used in the PBFA-Z facility (Spielman et
al, 1997). The array had 240 wires; the mass per unit length of the array was 2 mg/cm; d)
A high-Z liner imploding on a low-density foam (Matzen, 1997). An internal ICF capsule
is situated in the center of the foam cylinder; €) A quasi-spherical liner implosion (Degnan
et al, 1995). An aluminum liner slides along conical electrodes. The initial radius of the
outer surface is 4 cm; the time-sequence is: ¢,=0; £,=12.7 us; ;=14 ps. The right column
represents the results of 2D MHD computations. ’

Fig. 2 Schematic of the PBFA-Z facility (Spielman et al, 1996). The diameter of the
facility is 30m. The outermost part is formed by Marx generators. They are connected to 36
transmission lines with water insulation which, in turn, feed magnetically insulated
transmission lines c.onverging at the diode. The diode is situated inside the central tank.

Fig. 3 Cross section view of the PBFA-Z diode with on-axis annular target. There

are nine cutaway slots in the current return can for diagnostic access. The PBFA-Z machine -

__is configured with the anode physically on the top of the target, other machines, such as_..

Saturn, are configured with the anode down. The power from the magnetically insulating
transmission lines flows to the diode through the gap in the lower part of the figure.

Fig. 4 Measured current (dots), éurrent and wire radius calculated with Screamer
code (dashes and solid line, respectively), and Kimfol-filtered (200-280 eV) x-ray diode
signal, x10° for PBFA-Z shot 104. Courtesy of K. Struve, SNL. A long “latent period”

during which the shell radius decreases very slowly is clearly visible.
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Fig. 5 Density distributions for constant velocity implosions. Shown are the
profiles with velocities 3-10” cm/s and 6-107 cm/s. The current waveform was determined
self-consistently for the Saturn circuit equations (Hammer et al., 1996).

Fig. 6 Producing a quasi-spherical implosion with an initially cylindrical liner with
varying thickness. The liner is thicker near the equatorial plane (Cf. Drake et al., 1996).

Fig. 7 Distortion of the axial magnetic field in the course of a liner implosion (9 is
the skin-depth). Strong enhancement of the initial magnetic field occurs within a skin layer;
as the perfectly conducting liner moves towards the axis, the magnetic flux initially
enclosed by the liner has to be transferred through a thin skin layer. Thick lines depict a
cylindrical liner, thin lines with arrows are magnetic field lines.

Fig. 8 Possible scenario of the implosion of a wire array in the case of a hollow
anode. The picture is made deliberately asymmetric to emphasize statistical character of the
bridge formation. _

Fig. 9 Scale size rendition of target compared to time-integrated (TI) and gated x-
ray images of the foam target. Plasma jetting along the axis outside of the pinch and near
single mode structure between the electrodes is observed. The diameter of the anode ring is
lem.

Fig. 10 The slab geometry used in the stability analysis; g=-e,g (g>0).

Fig. 11 Density distribution in the shell: a - the case where the density distribution
can be characterized by a single length-scaie #; b - thin skin-layer, h . <<h; c - skin-layer
much !:hicker than the shell thickness. o

Fig. 12 Laser shadowgraphs of thé Xe liner implosion at the Angara-S facility
(Branitski et al., 1991). The frames are separated by 30 ns; the current was 1.6 MA. The
axis of the discharge is vertical. The cathode is at the bottom. The anode (a thick dark strip
in the middle of the figure) was made of a mesh, so tl?at the plasma penetrates -beyond the

anode and produces some perturbations there.
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Fig.13 Growth rates for several values of the propagation angle o;; the values of o
are 7/2, /4, and 0 (from the top to the bottom curve).

Fig. 14 The Lagrange coordinates &(z,t)=(§,(z.t); €,(z,t)) describing implosion of a
thin shell. ; C L o

Fig. 15 Surface density redistribution in the flute mode. The thickness of the solid
line roughly corresponds to the density. The dashed line depicts the initial position of the
shell.

Fig. 16 Density, pressure and velocity distribution in the plasma column in the case
where strong shock is excited. The magnetic pist'on is situated at the surface 1, the shock
wave at the surface 2.

Fig. 17 The plot of amplification factor vs the convergence for the load imploding
on axis at the time of the current maximum for purely axisymmetric perturba{ions.

Fig. 18 Variation of the density distribution caused by the local displacement of the
fluid element. The average gradient within the segment ab becomes zero.

Fig. 19 Development of a non-linear mode of a thin shell (Basko, 1994). The time
is measured in units of the inverse growth rate. The time 7, of the first appearance of th;.

.cusps is in these units equal to -In(k&,) where k&, is the initial amplitude of the
perturbation. S oL

Fig. 20 View of 200-280 eV pinch radiation taken from 88° at Z. The radiation is

created by the stagnation of a nested wire array on-axis. The diameter of the radiating zone

- is approximately 2 mm. Photo courtesy of C. Deeney at SNL. St

Fig. 21 Nonlinear stage ‘of the development of the R-T :instability. a: flute
(axisymmetric) mode (a vertical cross-section); b: non-axisymmetric mode (a horizontal
cross-section).

Fig. 22 Numerical results showing the possibility of current disruption by the m=0
mode (a 40 mm diameter tungsten wire array on PBFA-Z after impacting a 2.5 mm radius

foam). Courtesy of D. Peterson, LANL
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Fig. 23 Overall sketch of the growth rate for the flute mode (upper curve) and the
mode propagating at 45° to the magnetic field (lower curve) for a shell with a smooth
density distribution that can be characterized by a single spatial scale &; k is a tangential
wave number. Shown in the figure is a maximum growth rate over all the modes with a
given k. This comment becomes significant at large k, where localized (in x) modes form
essentially a continuous spectrum, occupying the whole range of I', from the maximum one
(shown in the figure) to zero.

Fig. 24 Left-right asymmetric coating. Shown in thicker lines are the areas coated
by the material with a lower sublimation energy, which will ablate early in the pulse. the
direction of the ablation flow is shown by arrows. Diameters of the wires are grossly
exaggerated. Only part of the array is shown. Current flows into the paper.

Fig. 25 An effect of a curved surface of a uniform-fill krypton Z pinch (from
Douglas, Deeney, and Roderick, 1997). Shown are density isocontours at the same time
into the implosion for (a) a straight cylinder; (b) a 1.0 mm circular arc, (c) a 2.5 mm
circular arc, and (d) a 5.0 mm circular arc.

Fig. 26 A corrugated wire array. The azimuthal mode number in this case is m=6.
The thickness of the line in the panel (a) corresponds to the local surface density of the liner
material. The surface of a perfectly conducting liner coincides with one of the field lines.
The adjacent field line is shown in dashed line. Panel (b) shows a part of the initial array
that can produce a structure similar to the one shown in panel (a): the array is assembled of
the wires of two different diameters, dandd,

Fig. 27 The image of filaments near the center of our Galaxy obtained at the
wavelength 20 cm (Yusef-Zadeh et al., 1984). According to Trubnikov (1990), they may
be pinches.

Fig. 28 Two ion trajectories originating in the same point “O” on the axis and
forming initially the same small small angle with the axis. If the initial velocity is directed

towards the cathode, the ion trajectory remains in a close vicinity of the axis; if the initial
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velocity has an opposite direction, the jon trajectory acquires a peculiar character, with a
much slower drift towards the anode.

Fig. 29 The measured currents and x-ray powers from shot Z302, a 40 mm
diameter, 96 wire array with 20.3 pm-diameter titanium wires. The load (solid) and MITL
(dashed) currents are shown, along with the total power (solid) and kilo-electron-volt
(dashed) x-ray powers. From Deeney et al. (1999).

Fig. 30 Experimental arrangements used in the studies of the shock wave
propagation (from Olson, 1997): a) the average shock velocity can be measured from
comparing the shock breakout times at two steps; b) continuous measurements of the shock
velocity can be made in a wedge sample.

Fig. 31 A side-on view (above) and an end-on view (below) of a configuraion with
secondary! hohlraums attached to the main one and eliminating the effect of a direct
irradiation of the sample by the pinch plasma. From Matzen (1997).

Fig. 32 A field-reversed configuration nested inside the liner with axially varying
thickness of the walls.

Fig. 33 A schematic of the dynamic hohlraum experiment.

Fig. 34 Various configurations of the dynamic hohlraum. a) A configuration with a
shaped inner shell. A hyperboloid of revolution shape can be made from straight wires, by
tilting them by the same angle with respect to the axis of revolution; f)) A quasispherical

implosion. This type of the implosioﬁ can be generated also with the initially cylindrical

“wire array with the axially varying linear mass density. The axial variation of the mass can - - -

be reached by a controlled surface deposition technique; the substrate will be an initially
uniform wire array.
Fig. 35 A static hohlraum with two Z-pinch radiation sources situated at the ends.
Fig.36 Parameter space for fast Z-pinches: a) [,,=20 MA, =100 ns; b) 7,,=60
MA, 7=150 ns. Shaded area represents the domain where conditions (9.7)-(9.9) are

satisfied. The bold line corresponds to Eq. (9.2) with
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[ (MA)P[(ns)I | A(mgl cm)[r,(cm)]’ =5-10° (a typical value for the current

experiments).
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