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Abstract 
We present a software environment integrating analysis and 
test based models to support o timal modal test design 
throu h a Virtual Environment f% Test Optimization (VETO). 
The \SET0 assists analysis and test en ineers in maximizing 
the value of each modal test. It is particukrly advantageous for 
structural dynamics model reconciliation applications. 
The VETO enables an engineer to interact with a finite 
element model of a test object to optimally place sensors and 
exciters and to investigate the selection of data acquisition 
parameters needed to conduct a complete modal survey. 
Additionally, the user can evaluate the use of different types of 
instrumentation such as filters, amplifiers and transducers for 
which models are available in the VETO. The d namic 
response of most of the virtual instruments (indding the 
device under test) are modeled in the state space domain. 
Design of modal excitation levels and a ropriate test 
instrumentation are facilitated by the V#Os ability to 
simulate such features as unmeasured external inputs, A/D 
quantization effects, and electronic noise. Measures of the 
quality of the experimental design, includin the Modal 
Assurance Criterion, and the Normal Mode flndicator Function 
are available[l]. The VETO also integrates tools such as 
Effective Independence[2] and minamac[l] to assist in 
selection of optimal sensor locations. The software is 
designed about three distinct modules: 

1. a main controller and GUI written in C++, 
2. a visualization model, taken from FEAVR[3], running 

3. a state space model and time integration module, built 

These modules are designed to run as separate processes on 
interconnected machines. MATLAB'S external interface library 
is used to provide transparent, bidirectional communication 
between the controlling program and the computational 
engine where all the time integration is performed. Data from 
the finite element model is downloaded to the MATLAB engine 
where the SlMULlNK model is automatically created and 
executed. MATLAB GUI elements are used to simulate the 
data acquisition environment including response traces, over- 
range indicators, and full scale voltage ranges. 

Introduction 
This pa er presents an innovative test/anal sis tool, called the 
Virtual l!nvironment for Test Optimization (bETO), which re- 
duces test instrumentation iteration, producing better modal 
tests. Communication between test and analysis engineers is 
enhanced early in the design cycle. Traditionally, the role of 
testing in the product realization process is limited to the end 
of the design cycle, after hardware has already been pro- 

under AVSt, and 

in SIMULINK *. 

?AVS is a trademark of Advanced Visual Systems, Inc., 
Waltham, MA. 
*MATLAB and SIMULINK are trademarks of The Math 
Works, Inc., Natick, MA. 

duced. As a result, data analysis and test requirements for a 
component are only considered when the hardware is sched- 
uled for testing. Thus, the full benefit of the analysis in guiding 
the test is not realized. A goal in developing this software tool 
is to provide test and analysis organizations with a capability of 
mathematically simulating the complete test environment with- 
in a computer. Derived models of test equipment, instrumenta- 
tion and hardware can be combined within the VETO to 
provide the user with a unique analysis and visualization capa- 
bility to evaluate new and existing test methods. By providing 
engineers with a tool that allows them to optimize an experi- 
mental design within a computer environment, pre-test analy- 
sis can be performed using analytical models to rapidly 
evaluate components before manufacturing has occurred. The 
benefits of usin this type of experimental design tool can be 
very extensive.$he user can evaluate the use of different 
types of test instrumentation and equipment as well as inves- 
tigating new testing techniques for s stem identification to be 
used in analysis/experimentaI modeyvalidation. 
A major objective of this software development effort is 
flexibility. Because the virtual environment is a protot pe 
software system, a prima concern for its design is &at the 

software tooL are used wherever possible, provided that the 
necessary functionality and flexibility are available. Another 
significant design objective is to provide a final software 
system that can be used by a variety of individuals who have 
not been involved in its development. As is described below, 
our design integrates several commercial tools to meet these 
objectives. 
The major tasks involved in our effort include: 1) database 
management, 2) visualization of the device under test, 3) utility 
functions (such as those providing additional information about 
any of the instruments, or interconnecting them), and 4) time 
integration of the system. A key element within the VETO 
environment is the use of virtual instruments to simulate 
dynamic behavior of real instruments. Each virtual instrument 
ma require a different data representation within the different 
VETO modules. For example, the device under test requires a 
geometric definition under the visualization module, while the 
model is reduced to state space ABCD matrices for use in the 
time integration module. Program Integration - UnixTM Socket 
Connected Modules 
The VETO pro ram is divided into three main modules: 1) user 
interface, datalase and utilities, 2) visualization, and 3) time 
integration. The user interface and utilities are written in C++ 
with the database implemented using the netCDF library". 
Visualization is performed using previously develo ed, custom 
AVS networks[3]. Use of existing visualization sohare 
immediately made available a wealth of tools permitting 
visualization of extensive finite element results, including 

code be eas to develop. 7 o minimize our effort, existing 

* netCDF is a public domain, machine independent data 
format available from the Unidata Program Center in 
Boulder (unidata.ucar.edu). 



modes of vibration, strain energy densities and static 
response data. The time inte ration module uses MATLAB 
and its SIMULINKtoolkit. MAfLAB was also used to construct 
the state space models for many of the virtual instruments 
(such as amplifiers and filters). 
Communication between these different modules is 
performed using unix sockets. MATLAB is released with a set 
of interprocess communication tools (the “external interface”), 
by which data may be easil transferred between the 
programs. Data transfer wit{ AVS was more complicated but 
accomplished in a similar fashion. AVS is distributed with 
example code permitting execution in a “serve$ mode. 
Commands and parameters ma be readily transferred to 
AVS, but only the results printedyto standard output may be 
retrieved; there is no direct access to internal data structures. 
This is a significant limitation of the software. Most of the 
structural data were shared through EXODUS II [4] files used 
by the AVS visualization software. The random access data 
features of this format were quite important to implementation 
of many of the analysis tools discussed below. 
In addition to permitting rapid implementation of the virtual 
environment concepts, separation of the VETO software into 
these three modules had important side benefits. Unixsockets 
are network transparent, permittin us to run the application 

run on an SGI machine specifically designed for visualization 
problems, while MATLAB ran on a more general purpose 
computer platform. Program development and debugging 
were also facilitated by the complete separation of these 
processes. 

User Interface 
Database, integration, utility and user interface functions are 
performed in the vetomain module, see Figure 1. The “File” 
option of the vetomain menu bar allows users to load finite el- 
ement (FE) models and previously defined virtual test files into 
the VETO software. This module also provides numerous 
tools to assist the engineer in understanding how the various 
virtual instruments interact together. 

segments on different machines. P or example, AVS could be 

Figure 1. VETO Main User Interface 

The user interface is implemented in C and C++ using Motif 
libraries. To provide access to AVS and MATLAB, user 
interface widgets were constructed by which commands could 
be entered and all output from the applications displayed. 
Vetomain acts as a controller, sending and retrievin data 

driven model were introduced by the separation of the three 
application codes. Each module has its own event loop, 
specific to the interface events of that application. However, 
some events, such as communicating the node numbers from 
the visualized model, would be more natural if clicking on the 
model direct1 communicated back to the database program in 
vetomain. T i e  single socket connection between proqrams 
makes this quite awkward. Action specific code was written to 
deal with node numberin , however, a more elegant solution 
might utilize an additionaf communication channel along with 
integrated event loops. 
Vetomain is used to construct parametric models of the 
instruments, and to formulate interconnections between the 
models. Each of the virtual instruments is constructed in 
customized control panels. The user is able to interact with the 
Virtual Instruments Control Panel, selected from the “Setup/ 

from the other two applications. Some limitations in t a e event 

Instruments” option, to provide and view information on the 
devices in the simulation, see Figure 2. Atypical control panel 
used in the design of the virtual actuators and sensors, which 
are to be in contact with the device under test (DUT), is shown 
in Figure 3. 

Figure 2. Vial Instrument Control Panel for 
sensors 

Figure 3. Sensor input panel 

Before initiating a simulation run, the user also needs to define 
additional instruments, such as filters, amplifiers and the Front 
End data acquisition device. Two subpanes for providing 
parameters needed for sampling and computation of post- 
simulation analysis measurements for the Front End model 
are shown in Figures 4 and 5. There are additional subpanes 
to specify triggering, auto-ranging, windowin avera ing and 

A special instrument called a ”wire” is used to connect multiple 
instruments together. Once assembled, the DUT, selected 
virtual instruments and wire connections form the virtual test 
environment. 
Data defining the virtual instruments and the structure of the 
test environment are downloaded to MATLAB, the state space 
model of the structure or device under test is constructed, and 
the ABCD matrices are stored in the MATLAB workspace. 
SlMULlNK scripts are then called to organize the virtual 
instrument models and data into an integration network from 
which the time histories of the system are computed. 
The vetomain module also provides numerous evaluation 
tools to allow the test engineer to determine the completeness 
of the virtual test environment. These tools can be accessed 
throu h the “Pre-simulation” menu option from vetomain. The 
mod3 data used for visualization is combined with selected 

display parameters for the simulation of the jY ront En 8 devjce. 



protot pe environment, FEAVR, which had been developed to 
providye a general purpose visualization capabili for FE 
anal ses, was selected as the raphics tool. FE . ‘1 VR is an 

incorporating networks and modules written or customized at 
Sandia. B using FEAVR, a user is freed from knowin the 

provides the followincl cauabilities: 

intelace to the broad FE visua P ization functionality of AVS, 

details of dl VS. As an FE analysis visualization system, PEAVR 

Figure 4. VETO Front End Sampling Panel 

Figure 5. VETO Front End Measurement 
Panel 

virtual instruments to compute the Modal Assurance 
Criterion+, normal mode indicator functions, and driving point 
frequency response. The effects of the mass loading of the 
structure by the sensors may also be computed using a 
perturbation method. These and other tools guide the 
engineer in the design of tests that will accurately identify all 
the desired modes of the structure. 
Even with these tools, placement of sensors can be a difficult 
task. Tools such as the effective independence method or the 
minamac are used to automatically place sensors in locations 
which may help optimize the information available from the 
test. The virtual test environment provides the engineer with 
immediate visual feedback to determine the success of these 
methods, for which some engineering interaction is still 
required. Methods for automatic selection of actuator 
locations are currently under consideration. 

Visualization with AVS Finite Element Analysis VieweR 
(FEAVR) 
Since a finite element (FE) anal sis is typically performed to 
predict the modes of vibration ora device, it was decided to 
utilize the FE model as the primary geometric representation 
of the device for visualization purposes within VETO. A 

?The MAC is a normalized measure of mode orthogonali- 
ty. It is defined by, 

MAC.. 1J = el 
‘Pi ‘Pi ‘Pj * ‘Pj 

where qj is the eigenvector of the]& mode. The MAC is 
most often used to determine correspondence between test 
and analysis. In this effort, it identifies completeness of the 
modes. The MAC is sampled only at sensor locations, 
hence an incomplete sensor set results in large off-diago- 
nal terms. 
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color the modejwith color frin es representing element- 
based (e.g., stress, strain, etc$ or node-based (e.g., tem- 
perature, displacement) scalar values. 
slice the model by showing an interior cutting plane or by 
removing a portion of the model that lies on one side of a 
slice plane. 
create an isosurface which is a surface on which an ele- 
ment-based or node-based scalar value is constant. 
represent a vector field (velocity, for instance) as arrows 
or streamlines (continuous lines that are everywhere tan- 
gent to the vector field). 
create X-Y plots of variables as they vary through time or 
distance (across or through the model). 
deform the model according to a vector field, typically a 
displacement vector. 
create animations of mode shapes. 
“probe” the model to determine mesh-related values (i.e., 
nodal coordinates, node ID, element ID) and values of 
state variables (temperature, stress, etc.) at locations of 
interest. 

As discussed previously, AVS is started and then connected to 
a Unix socket to accommodate bidirectional communication 
between AVS and the vetomain program. This allows 
vetomain to control the AVS process by issuing CLI 
(Command Line Interpreter) commands and also by receiving 
information about the model (such as node ID) from AVS. Via 
this mechanism, the FEAVR environment is initialized within 
AVS. 
There were two fundamental extensions to FEAVR that were 
necessary for VETO. One was the ability to “attach” a virtual 
instrument to the model at a user-selected node point (via a 
mouse click) with a user specified orientation. For example, as 
an analyst or test engineer reviews the mode shape shown in 
Figure 6, a virtual accelerometer can be placed at node 468 
oriented parallel to the Z axis. The location and orientation of 
the virtual instrument is then transferred back to vetomain for 
development of the model of the DUT needed in the time 
integration. 
The second extension to FEAVR was the capability to create 
”trace links” which are lines linking the virtual instruments on 
the model to create a simplified representation of the device 
geometry in the absence of the FE model. These are used in 
visualizing the simulated (or experimental) output of the virtual 
or real) instruments. Fi ure 7 shows a deformed FE model 

Itop) and the same modlel represented with trace links and 
virtual instruments. 

Simulations with MATLAB and SlMULlNK 
The VETO software tool simulates the dynamic response 
behavior of a user defined test environment. The SlMULlNK 
Dynamic System Simulation Software toolkit provided by 
MATLAB is used as the environment to assemble and 
ultimately inte rate mathematical models of the test system. 
This same tookit controls the simulation rocessing. Dynamic 
response equations are inte rated by SlRULlNK to provide 
system output time histories.%ithin the VETO software, inputs 
such as type of device and interconnection of instrumentation 
models are combined to facilitate the rapid connection of 
various models (including models of test instrumentation, 
equipment and hardware) which comprise a given testing 
process. In order to achieve rapid set up of this virtual 
environment, models representing the instrumentation and 
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Figure 7. Deformed FE model and trace lines 
from FEAVR. 

Figure 6. FEAVR display. Note virtual 
instrument at node 468. 

test equipment need to be developed. These models consist 
of a mathematical description of the dynamic response of the 
instruments derived either theoretically or experimentally. 
Most of the instruments modeled to date have been modeled 
in the discrete state space domain. A number of system 
identification tools, e.g. Power Polynomial [5] and 
Eigensystem Realization Algorithm with Data Correlation II 
[6], were used in MATLAB to generate the mathematical 
models. Development was based on an experimental 
frequency response function of the instrument or equipment. 
The models of the different types of instruments and 
equipment (transducers, amplifiers, filters, etc. needed to 

SlMULlNK Virtual Test Equipment Library (VTELib). When 
preparing for a test simulation, the selection of the desired test 
instrumentation from the vetomain is erformed with the 
assistance of a MATLAB M-file called ib-contents which 
searches the VTELib for available instrument models. 
Optimal experimental design and simulation of the complete 
test environment is further facilitated by the VETO’S ability to 
include models of external inputs and electronic 
instrumentation noise. In addition, complex instrumentation 
models, such as the Front End data acquisition system, are 
constructed by combining multiple submodels to simulate the 
dynamic response behavior of the hardware. 
When “Build Simulation” is chosen from the “Simulate” menu 
of vetomain, the analysis data describing the DUT and other 
selected instrumentation parameters are downloaded to the 
MATLAB workspace. Processing control is then passed to 
MATLAB to construct a SlMULlNK model of the test system. 
Construction begins with a SlMULlNK “new-system” 
operation specifying the user’s selected name for the test 
system. Into this new system diagram, the procedure places 

represent a complete testing environment are I ocated in a 

the device model blocks, specified by the vetomain data. 
There is a second level of block placement performed in the 
building process specific to the data acquisition devi.ce called 
the “Front End“. When the “Front End“ model block IS placed 
into the new system, additional submodel blocks that simulate 
AC coupling and anti-alias filterin are laced within the “Front 

channels. Fi ure 8 shows a partial Front End block diagram as 
constructed %y the VETO software tool. 
As device blocks are added to the new system, 
interconnecting lines are placed between the blocks. These 
lines represent the flow of signals in the actual test system and 
are specified using the ”wire” instrument in vetomain. Using 
these interconnecting lines, the input signals from the actuator 
devices (e.9. impact hammers) are fed to both the DUT for 
simulation of system excitation and to the “Front End” device 
for simulation of data acquisition. The “Front End” device also 
receives the signals from the sensors that have been attached 
to the DUT to simulate structural system response to the 
actuator input. Both the simulated actuator and sensor signals 
are linked through amplifier and filtering blocks to represent 
preconditioning of the signals. 
The completed system is saved as a MATLAB “.m” and “.mat” 
file. Althou h it is possible for the user to modify the system 
built b V&O, care needs to be taken when directly modi ing 

the test design from within &MULINK, there is no mechanism 
for reflecting those changes in vetomain and in the FEAVR 
environment. 
SlMULlNK provides a number of methods for solving the set 
of differential equations which define the mathematical model 
of the test system constructed in the build phase of VETO. The 
VETO tool uses a Runge-Kutta fourth order (‘rk45” operation) 
method to numerically integrate the equations for the test 
system. This method is considered to be a good general 

End” block, based on the desire 8 E  num er of data simulation 

the SlhLINKsimulation s stem. When changes are ma Y e to 



Figure 8. Partial Front End Block Diagram 

purpose integrator applicable to a large range ot problems. It 
is a variable step size method with step size adjusted 
continuously to meet a specified relative error criterion. 
However, the VETO overrides the variable step size character 
by providing equal minimum and maximum step sizes as 
options when the simulation begins. The selected step size is 
the reciprocal of 32768 Hz; the maximum sampling rate of the 
HP3565 Front End device used for data acquisition and 
analysis. This forces SlMULlNK to calculate the system 
responses at a constant or uniform time interval during the 
simulation process. 
The process of simulation begins when the user selects "Run" 
from the "Simulate" option on vetomain. The data files which 
define the dynamics of the desired instrumentation are loaded 
into the test simulation s stem and the "Simulation Monitor" is 

observe the estimated system response based on the 
numerical integration. The Simulation Monitor represents the 
data acquisition environment common1 used to gather data in 

user interacts with the test simulation system. It {as a set of 
buttons to control the progress of the simulation and several 
display areas to provide visual feedback to the user. The 
VETO tool automaticall performs auto-ranging to simulate 
the settin of Front EndYdata acquisition voltage ranges on 
each anayog-to-digital convertor required in the test 
simulation. 

created and displayed. I! his monitor allows the user to 

a physical test and is a graphical inte x ace throu h which the 

During the simulation, the user has the option to halt the run 
using a button on the Monitor. Also, as each frame of data is 
collected, the simulated response is displayed on the Monitor 
and the user is provided visual feedback on the test simulation 
results. Voltage ranges for each channel can be varied in 
order to maximize the signal's dynamic range before 
performing post-simulation analysis. Each frame can be 
accepted or rejected as a valid set of data using control 
buttons found at the bottom of the Monitor. A second set of 
buttons will accept or re'ect and also end the data collection 
phase. These buttons also activate a window providing an 
interface to analysis routines for computing desired measures 
such as frequency response functions, power spectral 
densities and coherences. 

Application of the VETO to Structural Dynamics Test Slm- 
ulation 
The VETO software environment currently inte rates analysis 
and test based models to support optimal mo dJ al or structural 
dynamic test design. The structural dynamics testing 
environment was selected as the initial VETO environment for 
investigation into areas of design/analysis/test interfaces, 
visualization, versatility and repeatability. This initial VETO 
effort has focused on assisting engineers to maximize the 
value of modal tests. As was mentioned earlier, this 

environment plays a ve critical role in the Knowledge Based 

validation problems. 
A weapon component housing was selected as the test case 
hardware for application in the VETO environment. The VETO 
software simulation tool was used to desi n an optimal 

performing this test design optimization were to select an 
appropriate set of instrumentation (including sensors and 
actuators) to perform a modal experiment within the VETO 
environment, to simulate a modal test on the housing 
component, and then to compare the results of the simulation 
to actual experimental data. A finite element model of the 
housing structure was loaded into the VETO environment for 
use in the modal test simulation. The test design was 
performed over a frequency band which included the first five 
vibration modes of the housing structure. An experimental 
modal test was performed on the steel component housing, 
based on the VETO test design. 
The outcome of the VETO test design "Setup" was to excite 
the structure at a single location using an impact hammer and 
to measure 51 acceleration responses on the housing 
component to characterize the dynamic behavior of the 
component, Figure 9. Small accelerometers, Endevco 2250% 

Testing program particu 7 arly for structural dynamics model 

experiment for the housing component. T a e goals of 

\ 

Figure 9. VETO test design for the housing. 

were selected in the test design in order to minimize the mass 
loading effects during the experimentation. A large number of 
accelerometer locations were selected in the test design to 
make the process of analytical/experimental mode 
comparison more feasible. Other instrumentation such as the 
signal conditioning amplifiers and the Front End data 
acquisition system were also set up with the use of vetomain 
in preparation for the test simulation. Data acquisition 
parameters for sampling, averaging and ac uiring the desired 

simulation analysis 
A number of "Pre-simulation" tools were used to determine the 
completeness of the test design. First, the effects of mass 
loading the component housin were calculated given the test 

changes in the frequencies of vibration would be experienced 
during the experimental test, based on the number of Endevco 
2250 accelerometers chosen in the test design. Second, a 
norma! mode indicator function and a driving point frequency 

analysis measurements were also selected 9 or use in the post- 

design sensor set, Figure 10.. 9r his figure showed that small 
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Figure 10. Estimated frequency shifts due 
to mass loading the housing. 

response function were viewed before conductin the test 
simulation in order to assess whether the selectejsensor and 
actuator (selected impact location) set would accurately 
identify all the desired modes of interest on the component 
housing, Figures 11 and 12. Initially, a location near the center 
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Figure 11. Normal Mode Indicator F'unction 
for the housing 

of the housing, on the top of the dome, was selected for the 
excitation of the structure. By using the normal mode indicator 
function, it was determined that an input location at the edge 
of the housing would excite the first two modes of the structure 
more strong1 than exciting at the center of the housing. 
Finally, the dodal Assurance Criterion (MAC) was calculated 
for the test design to determine if the modes of vibration of the 
structure could easily be distinguished from one another given 
the selected sensor set. Small values on the off-diagonal 
terms of this MAC matrix, Figure 13, indicate the relative 
independence of the modes of vibration, thus facilitating 
correlation with analysis. 
Once the test design had been completed within the VETO 
environment, a SlMULlNK block model of the test 
environment was automaticall generated to support the 
simulation of the modal test. dgure 14 shows a partial block 
model of this SlMULlNK environment. The next ste in the 

mathematical models within SlMULlNK to estimate the 51 
system responses. Using the Simulation Monitor, these 
responses are observed for each set or frame of data to be 
collected, Figure 15. Once the data is gathered to support the 

modal test simulation is the numerical integration o P the 
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Figure 12. Driving point frequency response 
for housing 
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Figure 13. Modal Assurance Criterion 
(MAC) of the housing 

Figure 14. Partial Block Model of SIMULINK 
environment. 

desired measurement set, the test simulation within 
SlMWLlNK is concluded. A window which provides an 
interface to the post-simulation analysis routines is then used 
to download the data for measurement analysis. A comparison 
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Figure 15. Collected Responses from Simulation 
Monitor 

Figure 16. Comparison of Simulated and 
Experimental Frequency Response Functions 

of frequency response tunctions tor the simulated data and the 
expenmental data for this test case is shown in Fi ure 16. The 
results of the comparison between the simulatecgand the 
actual experimental data show the need for computational 
model validation. The simulated data, which are based on the 
FE dynamic analysis, reflects lower modal frequencies than 
the experimental results. By using this experimental data in 
conjunction with the FE model, the computational model can 
be updated and used as a predictive tool. However, even with 
an inaccurate finite element model, the test was complete and 
well designed. Placement of sensors and actuators, as 
specified in the VETO, resulted in data from which the 
required modes could be extracted unambiguously. 
Conclusions 
The results of this weapon housing modal test desi n using 
the VETO environment clearly show the benefit of tks soft- 
ware tool. Within this software environment, engineers were 
able to investigate the testin of this component prior to the 
existence of any hardware.Tfe effects that different instru- 
mentation or equipment had on the results of the experiment 
were observed and the selection of appropriate analysis pa- 

rameters were also studied. This tool assisted the engineers in 
the selection, placement and orientation of the instrumentation 
to maximize the information to be gathered from the experi- 
ment. Also, this tool allowed the visualization of results while 
iterating the test setup before committing to the actual test se- 
ries. This test simulation tool, as previously described, plays 
an important role in the design of experiments for the purpose 
of computational model validation. 
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