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Structural dynamic testing is concerned with the estimation of system properties, 
including frequency response functions and modal characteristics. These proper&ies are 
derived from tests on the structure of interest, during which excitations and responses are 
measured and Fourier techniques are used to reduce the data. The inputs used in a test are 
frequently random, and they excite random responses in the structure of interest, When 
these random inputs and responses are analyzed they yield estimates of system properties 
that are random variable and random process realiions. Of course, such estimates of 
system properties vary randomly from one test to another, but even when deterministic 
inputs are used to excite a structure, the estimated properties vary from test to test. When 
test excitations and responses are normally distributed, classical techniques permit us to 
statistically analyze inputs, responses, and system parameters. However, when the input 
excitations are non-normal, the system is nonlinear, and/or the propert): of interest is 
anything but the simplest, the classical analyses break down. The bootstrap is a technique 
for the statistical analysis of data that are not necessarily normally distributed. It can be 
used to statistically analyze any measure of input excitation or response, or any system 
property, when data are available to make an estimate. It is designed to estimate the 
standard error, bias, and confidence intervals of parameter estimates. This paper shows 
how the bootstrap can be applied to the statistical analysis of modal parameters. 

INTRODUCTION AND MOTIVATION 
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Figure 1. Analysis of structural test data. 
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THE BOOTSTRAP PROCEDURE 

The objective of bootstrap analysis is to assess the accuracy of parameter estimates that are statistics of 
measured data by estimating standard error, confidence intervals, and bias. To perform a bootstrap analysis, we 
measure data from a random source and assume that the observed data represent the source. The source is assumed to 
have an unknown probability distribution. Each observed data point is assigned a probability of occurrence of l/n, 
where n is the total number of data points measured. A bootstrap sample of the data is created by selecting at 
random, with replacement, n elements from the measured data set. This process is illustrated in Figure 2. The 
procedure is readily implemented using a uniform random number generator which selects, with equal probability, 
integer values in the range 1 to n. Sampling is done with replacement, so each bootstrap sample may have several 
occurrences of some data values and other data values may be absent 

F + x =  (X1,X2,.. . ,Xn) 

Creation of bootstrap 
sample accomplished 
through raniiom selection 
among elements of X .  

-1 
k + X* = ( X 2 , x 7 ,  ..., X4) 

Figure 2. Obtaining a bootstrap sample. 

In a bootstrap analysis, nummus bootstrap samples are created. The statistic of interest is computed from each 
bootstrap sample; the resulting quantities are known as bootstrap replicates of the statistic of hterest. Standard error, 
confidence intervals, and bias of the statistic of interest are computed using standard techniques and formulas on the 
bootstrap replicates of the statistic of interest. For example, let B denote the number of bootstrap samples used in 
an analysis, and let &,6 = l , . . . ,B, denote the bootstrap replicates of the statistic of interest. Then the standard error 
of the statistic of interest is estimated with 

B 1 where 8 =-xi?;. 
b=l 

In one type of bootstrap analysis, the two-sided, (l-a)x100% confidence intervals are obtained by sorting the 
bootstrap replicates of the statistic of interest, and identifying (or interpolating) the (a/2) x 100% percentile value 
and the (1- a/2) x 100% percentile value in the sorted list, and using the identified values as the limits of the 
confidence interval. Another more advanced method for confidence interval estimation is discussed in Efron and 
Tibshirani (1993). 

The number of bootstrap samples, B, used in an analysis, ranges from 20 to several thousand. The standard 
error of a parameter estimate may be computed using 25 to 50 bootstrap samples. Accurate computation of the 
confidence intervals of an estimated parameter requires analysis of several thousand bootstrap samples. 

Bootstrap sampling provides an optimal estimate of the probability density function which characterizes the 
data source given that our knowledge of the source is limited to the measured data. Computation of a statistic from 
the bootstrap samples simulates computation of the same statistic on samples drawn from the real world 
distribution. Properties of the “real world“ distribution are estimated in the “bootstrap world” as illustrated in Figure 
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Figure 3. The bootstrap approximation to the real world. The observed distribution is our best estimate of the true 
distribution. The observed sample is X, and the statistic of interest 6 = s (X)  can be computed based on this. In the 
bootstrap world the observed data are used to generate as many bootstrap samples A? as we wish. Each bootstrap 
sample is usxi in the formula 8 = s(x*) to compute a bootstrap replicate of the statistic of interest. The bootstrap 
replicates are used to analyze the standard error, confidence intervals and bias of the statistical estimator. 

A BOOTSTRAP EXAMPLE 

Consider a set of data drawn from a random source with the probability density functioi illustrated in Figure 4. 
One hundred data points are generated using a random source with this density. 

We assume that the 100 points are characteristic of the source. The mean of the sampled points is 1.3440. 
Using the bootstrap procedure outlined above, we create 400 bootstrap samples of these 100 points. (Normally, each 
bootstrap sample contains as many points as are available in the original measured data set.) From each sample we 
compute the sample mean. The standard deviation of these sample means is 0.0660, this is the standard error of the 
mean estimate. The theoretical mean of this distribution is 1.3333. The 400 bootstrap replications of the original 
data also allow computation of confidence intervals on our estimated mean. The 99% confidence intervals on the 
mean are 1.1471 to 1.5073. The true mean lies well within these intervals. To further illustrate the typical 
bootstrap results, Table I shows the results of seven different realizations of the distribution. In each case, the true 
mean lies well within the confidence intervals indicated. Note that, as expected, a smallex number of points leads to a 
broader confidence interval. 

9 

Table I. 
0 I x I 1 Mean and confidence intervals for different realizations of 

the random data source shown in Figure 4. 

Generated Estimate Mn.Est 99%C.I. 99%C.I. Mean 

f(x) 

213 NPTS Mean Std.Err. Lower Upper True 

100 1.3440 0.0660 1.1471 1.5073 1.3333 
100 1.3571 0.0612 1.1325 1.5250 1.3333 
50 1.3274 0.0881 1.1042 1.5677 1.3333 
25 1.3250 0.0898 1.0513 1.5287 1.3333 

0 NPTS Mean Std.Err. Lower Upper True 
0 1 3 Generated Estimate Mn.Est. 9O%C.I. 9O%C.I. Mean 

X 25 1.3761 0.1181 1.1862 1.5898 1.3333 
50 1.2419 0.0903 1.1046 1.3949 1.3333 

Figure 4. A random data source. 100 1.3607 0.0635 1.2605 1.4706 1.3333 



APPLICATION OF THE BOOTSTRAP TO THE ANALYSIS OF SPECTRAL ERRORS 

We showed in the previous section that the bootstrap is a technique for the accuracy analysis of s ta t i s t id  
estimators. It can be used to estimate standard error, and confidence intervals of statistical estimators. Spectral 
analysis involves the estimation of signal and system measures in the frequency domain, based on measured 
realizations of stationary random signals. We are frequently interested in estimating such quantities as the spectral 
density of a single signal, and the cross-spectral density, coherence, and frequency response function for a pair of 
signals. The bootstrap can be used to assess the accuracy of all these signal and system measures, and many more, 
regardless of the distribution of the underlying random signals. 

In the following sections we write the general formulas for the estimation of autospectral density, cross-spectral 
density, and the single input/single output (SISO) frequency response function. Then we show how the bootstrap 
method can be used to develop estimates of the standard error and confidence intervals on all three. 

BOOTSTRAP ANALYSIS OF AUTOSPECTRAL DENSITY 

The estimator formula for the autospectral density of a stationary random process can be obtained via the 
method of maximum likelihood or directly, as in Bendat and Piersol (1986). It is usually based on the assumption 
that we have a single measured realization from a stationary random process {X( f ) , -  00 e t e -}. In the present 
analysis, we make no assumption regarding the probability distribution of the random process. The measured signal 
is sampled (temporally discretized) at a constant rate, and can be denoted x i , j  = 0, ..., N- 1. These values represent 
the signal at rimes ti = jAf,j = 0, ..., N - 1. Here Af is the time increment between measured values of the sampled 
signal; N is the total quantity of points available for analysis. To estimate the spectral density, we form M data 
sequences from the original sampled signal, and we denote these xh.j= 0, ..., n-1,m = l,..., M. (The subscript j 
indexes time, and the subscript m indexes sequence number.) The first data sequence simply consists of the fmt n 
points in the original sampled signal. The second data sequence may start at point n+l in the original sampled 
signal, or it may overlap the first sequence (to a limited extent). The third data sequence is defined similarly, etc. The 
final data sequence usually consists of the final n points in the original data sequence. If the data sequences overlap, 
then the overlap percentage is constant (or as close to a constant as possible). The M data sequences obtained from 
the original sampled signal form an ensemble of realizations of the original random process. When members of the 
ensemble overlap one another, the overlap is usually limited to about 50 percent. The reason is that this practice, 
known as overlap processing, starts to lose its effectiveness at this point See Smallwood (1994) for more details. 

The next step usually taken in autospectral density estimation is windowing of the signals in the ensemble. 
The reason for windowing is to limit leakage in the finite duration Fourier transform to be taken, later. Various 
windows and their characteristics are described in Harris (1978) and Nuttall (1981). Windowing is usually 
accomplished by multiplying each ensemble member by a temporal weighting, denoted wi,n = 0, ..., n-1. The 
windowed versions of the ensemble members are denoted ujm, j = 0 ,..., n - 1,m = 1 ,..., M. 

In the next step, we compute the discrete Fourier transform (DFT) of each windowed member of the ensemble. 
The DITS are denoted U,,k = 0 ,..., n - 1, m = 1, ..., M . (The subscript k indexes frequency.) These represent the finite 
Fourier transforms of the windowed ensemble members at the frequencies fk = kdf,k = 0, ..., n/2, where 
4 = l/(nAt). Because the D K  of a real-valued signal has certain symmetries about the index of the Nyquist 
fkquency, fnlz = 1/(2&), we usually only consider the D K  up to the frequency index k=n/2. The DFT is usually 
accomplished using the fast Fourier transform (FFT) algorithm for reasons of efficiency. For a clear description of 
the FFT, see Stearns (1975). 

Finally, we compute the modulus squared of each DFT in the ensemble, at each frequency index, and use the 
resulting quantities to form the autospectral density estimate for the random process. It is 

k = 0, ..., n/2  

where the quantity Q is a normalizing factor that takes into account the windowing of the original sampled signal. 
(When a Hanning window is used, Q=8/3.) This is the formula for autospectral density estimation used in most 
applications. 



The bootstrap can be applied to the accuracy assessment of the autospectral density estimator, e=(&), one 
spectral line (frequency index) at a time, to evaluate standard error and confidence intervals. This is done in the 
following. Because the autospectral density estimate at each frequency index is simply the average of a sequence of 
numbers (the moduli squared of the DFTs of the windowed signal in the ensemble) multiplied times a normalizing 
factor, the bootstrap estimates of the standard error, etc., can be executed as d e s c r i i  in the previous section. The 
only interpretation that needs to be made is: what is a bootstrap sample in the present application? 

In a manner analogous to the way we defined a bootstrap sample for the simple average, we define a bootstrap 
sample associated with the autospectral density estimator by choosing a sample of size M at random, with 

replacement, from among the quantities, Iub,f, rn = I, ..., M . Denote the bth bootstrap sample Ub; it is defined 

where each of the indices k&,m = l,..., M , b  = l,..., B , is a uniformly distributed discrete random digit from the 
interval [l,MI, and we define B bootstrap samples. For example, when M=32,  the first bootstrap sample might be 

Corresponding to the bootstrap samples, there are bootstrap replicates of the autospectral density estimate, 
denoted bmb(fk), b = l,..., B ,  and defined 

b = l,..., B 

Each bootstrap replicate of the autospectral density estimator is computed using an expressioh similar to Eq. (2), but 
in place of the entire sequence of quantities Iub.12.m = l,..., M , we use the elements df the bth bootstrap sample 
defined in Eq. (3). The bootstrap replicates defined in Eq. (4) are now be used to establish the bootstrap estimates of 
standard error and confidence intervals on the autospectral density estimator, as described in a previous section. The 
standard error and confidence intervals are established at all frequencies as they were above for the frequency fk . 

BOOTSTRAP ANALYSIS OF CROSS-SPECTRAL DENSITY 

The cross-spectral density between a pair of random processes is estimated in a manner completely analogous to 
the way in which the autospectral density was estimated. Let {X( t ) , -  00 < t < -} and {Y(t),- OQ c t < m} be a pair of 
random processes whose cross-spectral density we wish to estimate and assess. As in the previous analysis, we make 
no assumption regarding the probability distributions of the random processes; indeed, the two random processes 
need not have the same probability distribution. The measured signals are sampled at a constant rate, and denoted 
xi ,  y j ,  j = 0, ..., N - 1. To estimate the cross-spectral density, we form M data sequences from each of the original 
sampled signals, and denote these xi,,,. yjm, j = 0 ,..., n - 1,m = 1 ..., M , as we did to obtain the autospectral density 
estimate. The M data sequences obtained from each of the original sampled signals form an ensemble of joint 
realizations of the original random processes. 

By analogy to the procedure for autospectral density estimation, the ensembles 
x jm,y jm, j=O ,..., n-l,m=l, ..., M ,  are windowed then FFTed to obtain Uh,Vh,k=O ,..., n - l , m = l ,  ..., M ,  
respectively. These are used in the following formula to estimate the cross-spectral density. 

M 2QAt &( fk) = UhV, k = 0, ..., n 12 
m=l 

where the asterisk superscript in the formula refers to the operation of complex conjugation. 
The bootstrap can be applied to the accuracy assessment of the cross-spectral density estimate. The first step is 

to define bootstrap samples of the products that appear in the sum of Eq. (5). The bth bootstrap sample can be 
d d k d  



The bootstrap samples can be used to compute bootstrap replicates of the cross-spectral density. The bth bootstrap 
replicate of the cross-spectral density estimate is 

The bootstrap replicates defined in Eq. (7) are now used on a frequency by frequency basis to establish the bootstrap 
estimates of standard error and confidence intervals on measures of the cross-spectral density estimator, as described in 
a previous section. Specifically, we may be interested in analyzing the magnitude and phase or the real and imaginary 
parts of the cross-spectral density. Or we may be interested in analyzing the joint confidence intervals of pairs of 
these quantities; the method for doing this will be presented in a later paper. The standard error and confidence 
intervals are established at all frequencies as they were above for the frequency fk. 

BOOTSTRAP ANALYSIS OF THE SISO FREQUENCY RESPONSE FUNCTION 

We now consider estimation of the single input-single output (SISO) frequency response function. The 
formula used to obtain this estimator simply makes use of the estimators obtained above for the auto- and cross- 
spectral densities. We let {X(t) , -  - < t < -} and {Y(t),-- < t < =-} represent input and response random 
processes. Then the SISO frequency response function estimator is the ratio between the response to input cross- 
spectral density and the input autospectral density. That is 

M 

k=O, ..., n / 2  

1 

m=1 

To perform a bootstrap analysis on the frequency response function we first form bootstrap samples of the 
summands in the numemator and denominator on the right side of Eq. (8). These are 

As before, the indices k,, m = l,...,M, b = 1, ..., B , are discrete valued random numbers chosen uniformly on the 
interval [lfl]; note that the indices are the same for the two bootstrap samples. In these terms the bootstrap 
replicates of the frequency response function estimate are defined 

M 

m=l 

The bootstrap replicates defined in Eq. (10) are now be used to establish the bootstrap estimates of standard error and 
confidence intervals on measures of the frequency response function estimator, as described in a previous section. We 
may be interested in analyzing the magnitude and phase or the real and imaginary parts of the frequency response 
function. The standard error and confidence intervals are established at all frequencies as they were above for the 
frequency f&. 



CLASSICAL FORMULAS FOR STANDARD ERROR AND CONFIDENCE INTERVALS 

For purposes of comparison in some numerical examples to follow, we now present the classical formulas for 
the standard error and confidence intervals of auto- and cross-spectral density and the SISO frequency response 
function. The confidence intervals for the latter two functions are approximate. All the formulas in this section rely 
on the assumption that the signals under consideration come from a Gaussian source. The complete developments for 
the formulas are given, for example, in Bendat and Piersol (1986). 

The sampling distribution of the spectral density estimator of a stationary random process is related to the chi 
square distribution. Specifically, the quantity 2M(&(h)/GxK(fk)) has a chi square distribution with 2M degrees 
of freedom, where M is the number of averages used to obtain the estimate and Gxx(fk)  is the actual spectral density 
of the underlying random process. This fact can be used to compute confidence intervals for the autospectral density 
estimator. It is also related to the fact that the standard m r  of the autospectral density estimator is 

k = 0, ..., n / 2  

The standard errors of the magnitudes of the cross-spectral density and the frequency response function estimates 
are approximately 

where y&(fk) is the ordinary coherence between the random processes. These estimators have sampling 
distributions that are very complicated, therefore, we usually use a normal assumption to develop their confidence 
intervals. Specifically, we assume that the estimators are unbiased with standard devialtions given by the standard 
errors in Eq. (12). 

The following section presents examples where the results presented here are compared to results obtained using 
the bootstrap. 

NUMERICAL EXAMPLE 
APPLICATION OF THE BOOTSTRAP TO LINEAR SYSTEM DATA 

In applying the bootstrap technique to the estimation of spectral density and transfer functions, we consider two 
structural systems. These systems are simulated using the MATLAB Code "Simulink". The fmt system is a linear 
base-excited oscillator, the second a nonlinear hardening oscillator. The bootstrap estimates of confidence intervals 
compare accurately with those obtained from the classical formulas for the linear system, but differ from the classical 
estimates for the nonlinear system. 

The oscillator is illustrated in Figure 5. Excitation is applied to the base mass Mo and the response is 
measured on the top mass Ml. The equation governing this system is: 

XI + 2&On(i1 - i o )  + w,2(x1 - xo) = 0 (13) 

where w, = 2n is the system natural frequency in rad/sec, = 0.02 is the system damping factor, and dots denote 
differentiation with respect to time. The system is excited with Gaussian random noise, with a cutoff frequency of 8 
Hertz. Both the input and response data are sampled at 20 samples/second. Figure 6 shows the estimated input 
excitation-response transfer function. As expected, there is a clean peak in the transfer function at 1.0 Hz., the 
theoretical system resonant frequency. A similar peak occurs in the spectral density of the response. 
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Figure 5. SDF oscillator. 
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Figure 6. SDF system transfer function. 

To estimate the standard deviation and confidence intervals of the spectral density of the linear system, we 
measure 20,000 point time series of excitation and response then break the data into 512 point blocks, discarding the 
last partially filled blocks. An overlap of 50%, or 256 points is used. We then form bootstrap samples using the 77 
resulting blocks. As in the typical bootstrap, each bootslrap sample of the response consists of a random selection of 
the 77 input and corresponding response blocks. Altogether 2OOO bootstrap samples are generated, and the spectral 
density and transfer function computed for each block set. The statistics on these 2000 estimates of the spectral 
density and the transfer function are then used to compute the appropriate confidence intervals. Theoretical classical 
intervals are readily computed for both the power spectrum and the transfer function. The classical confidence 
intervals on the spectral density are governed by the chi square distribution. These inteyls are directly compared to 
the bootstrap intervals in Figure 7. Note that the bootstrap confidence intervals and the theoretical intervals are quite 
similar over the frequency range shown, as would be expected for a linear system. 
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Figure 7. Confidence intervals for the spectral 
density of the linear oscillator. 

Figure 8. Confidence intervals of the linear system 
transfer function. 

In a manner analogous to that used for the spectral density, the confidence intervals for the transfer function of 
the linear system are computed. These intervals are shown in Figure 8. Classical confidence intervals are 
approximated from the known values of the transfer function and coherence at each frequency (Bendat and Piersol, 
1986) and the normal assumption. The 95% confidence intervals equal the estimated value plus or minus 1.6445 
times the standard error at each frequency. The bootstrap and theoretical confidence intervals are quite similar 
throughout the frequency range shown, as would be expected for a linear system. 



NUMERICAL EXAMPLE 
APPLICATION OF THE BOOTSTRAP TO NONLINEAR SYSTEM DATA 
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We have shown that the bootstrap procedure gives reasonable estimates for the confidence intervals on the 
spectral density and the transfer function for a linear oscillator. In the linear case, we fortunately have reliable 
theoretical results to benchmark the bootstrap computations. In the case of a nonlinear oscillator, confidence interval 
estimates can readily be computed using the bootstrap. Theoretical confidence intends are difficult to compute since 
the system response is non-Gaussian. 

The nonlinear system of interest is described by the equation : 
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(14) 
3 2, + 2&44i1 - io) + Wn”(X1 - xo)  + lo00 x on”(x1 -XI ) )  = 0 

s .01 4 so . 

Classical confidence intervals for the magnitude of the autospectrum are readily calculated (Bendat and Piersol, 
1986). These confidence intervals are, based on assumptions of Gaussian, stationary data and assume a chi squared 
distribution of the resultant spectral level at each frequency, just as in the case of the linear system above. The 
bootstrap confidence intervals are significantly broader than those predicted theoreticaIIy based on Gaussian data. 



The estimated transfer function, bootstrap confidence intervals, and classical confidence intervals (based on the 
magnitude of the c o h m c e  function) for the cubic oscillator are illustrated in Figure 11. In contrast to the results 
obtained for the spectral density, the bootstrap confidence internah are namlwer than those predicted by the normal 
distribution-based theory. It appears, based on this example, that the low cohexence in the vicinity of the resonance 
leads to excessively broad e m  bounds on the transfer function. The effects that leakage from adjacent blocks and 
nonlinearity have in this case is a topic for further study. 
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Figure 11. Confidence intervals of the cubic system transfer function. 

CONCLUSIONS 

The bootstrap approach provides an interesting alternative to traditional statistical9analysis in numerous 
situations involving real-world data. We have shown, for a linear system driven by Gaqian noise, that one effective 
bootstrap technique uses a uniform random sample of windowed, indexed data blocks. When this procedure is used, 
the bootstrap results compare very accurately with those obtained from classical formulas. In contrast, for a strongly 
nonlinear hardening (cubic) oscillator, the examples show that the bootstrap results differ substantially from the 
results of classical analysis. Of course, this is to be expected because the classical results rely on Gaussian 
assumptions and the system response is nonGaussian. The bootstrap does not rely on assumptions of Gaussian 
distribution in the excitation or response data. The primary difficulty in application of the bootstrap to analysis of 
statistical accuracy is that it is very computet intensive. 
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