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ABSTRACT

The raechanical properties of the tuffaceous rocks within Yucca Mountain are needed for near-
and far-field modeling of the potential nuclear waste repository. If the mechanical properties
are significantly anisotropic (i.e., direction-dependent), a more complex model is required. Rel-
. evant data from tuffs tested in earlier studies indicate that elastic and strength properties are
anisotropic. This scoping study confirms the elastic anisotropy and concludes some tuffs are

transversely isotropic. An approach for sampiing and testing the rock to determine the magnitude

of the anisotropy is proposed. MASTER
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Figure 1. Schematic diagram of the sub-core orientations and designations for the
three specimens obtained from Topopah Spring Member welded tuff specimen
10/AE/78. The reference coordinate system used in the discussion is shown in
the upper left corner.

Figure 2. Compressional (P-wave) and shear wave (S1 and $2) velocities are plotted
as a function of confining pressure for a vacuum dry specimen of Topopah Spring
Member tuff. The propagation direction is parallel to the axis of symmetry (i.e.
normal to the bedding plane).

Figure 3. Compressional (P-wave) and shear wave (S1 and S2) velocities are plotted
as a function of confining pressure for a vacuum dry specimen of Topopah Spring
Member tuff. The propagation direction is parallel to the bedding plane. S1 has
a particle mnotion in the bedding plane; 2 has a particle motion normal to the
bedding plane.

Figure 4. Strains parallel to the 1-, 2-, and 3- directions of Topopah Spring Member
tuff specimen 10/AE/78 are plotted as a function of confining pressure. The
relation between layering and the coordinate system is shown in Figure 1.

Figure 5. Axial stress is plotted as a function of axial strain for a compression
experiment at a confining pressure of 20 MPa. The compression direction was
normal to the layering.

Figure 8. Axial stress is plotted as a function of axial strain for a uniaxial strain
experiment. The compression direction was normal to the layering.

Figure 7. Confining pressure is plotted as a function of axial strain for a uniaxial
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ANISOTROPY OF THE
TOPOPAH SPRING MEMBER TUFF

1.0 Introduction

Investigations are under way to determine the mechanical, thermal, and petrological properties
of rocks in the vicinity of the potential nuclear waste repository at Yucca Mountain, Nevada. While
many routine measurements will be carried out, any comprehensive interpretation of these studies
requires an analysis of the variation in properties as a function of orientation with respect to the
depositional surface. It is important to determine if the rocks exhibit anisotropic properties. If
the elastic and thermal constants vary with orientation (i.e., anisotropy), the fracture strength

may also vary with direction.

Anisotropy is due to the preferred alignment of microcracks, elliptical pores, or mineral grains.
Microcracks develop along grain boundaries as rocks with anisotropic minerals cool and/or de-
pressurize. This occurs either through uplift or cooling in the case of extrusive rocks. Elliptical
pores form most frequently due to the compaction of gas-filled cavities as extrusive rocks such as
tuff solidify. Many rocks, especially metamorphic gneisses, schists, and slates, have a preferred
crientation of minerals because of the way they form. Because many minerals have a tendency to

be anisotropic, then so do the rocks which contain them.

Mechanical anisotropy is directly observed by considering the relations between stress and
strain as a function of orientation within the rock. In the most general case, the relationship
between a specified state of stress, oy, and the obsorved strains, €5, for a linear elastic solid 1s
given by

€ij = Sijkl Ok, (1)

where Sijx 1s the compliance tensor. (A review of tensor notation and the definitions for anisotropic
material properties are given in Nye, 1964.) The number of coefficients required to completely
describe the deformation of a solid depends on its property symmetry. It is convenient to describe
the symmetry of the elements in terms of crystallography. Accordingly, an isotropic material can
be defined by the fewest elastic constants, two, and a triclinic by the most, twenty-one. For an
isotropic rock or crystal, the two coeflicients are the familiar Young’s modulus, K, and Poisson’s

ratic, v; other elastic moduli (e.g., shear modulus, G) can be calculated from these.

Consider a uniaxial compression experiment on an isotropic rock with the stress applied in the
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1-direction of an orthogonal coordinate system. The following equations then hold.

en = Sunoy = Eoy, (2)
a3 = Sy oy = —vE™ oy (3) ‘
2(8m — Sazn) =G (4)

Si11 1s the slope of the €15 vs oy; curve (with the strain measured parallel to the stress); Sagy 18

the slope of the e95 vs oqy curve (with the strain measured normal to the stress).

The symmetry of many rocks is sufficiently described with two elastic constants; however, in
the case of sedimentary rocks with pronounced bedding, metamorphic sequences, and igneous
rocks with pronounced layering or fabric, the elastic coefficients will vary with orientation. Such
rocks can be analyzed in terms of a hexagonal symmetry. The axis normal to the layering or
fabric is the axis of symmetry, the 3-axis; the 1- and 2-directions are in the plane of the bedding.
Properties in the bedding plane are independent of orientation. The elastic deformation of a
hexagonal elastic solid can be completely described with five independent coeflicients, Syyy1, a3,
Stiaz, Stisa, and Syzpa. Siorg is equal to 2(Syi1 — Stize). S and Ssgga are the reciprocal of the
Young's moduli in the 1- and 3-directions respectively. Rocks characterized in this way are often

termed tranversely isotropic (Lo et al., 1986).

Several experiments can be performed to obtain the five compliances. Uniaxial compression
experiments on oriented specimens with loading directions parallel to the 1- and 3-directions will
give Sii1, Sasss, Siizz, and Styaa; Simis can be determined in a shear or torsional test on an
appropriately oriented specimen. In some instances due to limited sample availebility, a simple
hydrostatic compression experiment can be extremely useful in providing an additional constraint
on the measurements or in minimizing the number of specimens required to completely characterize
the rock. If the linear compressibilitics are measured in the 1- and 3-directions (f and /), the

following relationships can be used for determining the elastic coefficients.
B = (St + Siize + Siss) (5)
/33 - (5'333:3 -+ 25’1]33) (6)

Alternatively, it is possible to prescribe the strains, €4, acting on an elastic solid and observe
the stresses, a;;, that develop. TFor this case the coeflicients that relate stress and strain arce the
y iy, I

stiffnesses, Ciju. The general relationship is given by the following equation.

oij = CijxiExl (7)

[
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By analogy with the compliance measurements, in a rock with hexagonal symmetry, five elastic
coeflicients are also required to determine the state of stress due o a prescribed set of strains. It
should be noted that, whereas there is a relationship between the compliances and stiffnesses, it

is not a term-for-term reciprocity. The exact relation is given by
Cijki Skimn = 6imOijn, (8)
where 6;,, and 6;, are Kronecker deltas (see Nye, 1964). For example, in the hexagonal system
Chun + Crig = —22, (9

where

S = S3333(Sti11 + Siraz) — 2(S1ias)’. (10)

The stiffnesses can be measured using several methods. 1irst, each coeflicient can be deter-
mined in conventional deformation experiments. If a specimen of a rock with hexagonal symmetry
is deformed in uniaxial strain parallel to the 3-direction, then two of the stiffnesses can be calcu-

lated from the following relationships.

_ doay

(agan = ——2 11
T (11)

iy = G20 (12)
1133 denn 2

Thus, it is possible to characterize an anisotropic rock with hexagonal symmetry by determining

five terms of elastic stiffnesses or compliances or a combination of both.,

In addition to deformation experiments at strain amplitudes on the order of 107% to 107, stiff-
: ness coeflicients in single crystals are computed from the acoustic velocity in a specified direction.
For a rock which can be characterized as transversely isotropic, the following +  “ions hold (Lo
et al., 1986).

Cinng = pVpi® (13)
Criza = G = 2p \’@'12 (M)
. Cianaz = p Vi (15)
‘ Cisis=p V532 (16)
Cim = ~Cran+ {40°Vess® = 20Veas* (Crin + Casas + 2Cha1a) +
(Citnn + Ciais)(Caaas + Cxal.ia)}u's (17)
3
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In these equations, p is the average bulk density, Vp, is the compressional wave velocity in the 1-
direction, Vpj is the compressional wave velocity in the 3-direction, and Vpys is the compressional
wave velocity along a ray 45° to the 1- and 3-directions. The shear wave velocities are measured
in the 1- and 3-directions, Vs3 and Vs;. Note that for Vg both the propagation and vibration

directions are in the 1-2 plane.

Previous studies by Olsson and Jones (1980) and Price et al. (1984) have indicated that tuffs
from Yucca Mountain exhibit anisotropy in their elastic and strength properties. In light of these
findings and the potential importance of anisotropy in evaluating the physical properties of the
tuff in the vicinity of the potential repository at Yucca Mountain, a detailed study was initiated
on one specimez: of welded tuff from the Topopah Spring Member. Static measurements were per-
formed on oriented cores to determine the compliances and stiffnesses. Ultrasonic measurements
were conducted during the deformation tests and the dynamic and static elastic coeflicients were
compared. The objectives were to (1) see if the tuff could be characterized as isotropic or trans-
versely isotropic and (2) cornpare the results obtained ultrasonically with those collected during
static deformation. This result is important because it is much easier to perform acoustic velocity
experiments than deformation tests. Consequently, anisotropy can be measured with a benchtop
acoustic system and the results used to estimate the azimuthal variation of the mechanical and

thermal properties.
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2.0 Experiment Procedures

Small oriented cores were prepared from a larger core obtained from a Busted Butte outcrop.
The axis of the large core, 10/AE/78, was approximately normal to the bedding plane. Three
specimens were prepared with the following orientations: parallel to the core axis, normal to the
core axis, and at 45° to the core axis. Figure | shows the relative orientation of each specimen
with respect to the original core and layering planes within the tuff. A coordinate system is shown
on the upper left corner of the diagram; the 3-axis is normal to the plare of the bedding and the
1 and 2 axes are in the plane of the bedding. This reference coordinate system will be used to

describe the symmetry elements of the tuff samples. Sample information is provided in Table 1.

TABLE 1. SAMPLE CHARACTERISTICS

FORMATION: Paintbrush Tuff Paintbrush Tuff Paintbrush Tuff
MEMBER: Topopah Spring ‘Topopah Spring Topopah Spring
LOCATION: Busted Butte Busted Butte Busted Butte
SAMPLE: 10/AE/78A 10/AE/78B 10/AE/78C
ORIENTATION: || to Fabric L to Fabric 45° to Fabric
BULK DENSITY [g/cm?): 2.33 2.33 2.28
POQOSITY: 0.075 0.075 0.102

Lach specimen was ground to a right circular cylinder nominally 2.54 cm in diameter and in
length. Specific attention was given to ensure that the ends of the specimen were flat and parallel
to within £1.3 x 107 cm. The specimens were then vacuum dried for 24 hours at 60°C and
the dry bulk density was determined. Ultrasonic velocity measurements were carried out on the
dried cores as a function of confining pressure; the experimental procedure is given below. Once

. the dry measurements were completed, the cores were saturated with water and the grain density
of each specimen was determined via the immersion technique. Then the velocity measurements
for the saturated condition were conducted as a function of confining pressure. The cores with

axes paraliel and normal to the bedding were then tested in hydrostatic compression, confined

"
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compression and uniaxial strain while simultancously measuring the compressional and shear wave

velocities parallel to their core axes.
2.1 Ultrasonic Velocity Measurements Under Hydrostatic Pressure

The ultrasonic velocities of the compressional wave (P) and two shear waves (S) with orthogonal
polarizations were measured for each core. The propagation direction was parallel to the core axis.
After accurately measuring the length of the core, the core was jacketed with polyolefin, heat-
shrinkable tubing and positioned between two titanium end picces containing 1 MHz P and S wave
piezoelectric crystals. The sample assembly was inserted into a 200 MPa pressure vessel with a
5.5 c¢m diameter bore. The confining pressure and pore pressure were manually controlled and
the output at each pressure level was measured with Sensotec Model TJE pressure transducers.
Hydraulic oil was used as a confining medium, and distilled wat.r was used as a pore fluid. A
continuous vacuum was applied to the dry sample during the dry measurements. The velocities
were determined at effective pressures of 2.5, 5.0, 7.5, 10, 15, 20, and 25 MPa. Effective pressure

is defined as the difference between confining and pore fluid pressure.

The P and 5 wave velocities of the samples at any pressure were obtained by measuring the
one-way travel time of the P or S wave along the core axis and dividing it by the sample length.
The source crystal was excited by an electrical pulse gencrated with a Panametrics 5055 PR
pulser-receiver. The signal from the receiver crystal was amplified, high-pass filtered at 0.3 Mz,
and fed into a LeCroy 9400 digital oscilloscope. The travel time was measured on the oscilloscope
screen with a cursor control that has a resolution of 0.02 microseconds. The travel time for both
P and S waves is picked where the waveform amplitude exceeds a threshold voltage that is 1.25%
of the peak-to-peak amplitude. This technique yields an accurate, self-consistent data set and
eliminates much of the uncertainty associated with picking the arrival time. This is a particular
advantage for the shear waves when mode conversions generate signals that arrive earlier than the
shear wave. The transit time of the P and S wave through the end pieces is subtracted from the
travel time measured on the oscilloscope. The correction is obtained by measuring the travel time

through the transducer assembly without a sample.
2.2 Hydrostatic Compression on 10/AE/78B

After the dry and saturated acoustic measurements were completed, sample 10/AE/788 was
vacuum dried and instrumented with strain gages. Note that the specimen tended to equilibrate to
a laboratory dry condition during the instrumentation procedure. Three strain gages, each Micro-

Measurements CIEA-06-250UW-120, were epoxied to the sample. One gage was positioned on the

6
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cylindrical surface with its grid aligned parallel to the sample axis. The other gages, mounted on
the ends of the cylinder, were oriented at 90° to each other. Electrical leads were soldered to the
gages and the instrumented sample was encapsulated with Deveon Flexane 80. The Flexane 80
had a thickness of approximately 0.75 cm and served as a jacket to prevent fluid from penetrating
the sample. The specimen was inserted into the pressure vessel and pressurized to 50 MFPa. The
output of the strain gage bridges was amplified with a Validyne Modei BA 172 DC amplifier and
measured with a digital voltmeter. The bridge was checked with a shunt resister before and after

the experiment.
2.3 Hydrostatic, Compression, and Uniaxial Strain Experiments with Velocities

Hydroststic compression, confined compression, and uniaxial strain experiments were per-
formed on specimens 10/AE/78A and 10/AE/78B while simultaneously measuring the compres-
sional and shear wave velocities parallel to the core axis. After vacuum drying the specimens for
24 hours at 60°C, they were jacketed with 0.13 mm thick copper. The jacke's were then seated
to the cores by inserting them in a pressure vessel and pressurizing the system to 20 MPa., The
specimens were then instrumented with strain gages epoxied parallel (axial) and normal (radial)
to the core axie. The strain gages were Micro- Measurements CEA-06-250UW-120. Next the
specimen was secured in an ultrasonic transducer assembly similar to that described above. The
sample assembly was then inserted into a 200 MPa pressure vessel mounted in a servo-controlled

loading frame.

The servo-controlled loading frame exerted an axial load on the sample column. The force
was measured with an external load cell, NER-020-J-86. For these experiments the press was
operated in displacement feedback. The confining pressure was generated and maintained with a
servo-controlled pressure intensifier. The output of a Sensotec Model 7,/108-04 pressure transducer
provided the feedback signal. For the hydrostatic compression and confined compression exper-
iments, the feedback signal for the pressure system was obtained from the pressure transducer,
For the uniaxial strain experiments, the strain gage sensing the strain normal to the loading axis
was used as the feedback signal and the confining pressure was allowed to change to maintain a

constant transverse (radial) strain,

All the data were recorded using an IBM/XT-based data acquisition system. The data acqui-
sition program, ACQUIRE, developed at. New England Research (NER), was used to collect and

store the data.
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3.0 Experiment Results

Typical results of the velocity measuremc:.is under hydrostatic compression are given in Fig-
ures 2 and 3. Figure 2 shows the change in velocity as a 1unction of pressure for the dry specimen,
10/AE/78B. The seismic wave propagation direction is normal to the bedding plane. The compres-
sional wave velocity was 4.653 km/s at room pressure. As the confining pressure was augmented
to 25 MPa, the velocity increased only slightly, to 4.662 km/s. This is a relatively small change for
such a large change in pressure. The polarized shear waves exhibit nearly the same velocity (S1 =
2.821 km/s; S2 = 2.808 km/s) at room pressure and do not increase significantly with increasing
pressure. The fact that the polarized shear wave velocities are virtually identical suggests that
there is very little anisotropy within the bedding plane. The results for the same specimen under
saturated conditions as a function of effective confining pressure are presented in Table 2. Com-
plete saturation was ensured by raintaining a constant pore pressure of 2.5 MPa. The saturated
compressional wave velocity was slightly greater (approximately 2%) than that observed in the
dry condition. The polarized shear wave velocities were nearly the same for the two orientations
and varied 1% or less from those observed in the dry condition. Both the compressional and shear
wave velocities for the saturated condition exhibited the same small pressure dependence that was

observed for the dry specimen.

Iligure 3 shows the velocity data for the horizontally oriented specimen in a vacuum dry
condition. The compressional wave velocity was approximately 4,953 km/s and exhibited virtually
no pressure dependence (Table 3). This velocity is about 6% greater than the compressional
wave velocity for the vertically oriented specimen (Figure 2). Shear wave velocity anisotropy is
evident for waves propagated parallel with the bedding (Figure 3). Shear waves with particle
motions perpendicular to the bedding (82) had velocities approximately 2.2% lower than those
with motions parallel to the bedding (S1). As with the vertically oriented core, saturation had
only a minimal effect on the velocities; the saturated velocities for 10/AE/T8A are listed in Table 3
as a function of effective confining pressure, although the shear wave anisotropy increased slightly
to 2.6%.

Sample 10/AE/T8C is oriented at 45° to the bedding plane. The particle motion of S2 is
perpendicular to the trace of the bedding planes, whereas the particle motion of S1 is paralle!l to
the trace of the hedding planes. Measurements for this orientation are necessary to characterize
the anisotropy tensor for the tuff. The results of the vacuum dry and water saturated velocity
measurements are presented in Table 4 as a function of effective confining pressure; velocity changes

with saturation and increasing pressure are similar to those described for the other orientations.

8
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TABLE 2. VELOCITY DATA FOR SAMPLE 10/AE/78B

(Pe)e [MPal

VACUUM DRY

P-Wave [km/s)

S1-Wave [km/s]

S2-Wave [km/s]

0.0
2.5
5.0
7.5
10.0
15.0
20.0
25.0

4.653
4.662
4.662
4.662
4.662
4.662
4.662
4.662

2.821
2.821
2.821
2.824
2.827
2.834
2.834
2.834

2.808
2.808
2.808
2.812
2.815
2.818
2.818
2.821

WATER SATURATED; PORE PRESSURE = 2.5 MPa

(Pe)e [MPa)

P-Wave [km /s]

S1-Wave [km/s]

S2-Wave [km/s)

0.0
2.5
5.0
7.5
10.0
15.0
20.0
25.0

4.749
4.749
4.749
4.758
4.767
4.767
4.767
4.767

2.808
2.808
2.808
2.808
2.808
2.808
2.808
2.812

2.778
2.784
2.787
2.790
2.790
2.787
2.790
2.793

Hyp
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TABLE 3. VELOCITY DATA FOR SAMPLF 10/AE/78A

(P.)e [MPa)

VACUUM DRY

P-Wave [km/s]

S1-Wave [km/s]

S2-Wave [km/s]

0.0
2.5
5.0
7.5
10.0
15.0
20.0
25.0

4.953
4.953
4.953
4.953
4.953
4.963
4.963
4.973

2.945
2.952
2.952
2.956
2.956
2.956
2.966
2.966

2.882
2.885
2.885
2.888
2.888
2.892
2.895
2.895

WATER SATURATED; PORE PRESSURE = 2.5 MPa

(P.). [MPa]

P-Wave [kin/s]

S1-Wave [km/s]

S2-Wave [km/s]

0.0
2.5
5.0
7.5
10.0
15.0
20.0
25.0

4.963
4.963
4.963
4.973
4.973
4.992
4.992
4.992

10

2.922
2.925
2.928
2.928
2.928
2.928
2.932
2.932

2.846
2.849
2.853
2.856
2.856
2.856
2.856
2.859



TABLE 4. VELOCITY DATA FOR SAMPLE 10/AE/78C
VACUUM DRY

(Pc)e [MPa] P-Wave [km/s] S1-Wave [km/s] S82-Wave [km/s]

0.0 4.636 2.793 2.790
2.5 4.653 2.793 2.790
5.0 4.653 2.796 2,790
7.5 4.653 2.796 2.793
10.0 4.662 2.802 2.799
15.0 4.662 2.802 2.802
20.0 4.662 2.805 2.805
25.0 4.662 2.808 2.812

WATER SATURATED; PORE PRESSURE = 2.5 MPa

(P)e [MPa] P-Wave [km/s] S1-Wave [kim/s; 52-Wave [km/s]

0.0 4,705 2.721 2.739
2.5 4.705 2.721 2.742
5.0 4.723 2.721 2.745
7.5 4.723 2.721 2.748
10.0 4.723 2.721 2.751
15.0 4.723 2.721 2.751
20.0 4.723 2.727 2.754
25.0 4.723 2.730 2.757
11
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In order to compare the elastic coefficients for tuff calculated from the velocity data with
those obtained from static measurements, hydrostatic compression, confined comipression, and
uniaxial strain experiments were performed on dry tuff specimens. Figure 4 shows the results of
the hydrostatic compression experiment for specimen 10/AE/78B; the core axis for this specimen
was normal to the apparent bedding. Three strains are plotted as a function of pressure: normal
to the layering (the 3-direction) and parallel to the plane of the bedding (the 1- and 2-directions).
The greatest strain is observed normal to the bedding. Parallel to the bedding plane, the strains,
measured with two orthogonal gages, were smaller than the axial strain; the gages yielded very
similar strains at each observation level. The slope of the strain versus pressure curve in a given
direction gives the linear compressibility in that direction. The linear compressibilities in the 3-

and 1- directions were as follows.

Bs = 1.627 x 1072 GPa™! (18)
By = 1.356 x 107% GPa™ (19)

The difference in the linear compressibilities is 20%. This is much greater than the anisotropy
determined acoustically. Furthermore, the changes in all three strains with confining pressure were
nearly linear, meaning the compressibilities were independent of pressure. Each pressure versus
strain curve exhibits a small curvature below 10 MPa. The non-linearity is most noticeable in
the 1- and 2-directions. This nearly independent behavior with pressure is consistent with the

velocity measurements, which also showed no change in velocity with confining pressure.

In order to completely determine the compliances for the specimen, several nonhydrostatic
experiments were carried out. Confined compression tests were performed on 10/AE/78A and
10/AE/78B at a fixed confining pressure of 20 MPa. The results of the run on 10/AE/78B are
shown in Figure 5, with stress plotted as a function of strain (o33 and ea3). The slope of the
curve is Sazaa”’. The slope of the transverse strain, €1, vs longitudinal strain, €33, is Sija3™".
The results of these calculations, as well as those for the related experiments on 10/AE/78A, are

presented in Table 6.

Finally, it seemed worthwhile to directly measure the stiffnesses of the specimens by conducting
several uniaxial strain experiments. The results of a typical cyclic load for 10/AE/T8B are shown
in Figures 6 and 7. The axial stress, o33, and the radial stress (or confining pressure), oy, are
plotted as a function of axial strain, £33, in Figures 6 and 7, respectively. For these tests ey is
lield constant and equal to zero. The slope of the ¢33 vs ¢33 loading curve yields Cagss; the slope
of the oy; vs €33 curve yields Cyy33. The stiffnesses for this data set were computed at a mean

stress of 20 MPa; the values are presented in Table 6.
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TABLE 5. ELASTIC COEFFICIENTS FOR SAMPLE 10/AE/78A

St o Cun Cua2
GPa~! GPa”! GPa GPa

Static: 0.0185 0.0136 53.90 12.66

Dynamic: 57.21 15.79

TABLE 6. ELASTIC COEFFICIENTS FOR SAMPLE 10/AE/78B

S3zaz Su2 S1133 B3 Caazs Craa Cias
GPa~! GPa"! GPa~! GPa~! GPa GPa GPa

Static: 0.0148 -0.0057 -0.0017 0.0163 53.53 15.37

Dynamic: 50.89  9.30 19.00

Table 7 presents the static and dynamic elastic constants in terms of the more commonly
used engineering constants, Young’s .nodulus, Poisson’s ratio, and bulk modulus. Two Young'’s
moduli are calculated; normal to the layering (the 3-direction) and in the plane of the bedding

(the 1-direction). Three Poisson’s ratios are given (Lo et al., 1986):

déu .
deas ,
= 21
Vv dens ( )
deas
e 22
Vs dé‘n ( )
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TABLE 7. ENGINEERING ELASTIC COEFFICIENTS

Young’s Modulus [GPa] Bulk Modulus [(iPa] Poisson’s Ratio

3-direction 1-direction N vy V3
Static: 46.43 48.11 23.09 0.167 0.239 0.231
Dynamic: 44.42 50.20 28.62 0.212 0.238 0.211

Before proceeding, several additional observations must Lo mentioned. Hydrostatic compres-
sion tests were run on the copper jacketed specimens prior to the deformational experiments. Four

observations are pertinent.

(i) The volume compressibilities for both specimens (10AE78A and 10AE78B) were nearly iden-

tical.

(ii) The velocities measured on the copper jacketed specimens in the deformational apparatus
were identical to those collected in the vacuum dry condition using the hydrostatic, velocity

measuring system.

iii) The volume compressibility for the copper jacketed specimen was 3.628 x 10~2 (iPa~!
P \ pPp p

4
whereas the volume compressibility for the specimen jacketed in Flexane was 4.305 x 1072

GPa™!.

(iv) The dynamic stiffnesses calculated from the velocities measured in the uniaxial strain exper-
iments were in excellent agreement with those computed from the velocities collected under

hydrostatic pressure; the differences were less than 0.5%.

14
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4.0 Discussion and Conclusions

The experimental data for the Topopah Spring Member welded tuff samples include ultra-
sonic compressional and shear wave velocities as a function of sample orientation, saturation,
pressure, and differential stress (confined compression and uniaxial strain tests). The effects of
sample anisotropy are apparent in these measurements. Specifically, the tuff is significantly more

compliant normal to the layering than within the bedding plane.

The velocity data indicate that the anisotropy, although small, is consistent with a physically
intuitive model in which the welding and compaction process has caused the tuff to become
transversely isotropic. The axis of symmetry is perpendicular to the prefferred orientation of the
shard matrix, which is tha result of gravity and flow during deposition of the ash flow tuff (Price
et al., 1985; 1987). Consequently, this prefferred orientation of the shard matrix and, possibly,

the pore distribution produced the anisotropy.

For an ideal transversely isotropic material, four relationships hold.

(i) The axis of symmetry is normal to the bedding plane. This is the slow direction for P waves,
that is, the minimum velocity. Furthermore, S waves propagating parallel to the axis of

symmetry have the same velocity regardless of their vibration direction (particle motion).

(ii) For propagation directions normal to the axis of symmetry (parallel to the bedding plane), P
wave velocities are a maximum. Shear waves with a particle motion parallel to the bedding

plane have a greater velocity than those with a particle motion perpendicular to the bedding.

(iii) For propagation directions between the two principal directions, the velocities for P waves
and S waves with particle motion parallel to the trace of the bedding are intermediate to

those observed along the principal directions.

(iv) The velocity of shear waves with a component of particle motion parallel to the axis of
symmetry may be either higher or lower than the velocity perpendicular to the axis of

symmeiry.

Because the pressure dependence of velocity is relatively small, the degree of anisotropy can
be described by referring to the velocities measured at low pressure. The P wave velocities in the
two samples oriented in the vertical and horizontal direction differ by approximately 0.300 km/s

for the dry samples, or about 6.4%. The slow direction for the P wave is parallel with the axis
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of symmetry, which is parallel with the axis of the vertically oriented sample, 10/AE/78B. The
greatest S wave anisotropy is perpendicular to the axis of symmetry. In this direction the two S
waves differ by approximately 0.063 km/s for the dry sample, or about 2.2%. The S wave with the
particle motion perpendicular to the axis of symmetry (S1) is faster than that with the particle

motion parallel with the axis of symmetry (52).

Although these velocities are consistent with a transversely isotropic model, sample variability
in this limited selection of cores is also apparent. Ideally, the P wave velocities propagated at 45°
are intermediate between those parallel and perpendicular to the axis of symmetry. In the data
collected for the core oriented at 45°, however, this direction has the lowest PP wave velocities. The
lowest S wave velocities of either polarization were also recorded for this sample. In addition, this
sample has the lowest measured bulk density and highest porosity. A reasonable explanation is
that the large core from which these smaller oriented samples were prepared was not homogencous.
Therefore, variability should be averaged out with measurements on a larger set of cores of this

size or else larger core sizes,

As discussed in Section 1.0, to completely characterize the elastic behavior of a rock or a crystal
with hexagonal symmetry, five coefficients must be determined. For the welded tuff in the dry

condition at 20.0 MPa, the five compliance coefficients computed from the velocity data are as

follows.
Chin = 57.3 x 10° GPa (23)
Caazs = 50.6 x 10° GPa (24)
Chizz = 16.8 x 10° GPa (25)
Cia3 = 18.5 x 10° (GPa (26)
Ciiza = 9.3 x 10° GPa (27)

These values are based on a limited set of velocity measurements. (4133, which is based in part
33

on the suspect P wave velocity measured in the 45° direction, needs further measurements.

Typically the velocities measured in rocks increase with confining pressure. For the tuff sam-
ples, however, the pressure dependence of velocity is very small. Over the 25 MPa range of
pressure, the largest increase in P wave velocity is 0.03 km/s for the water saturated horizontal
sample, or about 0.58%. Similarly, for the S wave the largest increase is 0.021 km/s for the Sl
wave in the dry horizontal sample, or about 0.71%. In addition to, at most, a small pressurc
dependence, the increase in velocity with pressure is approximately linear. This indicates that

very little of the total porosity is in the form of compliant cracks, which would give rise to large,

16
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nonlinear increases in velocities as a function of pressure. During the welding and compaction
process, all of the cracks and grain contacts were closed and cemented by the flow of the matrix,
the vapor phase activity and diffusion through the matrix, and the deposition of tridymite (Price

et al., 1985). In addition, the devitrification process did not create new low-aspect-ratio voids
(Price et al., 1985; 1987).

The effects of water saturation on velocity in these samples are consistent with the interpreta-
tion of a largely noncompliant porosity. Typically, the introduction of water into the pore space
increases the overall bulk modulus while having a much smaller effect on the shear modulus. Con-
sequently, P wave velocities increase upon saturation, and a greater increase is obser. 4 when
porosity is contained in fine, compliant, crack-like pore shapes (Cheng, 1978). The S wave ve-
locities decrease with increasing water saturation and crack concentration. If all of the porosity
is perfectly spherical, the bulk and shear moduli are independent of water saturation (as if the
pores were not even there). Thus, the P wave and S wave velocities decrease in proportion to
the increase in density when going from the dry to saturated condition. For the welded tuff the
majority of the porosity is most likely spherical. The saturated S wave velocities are lower than
dry, and the decrease is nearly predicted by the increase in water-saturated density. The saturated
P wave velocities are equal to or slightly higher than dry, indicating a pore population somewhat
less than spherical. Applying the model developed by Cheng (1978), the porosity can be modelled
with a distribution of pore shapes with aspect ratios of between 1.0 (spheres) and 0.1 (oblate

spheroids).

There is one observation in the dry and saturated data that indicates that the long axis of
the oblate spheroidal or tabular pores have a preferred orientation parallel with the lineation or
bedding. The effects of saturation are greatest on P wave velocities in the vertical direction. In
going from a dry to a saturated condition, P wave velocities increase by 0,096 km/s or about 2.06%.
This is not a large increase, but is consistent with a preferred orientation parallel to bedding. In
the horizontal direction the increase is only 0.01 km/s, or 0.2%, while at 45° the increase is 0.07
km/s, or about 1.49%. This is also what would be anticipated with a transversely isotropic model,

and indicates that at least some of the anisotropy is due to the preferred orientation of pores.

The anisotropy of the welded tuff is also apparent in the linear compressibility data. The linear
compressibility, #3, is approximately 20% greater parallel to the symmetry axis than perpendicular
to the symmetry axis, 8;. Furthermore, the two linear compressibilities measured in the bedding
plane agree very closely. Therefore, the strain measurements are consistent with a transversely

isotropic material. The strain dependence on pressure is nearly linear in all directions, indicating

17

Vi e g e ,lr L T T T TR L A T T (L R TN LA T TR AR R Y VK KNI L ER TR T T I I T gy e e



LRI TR R TIE N R T

L

that the majority of the porosity is not in the form of low-aspect-ratio pores, which would cause
a nonlinear behavior at low pressures. In the 3-direction, the strain is larger either because of the
preferred orientation of pores parallel with the lineation, or due to the anisotropy and preferred

orientation of the mineralogy.

While the linear compressibility data are consistent with a transversely isotropic rock, the
two measurements are not sufficient to fully describe the material. For this reason, additional
experiments were performed in confined compression and uniaxial strain. The results of these
mneasurements are cornpiled in Tables 5, 6, and 7. Specifically, it is possible to compare the static
and dynamic stiffnesses and engineering elastic constants. The coeflicients Cyyyq and Cyygq are in
good agreement for the static and dynamic measurements. The dynamic moduli are somewhat
greater than the static. The strain amplitude of static measurements is three to five crders of
magnitude larger than dynamic measurements. This static-to-dynamic ratio is in good agreement
with previous results (Simmons and Brace, 1965; Cheng and Johynst.on, 1981). The more crack-like
porosity in the sample, the greater is the static-to-dynamic ratio. As pressure increases, the crack
porosity decreases and the two compressibilities tend to converge. There was no convergence at

higher pressures, and this reinforces the interpretation of oblate rather than crack-like porosity.

A problem arises for Chyaza and Ciias. In both instances, the static coeflicients exceed the
dynamic. Given the magnitude of the differeuce, it is well outside the bounds of normal experi-
mental error and directly contradicts the linear compressibility data presented in Figure 4. The
measurements were repeated and all the calibrations checked. The result was unchanged. The
error apparently resides in the test geometry. The samples were 2.54 emoin both length and di-
ameter, It appéars that the impedance contrast between the titanium transducers and the rock
altered the strain field near the interface. This effect has been noted by others (e.g., S. R. Brown,
personal communication). Furthermore, due to the short sample length, the size of the strain gage
grid, and the position of the gages on this particular specimen, the strains have been underesti-
maled. This leads to an overestimation of the stiffnesses. There is no immediate explanation as
to why the data on specimen 10/AE/78A yielded consistent results as did 10/AE/78B when they
were tested in true hydrostatic compression. The results cannot be attributed to a change in the
sample due to multiple loading cycles, because the velocities remained unchanged throughout the
sampie history. The discrepancy is also reflected in the Young’s modulus in the 3-direction; the
static inodulus exceeds the dynamic. The results indicate that a greater length-to-diameter ratio
is necessary for these measurements. The commonly accepted ratio of length-to-diameter is .0

to 2.2 to avoid significant end effects.
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The results of the study on this specimen of welded tufl clearly indicate that the rock is
anisotropic and its elastic behavior can be adequately characterized with five coefficients. The
anisotropy of the welded tuff is apparent in the ultrasonic velocity and strain measurements. The
source of the anisotropy is either a preferred distribution of ellipsoidal and tabular pores parallel
with the lineation or else a preferred distribution of the mineralogy. The degree of anisotropy is
on the order of 7% or less in velocity and 20% from the linear compressibilities. Because there
is apparently a fair degree of sample inhomogeneity additional measurements on a larger set of

samples would be necessary for a complete characterization.
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6.0 Figures
3

10/AE/78B

10/AE/78C

10/AE/78A

Figure 1. Schematic diagram of the sub-core orientations and designations for the three spec-

imens obtained from Topopah Spring Member welded tuff specimen 10/AE/78. The reference

coordinate system used in the discussion is shown in the upper left corner.
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Figure 2. Compressional (P-wave) and shear wave (S1 and 52) velocities are plotted as a function
of confining pressure for a vacuum dry specimen of Topopah Spring Member tuff. The propagation

direction is parallel to the axis of symmetry (i.e. normal to the bedding plane).

22




E T T

6.0

10/AE/78A

55 “
g 506 = - 0w ™ n ™ -
E
g 45| .
;E: ® P-WAVE
o 40r .
8 4+ S(1)-WAVE
&1 35
~ . 0 S(2)-WAVE

3-0-}5 § 0t 0% % $ $ $ 7

25 .

2.0 " 1 L 1 i i i 1 A 1 2

0 5 10 15 20 25 30

PRESSURE, MPa

Figure 3. Compressional (P-wave) and shear wave (51 and S2) velocities are plotted as a function
of confining pressure for a vacuum dry specimen of Topopah Spring Member tuff. The propagation
direction is parallel to the bedding plane. S1 has a particle motion in the bedding plane; 52 has

a particle motion normal to the bedding plane.
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Figure 4. Strains parallel to the 1-, 2-, and 3- directions of Topopah Spring Member tuff speci-
men 10/AE/78 are plotted as a function of confining pressure. The relation between layering and

the coordinate system is shown in Figure 1.
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Figure 5. Axial stress is plotted as a function of axial strain for a compression experiment at a

confining pressure of 20 MPa. The compression direction was normal to the layering.
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Figure 6. Axial stress is plotted as a function of axial strain for a uniaxial strain experiment.

The compression direction was normal to the layering.
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Figure 7. Confining pressure is plotted as a function of axial strain for a uniaxial strain experi-

ment.

PRESSURE, MPa

40

35 10/AE/78B |

30} |

25k B

201 W

/

15} / .

10} // ]
St / T
% 05 ! s 2.5

AXIAL STRAIN, millistrain

27



Appendix

Information from the Reference Information Base
Used in this Report

This report contains no information from the RIB.

Candidate Information for the
Reference Information Base

This report contains no candidate information for the RIB.

Candidate Information for the
Site & Engineering Properties Data Base

This report contains no candidate information for the SEPDB.
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