
N

Modal Test Optimization Using VETO
(Virtual Environment for Test Optimization)

Scott E. Klenke, Garth M. Reese, Larry A. Schoof and Craig L. Shierllng

Sandia National Laboratories
Albuquerque, New Mexico 871 85-0557

Abstract
We present a software environment integrating analysis and
test based models to support o timal modal test design
throu h a Virtual Environment f% Test Optimization (VETO).
The \SET0 assists analysis and test en ineers in maximizing
the value of each modal test. It is particukrly advantageous for
structural dynamics model reconciliation applications.
The VETO enables an engineer to interact with a finite
element model of a test object to optimally place sensors and
exciters and to investigate the selection of data acquisition
parameters needed to conduct a complete modal survey.
Additionally, the user can evaluate the use of different types of
instrumentation such as filters, amplifiers and transducers for
which models are available in the VETO. The d namic
response of most of the virtual instruments (indding the
device under test) are modeled in the state space domain.
Design of modal excitation levels and a ropriate test
instrumentation are facilitated by the V#Os ability to
simulate such features as unmeasured external inputs, A/D
quantization effects, and electronic noise. Measures of the
quality of the experimental design, includin the Modal
Assurance Criterion, and the Normal Mode flndicator Function
are available[l]. The VETO also integrates tools such as
Effective Independence[2] and minamac[l] to assist in
selection of optimal sensor locations. The software is
designed about three distinct modules:

1. a main controller and GUI written in C++,
2. a visualization model, taken from FEAVR[3], running

3. a state space model and time integration module, built

These modules are designed to run as separate processes on
interconnected machines. MATLAB'S external interface library
is used to provide transparent, bidirectional communication
between the controlling program and the computational
engine where all the time integration is performed. Data from
the finite element model is downloaded to the MATLAB engine
where the SlMULlNK model is automatically created and
executed. MATLAB GUI elements are used to simulate the
data acquisition environment including response traces, over-
range indicators, and full scale voltage ranges.

Introduction
This pa er presents an innovative test/anal sis tool, called the
Virtual l!nvironment for Test Optimization (bETO), which re-
duces test instrumentation iteration, producing better modal
tests. Communication between test and analysis engineers is
enhanced early in the design cycle. Traditionally, the role of
testing in the product realization process is limited to the end
of the design cycle, after hardware has already been pro-

under AVSt, and

in SIMULINK *.

?AVS is a trademark of Advanced Visual Systems, Inc.,
Waltham, MA.
*MATLAB and SIMULINK are trademarks of The Math
Works, Inc., Natick, MA.

duced. As a result, data analysis and test requirements for a
component are only considered when the hardware is sched-
uled for testing. Thus, the full benefit of the analysis in guiding
the test is not realized. A goal in developing this software tool
is to provide test and analysis organizations with a capability of
mathematically simulating the complete test environment with-
in a computer. Derived models of test equipment, instrumenta-
tion and hardware can be combined within the VETO to
provide the user with a unique analysis and visualization capa-
bility to evaluate new and existing test methods. By providing
engineers with a tool that allows them to optimize an experi-
mental design within a computer environment, pre-test analy-
sis can be performed using analytical models to rapidly
evaluate components before manufacturing has occurred. The
benefits of usin this type of experimental design tool can be
very extensive.$he user can evaluate the use of different
types of test instrumentation and equipment as well as inves-
tigating new testing techniques for s stem identification to be
used in analysis/experimentaI modeyvalidation.
A major objective of this software development effort is
flexibility. Because the virtual environment is a protot pe
software system, a prima concern for its design is &at the

software tooL are used wherever possible, provided that the
necessary functionality and flexibility are available. Another
significant design objective is to provide a final software
system that can be used by a variety of individuals who have
not been involved in its development. As is described below,
our design integrates several commercial tools to meet these
objectives.
The major tasks involved in our effort include: 1) database
management, 2) visualization of the device under test, 3) utility
functions (such as those providing additional information about
any of the instruments, or interconnecting them), and 4) time
integration of the system. A key element within the VETO
environment is the use of virtual instruments to simulate
dynamic behavior of real instruments. Each virtual instrument
ma require a different data representation within the different
VETO modules. For example, the device under test requires a
geometric definition under the visualization module, while the
model is reduced to state space ABCD matrices for use in the
time integration module. Program Integration - UnixTM Socket
Connected Modules
The VETO pro ram is divided into three main modules: 1) user
interface, datalase and utilities, 2) visualization, and 3) time
integration. The user interface and utilities are written in C++
with the database implemented using the netCDF library".
Visualization is performed using previously develo ed, custom
AVS networks[3]. Use of existing visualization sohare
immediately made available a wealth of tools permitting
visualization of extensive finite element results, including

code be eas to develop. 7 o minimize our effort, existing

* netCDF is a public domain, machine independent data
format available from the Unidata Program Center in
Boulder (unidata.ucar.edu).

modes of vibration, strain energy densities and static
response data. The time inte ration module uses MATLAB
and its SIMULINKtoolkit. MAfLAB was also used to construct
the state space models for many of the virtual instruments
(such as amplifiers and filters).
Communication between these different modules is
performed using unix sockets. MATLAB is released with a set
of interprocess communication tools (the “external interface”),
by which data may be easil transferred between the
programs. Data transfer wit{ AVS was more complicated but
accomplished in a similar fashion. AVS is distributed with
example code permitting execution in a “serve$ mode.
Commands and parameters ma be readily transferred to
AVS, but only the results printedyto standard output may be
retrieved; there is no direct access to internal data structures.
This is a significant limitation of the software. Most of the
structural data were shared through EXODUS II [4] files used
by the AVS visualization software. The random access data
features of this format were quite important to implementation
of many of the analysis tools discussed below.
In addition to permitting rapid implementation of the virtual
environment concepts, separation of the VETO software into
these three modules had important side benefits. Unixsockets
are network transparent, permittin us to run the application

run on an SGI machine specifically designed for visualization
problems, while MATLAB ran on a more general purpose
computer platform. Program development and debugging
were also facilitated by the complete separation of these
processes.

User Interface
Database, integration, utility and user interface functions are
performed in the vetomain module, see Figure 1. The “File”
option of the vetomain menu bar allows users to load finite el-
ement (FE) models and previously defined virtual test files into
the VETO software. This module also provides numerous
tools to assist the engineer in understanding how the various
virtual instruments interact together.

segments on different machines. P or example, AVS could be

Figure 1. VETO Main User Interface

The user interface is implemented in C and C++ using Motif
libraries. To provide access to AVS and MATLAB, user
interface widgets were constructed by which commands could
be entered and all output from the applications displayed.
Vetomain acts as a controller, sending and retrievin data

driven model were introduced by the separation of the three
application codes. Each module has its own event loop,
specific to the interface events of that application. However,
some events, such as communicating the node numbers from
the visualized model, would be more natural if clicking on the
model direct1 communicated back to the database program in
vetomain. T i e single socket connection between proqrams
makes this quite awkward. Action specific code was written to
deal with node numberin , however, a more elegant solution
might utilize an additionaf communication channel along with
integrated event loops.
Vetomain is used to construct parametric models of the
instruments, and to formulate interconnections between the
models. Each of the virtual instruments is constructed in
customized control panels. The user is able to interact with the
Virtual Instruments Control Panel, selected from the “Setup/

from the other two applications. Some limitations in t a e event

Instruments” option, to provide and view information on the
devices in the simulation, see Figure 2. Atypical control panel
used in the design of the virtual actuators and sensors, which
are to be in contact with the device under test (DUT), is shown
in Figure 3.

Figure 2. Vial Instrument Control Panel for
sensors

Figure 3. Sensor input panel

Before initiating a simulation run, the user also needs to define
additional instruments, such as filters, amplifiers and the Front
End data acquisition device. Two subpanes for providing
parameters needed for sampling and computation of post-
simulation analysis measurements for the Front End model
are shown in Figures 4 and 5. There are additional subpanes
to specify triggering, auto-ranging, windowin avera ing and

A special instrument called a ”wire” is used to connect multiple
instruments together. Once assembled, the DUT, selected
virtual instruments and wire connections form the virtual test
environment.
Data defining the virtual instruments and the structure of the
test environment are downloaded to MATLAB, the state space
model of the structure or device under test is constructed, and
the ABCD matrices are stored in the MATLAB workspace.
SlMULlNK scripts are then called to organize the virtual
instrument models and data into an integration network from
which the time histories of the system are computed.
The vetomain module also provides numerous evaluation
tools to allow the test engineer to determine the completeness
of the virtual test environment. These tools can be accessed
throu h the “Pre-simulation” menu option from vetomain. The
mod3 data used for visualization is combined with selected

display parameters for the simulation of the jY ront En 8 devjce.

protot pe environment, FEAVR, which had been developed to
providye a general purpose visualization capabili for FE
anal ses, was selected as the raphics tool. FE . ‘1 VR is an

incorporating networks and modules written or customized at
Sandia. B using FEAVR, a user is freed from knowin the

provides the followincl cauabilities:

intelace to the broad FE visua P ization functionality of AVS,

details of dl VS. As an FE analysis visualization system, PEAVR

Figure 4. VETO Front End Sampling Panel

Figure 5. VETO Front End Measurement
Panel

virtual instruments to compute the Modal Assurance
Criterion+, normal mode indicator functions, and driving point
frequency response. The effects of the mass loading of the
structure by the sensors may also be computed using a
perturbation method. These and other tools guide the
engineer in the design of tests that will accurately identify all
the desired modes of the structure.
Even with these tools, placement of sensors can be a difficult
task. Tools such as the effective independence method or the
minamac are used to automatically place sensors in locations
which may help optimize the information available from the
test. The virtual test environment provides the engineer with
immediate visual feedback to determine the success of these
methods, for which some engineering interaction is still
required. Methods for automatic selection of actuator
locations are currently under consideration.

Visualization with AVS Finite Element Analysis VieweR
(FEAVR)
Since a finite element (FE) anal sis is typically performed to
predict the modes of vibration ora device, it was decided to
utilize the FE model as the primary geometric representation
of the device for visualization purposes within VETO. A

?The MAC is a normalized measure of mode orthogonali-
ty. It is defined by,

MAC.. 1J = el
‘Pi ‘Pi ‘Pj * ‘Pj

where qj is the eigenvector of the]& mode. The MAC is
most often used to determine correspondence between test
and analysis. In this effort, it identifies completeness of the
modes. The MAC is sampled only at sensor locations,
hence an incomplete sensor set results in large off-diago-
nal terms.

0

b

b

b

0

color the modejwith color frin es representing element-
based (e.g., stress, strain, etc$ or node-based (e.g., tem-
perature, displacement) scalar values.
slice the model by showing an interior cutting plane or by
removing a portion of the model that lies on one side of a
slice plane.
create an isosurface which is a surface on which an ele-
ment-based or node-based scalar value is constant.
represent a vector field (velocity, for instance) as arrows
or streamlines (continuous lines that are everywhere tan-
gent to the vector field).
create X-Y plots of variables as they vary through time or
distance (across or through the model).
deform the model according to a vector field, typically a
displacement vector.
create animations of mode shapes.
“probe” the model to determine mesh-related values (i.e.,
nodal coordinates, node ID, element ID) and values of
state variables (temperature, stress, etc.) at locations of
interest.

As discussed previously, AVS is started and then connected to
a Unix socket to accommodate bidirectional communication
between AVS and the vetomain program. This allows
vetomain to control the AVS process by issuing CLI
(Command Line Interpreter) commands and also by receiving
information about the model (such as node ID) from AVS. Via
this mechanism, the FEAVR environment is initialized within
AVS.
There were two fundamental extensions to FEAVR that were
necessary for VETO. One was the ability to “attach” a virtual
instrument to the model at a user-selected node point (via a
mouse click) with a user specified orientation. For example, as
an analyst or test engineer reviews the mode shape shown in
Figure 6, a virtual accelerometer can be placed at node 468
oriented parallel to the Z axis. The location and orientation of
the virtual instrument is then transferred back to vetomain for
development of the model of the DUT needed in the time
integration.
The second extension to FEAVR was the capability to create
”trace links” which are lines linking the virtual instruments on
the model to create a simplified representation of the device
geometry in the absence of the FE model. These are used in
visualizing the simulated (or experimental) output of the virtual
or real) instruments. Fi ure 7 shows a deformed FE model

Itop) and the same modlel represented with trace links and
virtual instruments.

Simulations with MATLAB and SlMULlNK
The VETO software tool simulates the dynamic response
behavior of a user defined test environment. The SlMULlNK
Dynamic System Simulation Software toolkit provided by
MATLAB is used as the environment to assemble and
ultimately inte rate mathematical models of the test system.
This same tookit controls the simulation rocessing. Dynamic
response equations are inte rated by SlRULlNK to provide
system output time histories.%ithin the VETO software, inputs
such as type of device and interconnection of instrumentation
models are combined to facilitate the rapid connection of
various models (including models of test instrumentation,
equipment and hardware) which comprise a given testing
process. In order to achieve rapid set up of this virtual
environment, models representing the instrumentation and

1 Frequency 26.30 I

Figure 7. Deformed FE model and trace lines
from FEAVR.

Figure 6. FEAVR display. Note virtual
instrument at node 468.

test equipment need to be developed. These models consist
of a mathematical description of the dynamic response of the
instruments derived either theoretically or experimentally.
Most of the instruments modeled to date have been modeled
in the discrete state space domain. A number of system
identification tools, e.g. Power Polynomial [5] and
Eigensystem Realization Algorithm with Data Correlation II
[6], were used in MATLAB to generate the mathematical
models. Development was based on an experimental
frequency response function of the instrument or equipment.
The models of the different types of instruments and
equipment (transducers, amplifiers, filters, etc. needed to

SlMULlNK Virtual Test Equipment Library (VTELib). When
preparing for a test simulation, the selection of the desired test
instrumentation from the vetomain is erformed with the
assistance of a MATLAB M-file called ib-contents which
searches the VTELib for available instrument models.
Optimal experimental design and simulation of the complete
test environment is further facilitated by the VETO’S ability to
include models of external inputs and electronic
instrumentation noise. In addition, complex instrumentation
models, such as the Front End data acquisition system, are
constructed by combining multiple submodels to simulate the
dynamic response behavior of the hardware.
When “Build Simulation” is chosen from the “Simulate” menu
of vetomain, the analysis data describing the DUT and other
selected instrumentation parameters are downloaded to the
MATLAB workspace. Processing control is then passed to
MATLAB to construct a SlMULlNK model of the test system.
Construction begins with a SlMULlNK “new-system”
operation specifying the user’s selected name for the test
system. Into this new system diagram, the procedure places

represent a complete testing environment are I ocated in a

the device model blocks, specified by the vetomain data.
There is a second level of block placement performed in the
building process specific to the data acquisition devi.ce called
the “Front End“. When the “Front End“ model block IS placed
into the new system, additional submodel blocks that simulate
AC coupling and anti-alias filterin are laced within the “Front

channels. Fi ure 8 shows a partial Front End block diagram as
constructed %y the VETO software tool.
As device blocks are added to the new system,
interconnecting lines are placed between the blocks. These
lines represent the flow of signals in the actual test system and
are specified using the ”wire” instrument in vetomain. Using
these interconnecting lines, the input signals from the actuator
devices (e.9. impact hammers) are fed to both the DUT for
simulation of system excitation and to the “Front End” device
for simulation of data acquisition. The “Front End” device also
receives the signals from the sensors that have been attached
to the DUT to simulate structural system response to the
actuator input. Both the simulated actuator and sensor signals
are linked through amplifier and filtering blocks to represent
preconditioning of the signals.
The completed system is saved as a MATLAB “.m” and “.mat”
file. Althou h it is possible for the user to modify the system
built b V&O, care needs to be taken when directly modi ing

the test design from within &MULINK, there is no mechanism
for reflecting those changes in vetomain and in the FEAVR
environment.
SlMULlNK provides a number of methods for solving the set
of differential equations which define the mathematical model
of the test system constructed in the build phase of VETO. The
VETO tool uses a Runge-Kutta fourth order (‘rk45” operation)
method to numerically integrate the equations for the test
system. This method is considered to be a good general

End” block, based on the desire 8 E num er of data simulation

the SlhLINKsimulation s stem. When changes are ma Y e to

Figure 8. Partial Front End Block Diagram

purpose integrator applicable to a large range ot problems. It
is a variable step size method with step size adjusted
continuously to meet a specified relative error criterion.
However, the VETO overrides the variable step size character
by providing equal minimum and maximum step sizes as
options when the simulation begins. The selected step size is
the reciprocal of 32768 Hz; the maximum sampling rate of the
HP3565 Front End device used for data acquisition and
analysis. This forces SlMULlNK to calculate the system
responses at a constant or uniform time interval during the
simulation process.
The process of simulation begins when the user selects "Run"
from the "Simulate" option on vetomain. The data files which
define the dynamics of the desired instrumentation are loaded
into the test simulation s stem and the "Simulation Monitor" is

observe the estimated system response based on the
numerical integration. The Simulation Monitor represents the
data acquisition environment common1 used to gather data in

user interacts with the test simulation system. It {as a set of
buttons to control the progress of the simulation and several
display areas to provide visual feedback to the user. The
VETO tool automaticall performs auto-ranging to simulate
the settin of Front EndYdata acquisition voltage ranges on
each anayog-to-digital convertor required in the test
simulation.

created and displayed. I! his monitor allows the user to

a physical test and is a graphical inte x ace throu h which the

During the simulation, the user has the option to halt the run
using a button on the Monitor. Also, as each frame of data is
collected, the simulated response is displayed on the Monitor
and the user is provided visual feedback on the test simulation
results. Voltage ranges for each channel can be varied in
order to maximize the signal's dynamic range before
performing post-simulation analysis. Each frame can be
accepted or rejected as a valid set of data using control
buttons found at the bottom of the Monitor. A second set of
buttons will accept or re'ect and also end the data collection
phase. These buttons also activate a window providing an
interface to analysis routines for computing desired measures
such as frequency response functions, power spectral
densities and coherences.

Application of the VETO to Structural Dynamics Test Slm-
ulation
The VETO software environment currently inte rates analysis
and test based models to support optimal mo dJ al or structural
dynamic test design. The structural dynamics testing
environment was selected as the initial VETO environment for
investigation into areas of design/analysis/test interfaces,
visualization, versatility and repeatability. This initial VETO
effort has focused on assisting engineers to maximize the
value of modal tests. As was mentioned earlier, this

environment plays a ve critical role in the Knowledge Based

validation problems.
A weapon component housing was selected as the test case
hardware for application in the VETO environment. The VETO
software simulation tool was used to desi n an optimal

performing this test design optimization were to select an
appropriate set of instrumentation (including sensors and
actuators) to perform a modal experiment within the VETO
environment, to simulate a modal test on the housing
component, and then to compare the results of the simulation
to actual experimental data. A finite element model of the
housing structure was loaded into the VETO environment for
use in the modal test simulation. The test design was
performed over a frequency band which included the first five
vibration modes of the housing structure. An experimental
modal test was performed on the steel component housing,
based on the VETO test design.
The outcome of the VETO test design "Setup" was to excite
the structure at a single location using an impact hammer and
to measure 51 acceleration responses on the housing
component to characterize the dynamic behavior of the
component, Figure 9. Small accelerometers, Endevco 2250%

Testing program particu 7 arly for structural dynamics model

experiment for the housing component. T a e goals of

\

Figure 9. VETO test design for the housing.

were selected in the test design in order to minimize the mass
loading effects during the experimentation. A large number of
accelerometer locations were selected in the test design to
make the process of analytical/experimental mode
comparison more feasible. Other instrumentation such as the
signal conditioning amplifiers and the Front End data
acquisition system were also set up with the use of vetomain
in preparation for the test simulation. Data acquisition
parameters for sampling, averaging and ac uiring the desired

simulation analysis
A number of "Pre-simulation" tools were used to determine the
completeness of the test design. First, the effects of mass
loading the component housin were calculated given the test

changes in the frequencies of vibration would be experienced
during the experimental test, based on the number of Endevco
2250 accelerometers chosen in the test design. Second, a
norma! mode indicator function and a driving point frequency

analysis measurements were also selected 9 or use in the post-

design sensor set, Figure 10.. 9r his figure showed that small

Actuator WE1.

30 -

25 -
2
P20 -
;
1
g 1 5 -

IO -
A5%

5 -

.4% .15% .I%
0 =-""" '

Figure 10. Estimated frequency shifts due
to mass loading the housing.

response function were viewed before conductin the test
simulation in order to assess whether the selectejsensor and
actuator (selected impact location) set would accurately
identify all the desired modes of interest on the component
housing, Figures 11 and 12. Initially, a location near the center

6 7
Mode Number

n l

0.3

0.2

0.1

Figure 11. Normal Mode Indicator F'unction
for the housing

of the housing, on the top of the dome, was selected for the
excitation of the structure. By using the normal mode indicator
function, it was determined that an input location at the edge
of the housing would excite the first two modes of the structure
more strong1 than exciting at the center of the housing.
Finally, the dodal Assurance Criterion (MAC) was calculated
for the test design to determine if the modes of vibration of the
structure could easily be distinguished from one another given
the selected sensor set. Small values on the off-diagonal
terms of this MAC matrix, Figure 13, indicate the relative
independence of the modes of vibration, thus facilitating
correlation with analysis.
Once the test design had been completed within the VETO
environment, a SlMULlNK block model of the test
environment was automaticall generated to support the
simulation of the modal test. dgure 14 shows a partial block
model of this SlMULlNK environment. The next ste in the

mathematical models within SlMULlNK to estimate the 51
system responses. Using the Simulation Monitor, these
responses are observed for each set or frame of data to be
collected, Figure 15. Once the data is gathered to support the

modal test simulation is the numerical integration o P the

10'1 1

Figure 12. Driving point frequency response
for housing

1 0' IOS
Frequennl

Mode #
Mode I

Figure 13. Modal Assurance Criterion
(MAC) of the housing

Figure 14. Partial Block Model of SIMULINK
environment.

desired measurement set, the test simulation within
SlMWLlNK is concluded. A window which provides an
interface to the post-simulation analysis routines is then used
to download the data for measurement analysis. A comparison

.
.

-: e - m s
-10

, a - s 100la:
la_, - 6 n s q

-10

'60 0 2 m

Figure 15. Collected Responses from Simulation
Monitor

Figure 16. Comparison of Simulated and
Experimental Frequency Response Functions

of frequency response tunctions tor the simulated data and the
expenmental data for this test case is shown in Fi ure 16. The
results of the comparison between the simulatecgand the
actual experimental data show the need for computational
model validation. The simulated data, which are based on the
FE dynamic analysis, reflects lower modal frequencies than
the experimental results. By using this experimental data in
conjunction with the FE model, the computational model can
be updated and used as a predictive tool. However, even with
an inaccurate finite element model, the test was complete and
well designed. Placement of sensors and actuators, as
specified in the VETO, resulted in data from which the
required modes could be extracted unambiguously.
Conclusions
The results of this weapon housing modal test desi n using
the VETO environment clearly show the benefit of tks soft-
ware tool. Within this software environment, engineers were
able to investigate the testin of this component prior to the
existence of any hardware.Tfe effects that different instru-
mentation or equipment had on the results of the experiment
were observed and the selection of appropriate analysis pa-

rameters were also studied. This tool assisted the engineers in
the selection, placement and orientation of the instrumentation
to maximize the information to be gathered from the experi-
ment. Also, this tool allowed the visualization of results while
iterating the test setup before committing to the actual test se-
ries. This test simulation tool, as previously described, plays
an important role in the design of experiments for the purpose
of computational model validation.

Ackownledgement
This work was supported by the United States Department of
Energy under Contract DE-AC04-94AL85000.

References . ~ -

[2] D. C. Kammer "Se sor Placements for On-Or it Modal
,&!\nafo! ldentifi a o dhdance, bnd8orr 8ontr3, latio of an$dynafk~cs,!&~&~~' L r e S ace

hoof "Finite Element Analysis VieweR (FEAVR)."
[31 Lu~plBishecl.
[4] L,$ Schvf and V R.,,Yarb r "EX0 S I- Finite

ement ata Model, San8a%eport &Nd$k-2137.
arney, "Power Polynomial Analysis Code," unpub-

5sEei.
[6] J. P. L uffer, "ki ens fem Realization Algorithm with Data

Corr&tion 11 . &"palshed.

