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ABSTRACT 

Many two hundred year old baldcypress trees in Reelfoot Lake, Tennessee, lived through the 
great New Madrid earthquakes of 1811-1812. This study was undertaken to determine if the 
elemental composition of baldcypress tree rings showed any systematic variation through the 
earthquake period of AD 1795 through AD 1820. Multiple cores were collected from two 
Reelfoot Lake baldcypress trees and andyzed using inductively Coupled Plasma Mass 
Spectrometry (ICP-MS). Individual yearly rings and five-year ring segments were analyzed to 
determine their elemental compositions. The cores were analyzed for Li through U but only Ba, 
Ce, Cs, Cu, I, La, Mg, Mn, Nd, Rb, Sm,  Sr, and Zn were found to be in appropriate 
concentrations for this study. Of these elements only Ce, I, La, Nd, Rb, and S m  showed any 
systematic changes within individual cores. 

Comparison of three cores taken from one tree reveal that tree-ring elemental concentrations 
and changes in tree-ring elemental concentration through time are very different among the 
cores. When comparing the elemental concentrations of tree rings for the same years in the two 
different trees neither elemental concentrations nor changes in elemental concentration through 
time were similar. We conclude that the elemental concentrations in the tree rings of the two 
baldcypress trees analyzed in this study show no systematic change through the earthquake 
period of AD 1795 through AD 1820. 

i i i  
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INTRODUCTION 

The New Madrid seismic zone (NMSZ) of the central United States was the site of three 
earthquakes during the winter of 181 1-1812 with estimated moment magnitudes (M) between 
7.8 and 8.1 (Johnstonl) and remains the most seismically active region east of the Rocky 
Mountains (Johnston and Kanter, 1990; Chiu et at., 1992) (Fig. 1). Fuller’s (1912) classic 
paper was the most comprehensive early study to present evidence of co-seismic deformation 
associated with these earthquakes. Subsequent studies have supported Fuller’s tectonic origins 
of northwestern Tennessee landforms that include the Reelfoot Lake basin, Reelfoot scarp, and 
the Lake County uplift (Fig. 2) (Stearns, 1979; Hamilton and Zoback, 1982; Russ, 1982; 
Crone and Brockman, 1982; Stahle et al., 1992; Kelson et al., 1992; Van Arsdale et at., 1994). 
The Reelfoot scarp is the topographic boundary between the Reelfoot Lake basin and the Lake 
County uplift. Reelfoot Lake is believed to have formed by the damming of the predecessor west- 
flowing Reel Foot River during 1812 uplift along the Reelfoot scarp (Van Arsdale et al., 1991; 
1993; Stahle et al., 1992). 

Tree-ring analyses of baldcypress from Reelfoot Lake, Tennessee, support historical accounts 
that the lake formed during the great New Madrid earthquakes of 1811-1812 (Stahle et al., 
1992) and probably the February 7, 181 2 earthquake (Johnston’). As a consequence of lake 
formation, bottomland hardwood trees within the lake were killed. However, many water 
tolerant baldcypress trees survived and hundreds of 200 to 800 year old baldcypress outline 
the positions of former stream channels drowned by the formation of Reelfoot Lake. 
Dendrochronological analyses of multiple cores from 21 baldcypress in the lake reveal several 
pronounced growth responses to the 1 81 1-1 2 earthquakes. These responses include a great 
surge in radial growth during the decade following the earthquakes (Fig. 3), a permanent 
reduction in wood density beginning in 1812, and extensively broken wood in the pre-1812 
portions of the cores (Van Arsdale et al., 1991; 1993; Stahle et at., 1992). In summary, the 
previous Reelfoot Lake research has demonstrated a dramatic baldcypress physiological 
response to the earthquakes of 181 1-1812. 

Recent studies have demonstrated the effectiveness of dendrochronology in determining changes 
in trace element chemistry through time (Long et at., 1987; Guyette and McGinnes, 1987; Hall, 
1987, McClenahen et al., 1987; Hall et al., 1990). For example’Hall et at. (1990) have 
shown dramatic changes in trace element concentrations the year after volcanic eruptions. The 
purpose of this study was to determine the trace element chemistry within the Reel Foot River 
basin prior to the earthquakes and the trace element chemistry within Reelfoot Lake after the 
earthquakes as revealed in baldcypress tree rings. Our goal was to determine if there was any 
systematic change in the tree ring element chemistry through the earthquake period from 
AD 1795 through AD 1820. 

METHODOLOGY 

Our original plan was to chemically analyze baldcypress tree rings that were already collected 
from a previous study at Reelfoot Lake, Tennessee, and Lake St. Francis, Arkansas. However, 
the cores collected were 0.5 cm diameter cores that had been glued to wooden mounts for age 
dating. When these cores were separated into individual rings for trace element analysis the 
volume of wood was found to be insufficient to obtain reliable results. Thus, it was necessary to 

1 In press. Geophysical Journal International. 
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Figure 2. Reelfoot Lake and the Lake County uplift. RR = Ridgely Ridge 
and TD = Tiptonville Dome. The Lake County uplift is largely coincident 
with the northwestern trending seismicity of Figure 1. Triangles in 
Reelfoot Lake represent tree ring sample sites. The southern triangle 
is the site where samples were collected for chemical analyses. 
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re-sample trees using a 1 cm diameter Swedish Increment Borer and then to re-date the cores. 
Because we had to re-sample and redate the tree ring cores the scope of the project was 
reduced. We only re-sampled baldcypress trees in Reelfoot Lake, Tennessee. 

Upon review of the Reelfoot Lake baldcypress cores, we decided to determine the concentration of 
trace elements in a number of cores from two trees (trees numbered 29 and 37) because these 
trees had individual rings that were large enough to provide sufficient wood volume for 
multielement analyses. The trees are in the central portion of the lake and within 
approximately 100 m of each other (Fig. 2). Five cores were dated and divided into one-year 
rings (RL29N, RL29S, RL29E, RL37N, RL37Sa and b) and three other cores were divided into 
five-year increments (RV29S, RV29E, RV37S) at the Tree-ring Laboratory of the University 
of Arkansas by David Stahle. Cores RL29N, RL29S, and RL29E were collected from one tree 
(tree number 29) from the north, south, and east sides respectively. Comparison of these 
three cores allowed us to evaluate the elemental variation within one tree as a function of what 
side of the tree was sampled because studies have shown that the concentrations of trace 
elements in tree rings are not constant around the 360 degrees of a tree (MacLauchlan et at., 
1987; McClenahen et al., 1989). 
element composition. We also collected two cores from tree 29 (RV29S, and RV29E) from the 
south and east sides and divided the cores into five-year increments. This was done to determine 
if systematic chemical variations occurred in five-year increments, to study the elemental 
chemistry of the tree over a longer period of time, and to be able to compare the one-year 
increment chemistry with the five-year increment chemistry for the same time period. In the 
same way RL37N, RL37Sa and b, and RV37S were all from tree 37 but were collected at 
different azimuths. Individual rings were analyzed in cores RL37N and RL37Sa and b and five- 
year increments were analyzed in RV37S. The rings and core segments were chemically 
analyzed at Rutgers University. 

This variation is attributed to discontinuities in the soil 

Sample preparation of the individual tree rings and five-year core segments involved dissolving 
them in ultra high purity nitric acid. We then spiked all samples with three internal standards 
of Sc, In, and TI, to normalize all element ion intensities to determine the concentrations of the 
elements. The solutions were diluted and analyzed for the elements lithium through uranium 
using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). This instrument allows 
simultaneous determination of the concentrations of the elements lithium (atomic number 3) 
through uranium (atomic number 92) in individual tree rings (Hall et at., 1990). The 
analytical protocol was validated by analyzing cellulose standard reference material that is 
certified for 20 elements. 

A sample of wood from each set of tree rings was analyzed for all the elements from Li through U 
to determine the elemental concentrations. The elements S, Na, C, N, 0, K, Ar, P, Si, and Ca 
were not included in the scan because they have such high concentrations that any subtle changes 
from ring to ring would not be discernable. Ne, F, and CI were not included because they can not 
be measured by ICP-MS. From these preliminary analyses it was determined that most of the 
elements from Li-U were below the detection limit of the ICP-MS. Therefore, only those 
elements that gave reasonable counts above background were chosen. We specifically focused on 
the determination of the elements Ba, Ce, Cs, Cu, I, La, Mg, Mn, Nd, Rb, Sm, Sr, and Zn. 
Previous studies have shown that rare earth elements are most sensitive to changes in geological 
and environmental conditions. 

Data analysis involved the determination of the concentration in parts per billion (ppb) of all 
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the elements listed above that were contained in the individual yearly rings and in the five-year 
core segments. Of the .13 elements only Ce, I, La, Nd, Rb, and S m  were above the limit of 
detection and showed any systematic changes. The concentration in ppb of the elements found in 
the rings and core segments are illustrated in Figures 4-11. 

RESULTS 

Jree 2 9  

RL29N, RL29S, and RL29E are cores collected from the north, south, and east sides of the same 
tree (tree 29) (Figs. 4-6). These cores were divided into one-year rings for chemical 
analyses. There is a pronounced peak in elemental concentration for the year 1805 in RL29N 
and rise in Rb at 1815. RL29S shows a modest increase in elemental concentrations at 1812 
and a pronounced increase at 1815. In RL29E the concentrations show trends similar to RL29S 
but the overall concentrations are so low that this sample is considered insignificant except to 
help show the variation in wood chemistry as a function of azimuth. 

RV29S and RV29E are five-year increment cores collected from the south and east sides of tree 
29 (Figs. 7 and 8). RV29S reveals a concentration’ spike in the time frame from 1812 to 
1816. RV29’E has spikes at 1787-1791, 1817-1821, and at 1827-1831. 

Tree 37 

RL37N and RL37S are cores collected from the north and south sides of tree 37 (Figs. 9, loa, 
and lob). These cores were divided into one-year rings for chemical analyses. A modest 
concentration peak occurs at 1804 and 1810 in RL37N. In general, elemental concentrations 
are lower in RL37Sa with the lowest levels being in 1810 (Fig. loa). However, iodine has a 
relative high concentration in RL37Sb at 1805 (Fig. lob). ~ 

RV37S is a five-year increment core collected from the south side of tree 37 (Fig. 11). R V 3 7 S  
has relatively high elemental concentrations in the time frame of 1792-1796 that diminish 
and then rise again at 1822-1826. 

CONCLUSIONS 

Comparison of figures 4-6 reveals that there is more variation in elemental concentration 
among the three sides of tree 29 than within any of the three sides. It is also evident that 
elemental concentration variation is not consistent among the three sides of tree 29. Similarly, 
in comparing figures 7 and 8 both the concentrations and concentration variations are quite 
different in the five year increments taken from the south and east sides of tree 29. 

Tree 37 also shows no systematic variation in elemental concentration with time. The 
elemental concentrations are higher in RL37N than in RL37S and the time of overlap between 
these two cores from 1804 to 1810 shows no parallel changes in elemental concentrations. For 
example in 1810 elemental concentrations are high in RL37N and low in RL37Sa. 

When comparing Figures 4 through 11 it is apparent that there are no common trends in 
elemental concentrations with time. Elemental concentrations in the cores vary both in time 
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and location on the tree but not in any systematic manner. Thus, we must conclude that within 
trees 29 and 37 of Reelfoot Lake there are no elemental variations that can be. related to the 
earthquakes of 181 1-1812. 

The results of this study are negative; however, there are some curious chemical anomalies. 
For example, core RL29N (Fig. 4) has an elemental spike at 1805 and elemental spikes are 
illustrated in Figures 7 and 8. Although we do not know the origin of these elemental spikes, it 
is possible that they have a geologic significance. 
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limit. Of these only Ce, I ,  La, Nd, Rb, and Sm showed any systematic changes 
w i t h i n  individual cores. Comparison of th ree  cores taken from one t ree  reveal 
t h a t  tree-ring elemental concentrations and any changes through time are very 
d i f fe ren t  among the cores. When comparing the elemental concentrations o f  t ree  
rings for  the same years in the two t r ees  nei ther  elemental concentrations nor 
changes through time were similar. The elemental concentrations show no 
systemic changes through- the earthaugke oeriod of AD 1795:1820.. 
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