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Absiract- A method of determining the dynumic
operating cost bencfits of emergy storage systems for
utility applications is presented. The production costing
program DYNASTORE is used to analyze ecomomic
benefits for “utility B,"” au isolated island utility, using
heuristic onit commitment algorithms. The unit
commitment is done using chronolagic load data and 2
detafied model of the utility characteristics. Several wnit
cumimitment scenarios are rum for utility B, and the
results are presented. Comparisons between various
Battery Epergy Storage System (BESS) appiications, as
well as cases with and witbout battery storage, are shawn.
Results shew that for utility B, 2 BESS of 300 MW size
used for either load leveling or spinning reserve pravides
the greatest economic henefit _

I. INTRODUCTION

The primary motivation of this work is to achieve
more economical operation of the electric utility system
while enhancing reliability with additional energy
sources. To reduce costs during peak demand periods,
utilities employ Demand. Side Mauagement (DSM)
strategies. Direct Load Control (DLC) is one common
DSM progam which cnsbles the wility to offer
custotners a rate discount in exchange for ulility control
of certain loads such as air conditioners, clothes drvers,
and water heaters, in order to curtail power demand
during peak periods when electricity is very expensive,

Energy storage is an attracrive energy source to
augment DSM implementation By using energy
storage systems, a lower cost source of electricity cam
be effectively provided to meet the peak demand. An

_energy storage device can be charged during off-peak

periods with lower cost sources such as auclear or ¢oal
fired units. This stored encrgy is then used during peak
periods so that high cost unmits such -as combastion
turbines do not have to serve the load.
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For purposes of system security, utilities are
required to maintain & certain amount of ready reserve
which can be uscd when a generating unit failure
occurs. In general, the ready veserve requirement is a
fixed perceniage of the peak load, and also must be
greater than the capacity of the largest generating mnit.
Because epergy storage devices can be ramped from
full charge to full discharge almost instantanecusly
they can provide a source of instantanecus ready
teserve power.  Utilities also must have a certain
amount ¢f capacity online set aside for Load Frequency
Contel (LFC). The LFC requirement allows the utility
to adjust the power generation (o match fluctustions in
the load  Energy storage devices (ESD) can be used
to satisfy the spinning reserve or frequency regulation
requirements, therefore requiring fewer generating
units to be synchronized to the grid. Energy storage
systems may be used for this purpose include Pumped
Storage, Compressed Air Energy Storage (CAES),
Superconducting  Magnefic Energy Storage (SMES),
and Battery Energy Storage Systems (BESS). This
paper will focus on Battery Energy Storage, however
many of the concepts exploted can be easily extended
to include other energy storage facilities.

Many reports have been written regarding various
aspects of battety energy storage including battery
technologies [1-6], economic benefits of BESS [7-11],
BESS dispatch strategies [12-15], BESS power
converter system design and control [16-17], and
power system security and reliability,

In recent years, the Departmment of Energy (DOE),
the Elcctric Power Research Institute (EPRI), and the
Intermational Lead Ziac Research Organization, Inc,
(ILZRO) have spent a great deal of time and effort on
BESS development. Their intent is to enable energy
customers to casily make economic decisions regarding
the inswallation of battery storage equipment
BECHTEL GROUP, Inc. has completed BESS cost
studies for EPRY {8] including maintenance, operation,
bartery, converter, and engineering costs.  Other
projects {9,10] have developed spreadsheet programs to
evaluate the economic value of using 3 BESS system.
These models calculate savings from peak shaving and
energy displacemert using load duration data, without
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considering the cffects of spinning reserve (SR) and
LFC requitements. A mors accurate method is needed.
One approach is the unit commitment s¢enario, which
offers results that match the time variation of load and
includes the effects of SR and LFC for chronological
Ioad data.

IL. DEVELOPMENT METHOD
Production Casting Methodology

In order to determine the dynamic operating
benefits of energy storage for utility applications, the
production costing program DYNASTORE [18] is
used. Dymastore has several advantages over previous
producton costing methods, such as PROMOD 100,
DYNASTORE uses chronological dats instead of load
doration curve data, which allows start up costs,
minimum up time, and minimpm down time
constraints 10 be included in the unit commitment
process and  subsequent  cast  calCulations.
DYNASTCRE  dynantically models the umit
commitinent and cconomic dispatch process over a
specified time period and includes the effects of energy
storage devices such as BESS, CAES, and SMES.
Energy storage system dispatch strategics include Joad
leveling, spinning reserve, and load frequency comtrol.
The effects of generating unit maintenance and forced
outages are also inctuded.,

{Unit Commitment Aigorithms

DYNASTORE uses hearistic methods to solve the
unit commitment problem rather than alporithmic
solution techniques, sach as dynamic programming.
These includa:

a. Input Order Logic

b. Minimgm Dowa Time Logic

¢. Economic Shutdown Logic

d. Economic Cycling Logic

After the umit ¢ommitment prublem has been
solved DYNASTORE solves for the economic dispatch
using the cynal-incremental-cost criterion. When the
storage gystem is used for load lgveling, DYNASTORE
creates an incremental cost threshold  If the
incremental cost is below the threshald and the battery
is not fully charged, the storage system will be charged.
If the incremental cost is above the threshold and the
battery is not fully discharged, the storage systern will
be discharged.

DYNASTORE Simuiation Methods

DYNASTORE provides for several methods of
production cost umulation.  Those¢ methods are
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deterministic, standard Monte Carlo, and astithetic
Monte Carlo. The difference in cach of these methods
concems the issue of generating unit availability. The
detcrministic ma.h,od assumes that there are no forced
outages. In this method, all generating units are
considered to be available at all times, except any units
which may b¢ on maintenance outage.

The standard Monte Carlo mcthod uses a pseudo
random number generator to simulate random forced
outages based on the generating unit relisbility data
specified in the input datd, pamely the Equivalent
Forced Outage Rate (EFOR) and the Mean Time To
Repair (MTTR). o

The antithetic Monte Carlo sampling method
improves the convergence of the standard Monte Carlo
sampling method  The antithetic Momte Carlo
algomthm alternates standard Monte Carlo iterations
with amtithetic iterations. The antithetic iteration is
based og the principle that the variamce of two
negatively correlated random numbers is less than the
sum of the variance of two independent random
onmbers, During the antithetic iteration, the antithetic
of each random number genersted in the previous
standard Monte Carlo iteration is used to determine the
present state of each generating unit. If the random
aumber for the standard Monte Carlo sample is r,, then
the antithetic of that number, 3, = 1 - r, is used for the
antithetic sample. Thig allows for quicker convergence
of operating cost calculations,

1. DESCRIPTION OF TEST SYSTEM
Utility Characteristics

The sample utility studied in this project will be
referred to as Utility B, - It consists of a single contiol
area, and is isolated from interconnection with other
utilitics. The system peak loads for the years 1996 and
1997 are 2750 MW and 2850 MW respectively. The
mzximum generation capacity for the 1996 and 1997
simulation periods is 5135 MW, including 311 MW of
coal fired generation, 3099 MW of oil fired generation,
592 MW of combined cycle generation, and 1133 MW
of gas nrbine generation.

Study Parameters
The operating reserve and spinning reserve
requirements are given by the following equations:.

OR=LxP%+Cx(0%+R -
SR=0RxS%

Where OR reptwems the System Operating Reserve
Requirement (MW), SR represents fhe System
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Spinning Reserve Requirement (MW), L represents the
peak (or hourly) system load (MW), C cepresemts the
capacity of the largest thermal wmit (MW), P%
represents a percentage of the peak (or hourly) system
load, O%reptcscntsapemenmgeofthecapamyofthe
largest thermal unit, R represents a iconstant MW
value, and S96 represcois the percentage of the
operating reserve which must be spinning,

These purameters allow the user 0 model
operating reserve in a variety of ways depending on the
requirements necessary to maintain reliability on a
specific system.  Any combination of one or more of the
zbove parameters may be used to determine the
operating r¢serve requirement. Tn order to allow for
diversity of reserve, DYNASTORE allows the user to
specify 2 Maximum % of Spinning Reserve on Ong
Unit. Table I lists values used for key parameters in
each of the study cases described herein.

IV. PRODUCTION COST RESULTS
Sensitivity Analysis

Effects of BESS on spinning reserve, load leveling,

- UMR ELE ENG. -

1997. Therefore, a minimal increase in operating cost
benefits is obtained by increasing the BESS size abave
300 MW. While the overall savings levels out, the
average savings per MW decreases above 300 MW.
This is shown in Figure 1.

A summary of BESS parameters appears in Table IL.
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Table I - Parameters used in DYNASTORE study Figure 1: BESS used for Spinning Reserve - 1996
[B% 201
Q% : — ol BESS Used For Spinning Reserve
Spim % of Operating 7(; Table 1 - BESS Parameters .
Reserve (S%) ischarge Capacity vaﬁable-WMW-SOOMW
Maximnm % of Spinning Tool  [Charge Capacity | variable ~ 40 MW - 500 MW
Reserve on One Unit Variable O&M Cost 0 $/MWh
[Peak o Instant Peak Efficiency {ac-dc-ac) . ) 70%
Stody Period 1996-1997 Eoergy Storage variabic ~ 40 MW - 500 MW
[Unit Commirment Option{ Economi¢ shutdown logic [Capacity

and frequency combrol requirements are comsidered
These test cases have been based on typical generstor
and load data obfzined from Uhility B. The Lst of
generators includes all units which are to be in service
on the specified wtility by the beginning of the 1996
calendar year, BESS parameters have heen adjusted to
reflect the actual desired application of the batterics.
The range of the BESS capacity has been extended
from 40 MW 1o 500 MW in order to determine the best
BESS size. Figures 1 and 2 show that the BESS
savings are almost linear from 40 MW to 300 MW for
spinning reserve and load leveling respectively but
begint to level off above 300 MW, A spinning rescrve
requirement of 15% of the peak load computes to 412.5
MW for the 1996 simulation year and 427.5 MW for

" Several scenarios have been simulated which show
how BESS savings vary with BESS size. In each
scenario  considered here, the BESS is used for
spinning reserve only, and the BESS charge and
discharge capacity ar¢ varied. Scenarios are.run with
the detenministic, standard Moate Carlo, and antithetic
methods. A summary of operating cost savings for the
various spinning reserve scenarios appears in Table 1.
A graph of BESS savings vs. BESS size for the 1996
simulation vear appears in Figure 1. It shows that
increasing the number of Monte Carlo iterations from
12 to 24 does not produce any noticeable change in
savings. Hence, the remainder of the amalysis was
done using 12 jterations,

BESS Used For Load Leveling
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Table 1{] - Summary of annual savings when BESS is used for spinning reserve only (Millions of $)
Simulation Method Deterministic Monte Carla (12 iterations)] Antithetic (12 iterations)
Simulation Year 1996 1997 1996 1997 1996 1997

BESS Size (MWh) ' ‘
40 1,232 2.845 4,534 6.208 4743 6.232
100 3.168 5411 11.247 14.803 11.533 15.248
200 5,890 8.584 21313 29023 | 21530 | 29.4%8
300 8.083 11.483 30.366 41,106 30.181 41.260
400 9.865 13.720 Base Case Cost o
= 3 925 T4.028 w/o BESS 611.32 690.05

Several scenatios have been simmiated which show

how savings vary with BESS size. In each scenario
considered here the BESS is used for load leveling, and
the BESS charge and discharge capagity are varied. It
shouid be noted that if the entire BESS is not needed
for load leveling at a specific instant of time, the
remainder will be credited toward the spinning reserve
requirement.  Sconarios awe run with the deterministic,
standard Monte Carlo, and antithetic methods. A
summary of savings for the various load leveling
scenarios appears in Table [V. A graph of BESS

varicd. Savings are based on the difference in
production cost when LEC is done with base and
cycling unit generators and the production cost when
LFC is done with the BESS. Scenarios are run with
the deterministic, standard Monte Carlo, and antithetic
methods. A summary of savings for the various LFC
scenarios appears in Table V. A graph of BESS
savings vs. BESS size for the 1996 simnlation year
appears in Figure 3.

savings vs. BESS size for the 1996 simulation yoar ’ 1
appears in Figure 2. ¢ /
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Figure 2: BESS used far Load Leveling - 1996
Stmmistion Results

BESS Used For Laad Frequency Control

Several seenarios have been simulated which show
how BESS sgvings vary with BESS size. In each
scenario comsidered here the BESS is used for LFC,
and the BESS charge and discharge capacity are

Comparison of BESS Scenarios

In order to determine the mlative benefits of
different energy storage scenarios it is useful to
compare the savings when eunergy storage is used for
spinning reserve, load leveling, and frequency
regulation respectively. Graphs of BESS savings vs.
BESS sizc for each energy storage scemario for the
1996 and 1997 simulation years wsing the standard
Monte Carlo method with 12 iterations are shown in
Figure 4 and Figure 3 respectively,
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Tablg 1V - Summary of annual savings_v;v_hen BESS is ysed for load Ievcliélg {Millions of $)
Simulation Method Deterministic Monte Carlo (12 ilerations)] Antithetic (12 iterations)
Simulation Year 19% 1997 1996 1997 1996 1997

BESS Size MWh) ’ . |
40 1.093 2.596 4.395 6.099 4,667 - 6.187
100 2.669 4,975 11.051 14.546 11.370 15.092

300 7.143 10,424 29.940 40,618 30.061 - 41114

500 8.994 13.419 '

Table V - Summary of annual savings when BESS is used for load frequency control (Millions of §)
Simulation Method Deterministic Montg Cario (12 iterations)] Antithetic (12 ilerations)
Simulation Year 1996 1997 1996 1997 1996 1997

BESS Size (MWh) _
40 0.535 0.596 1.160 1.362 1.021 1.136
100 1.301 1.450 2.281 2.521 2.158 2.350
300 -3.808 4.307 6.443 7.264 - 6.051 6.985
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Figure 4: Comparison of BESS Strategies - 1996
Monte Carlo Simulation Results

Notice that the savings when the BESS is used for load
ieveling are almost the samc as the savings when the
BESS is used for spinning reserve. This is 2
coincidence based on the data for this specific sysiem.
In general, the benefits of using a BESS for load
leveling and spinning reserve will not be the same.
-Some insight iaro the comparison of BESS benefits for
these scenarios can be abtained by considering how the
BESS benefits are formmlated.

When the BEESS is used for load leveling, the
BESSWﬂlbechzxgeddmmgoﬂ'peakpcnodswhenthe
ingremental cost is low and the BESS will be

Figure 5: Combaxison of BESS Strategies - 1997
Monte Carlo Simulation Results

discharged during on-peak times when the incremental
cost is high, The relative production cost of various
generating units with respect to one another will affect
the relative imcremental cost and hence. the overall
savings. Some energy is lost in the conversion of ac
power 10 dc power stored in the BESS and the
conversion back fo ac power. In order to ensure that
the BESS provides savings, the ratio of incremental
cost during charging to- incrememtal cost during
discharging must be less than the cfficiency of the
entire ac-dc-ac cycle.
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BESS Used FarMulri‘pIe Scenarios

In addition 1o the syslem characteristics which
have been used for previous cases, consider the BESS
used on combinations of load leveling, spimning
reserve, and load frequency control. Each of the
following three cases has a combined total of 100 MW
of either generators on LFC or BESS on LFC or a
combination thereof. In each of these cases the total
BESS capacity is 100 MW. The three cases fo be
considered are (1) when the BESS is used for 50 MW
of load Ieveling amd 50 MW of spinning reserve, (2)
when the BESS is used for 50 MW of load leveling and
50 MW of LFC, and (3) when the BESS is used for 30
MW of spinning rescrve and 50 MW of LFC. A
summary of the savings when the BESS is used for
each of these cases appears in Table VI. These savings

are compared with the savings shown in Tables I, IV,
and V respectively. The results show that the optimum

comumitment  scemaric  includes the  BESS
implementation for both SR and LL.

Table VI - Summary of annual savings when BESS is
used for some combination of load leveling, spinning
reserve, and LFC strategics (Millions of §)
{Stratey 1996 1997

ESS used for S0 MW of LL | 12.215 15.918
d 50 MW of SR.
E“Edss used for 50 MW ofLL| 6569 | 8778
SOMW of LFC
IBESS used for 50 MW of SR}  6.700 8.939
and 50 MW of LFC '

V. CONCLUSIONS

The results presented illusmate that ecomomic
benefits can be obtained by utilizing ¢nergy storage for
spinning resceve, load leveling, and froquency control.
Tt is shown that the greatest ecanomic benefit of storage
will be obtained when the BESS is used for load
leveling andfor spinning reserve. The operating
benefits of using the BESS for load frequency control
on this utility are much less than spizming reserve or
load leveling, For this particular simulation period for
this particnlar utility, the cconomic benefits of using a
BESS for load Jeveling and spinming reserve are nearly
identical. As fuel prices fluctuate, this relationship
may change in favor of one scemario or the other.
However it was shown that a 300 MW BESS used in
any combination of load leveling and spioning resarve
will have the most savings per MW BESS capacity.
Recall that the economic benefits of the BESS begin 1o
satrate abave 300 MW for both load leveling and

UMR ELE ENG -

spinming reserve applications. This snggests that if a
BESS larger than 300 MW is chosen it should be
ensured that neither the portion used for spinning
reserve, nor the portion used for load leveling, exceeds
300 MW in order to achieve maximum benefit,
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