
SANDIA REPORT
SAND95-2049 UC-700
Unlimited Release
Printed August 1995 c

CHAPARRAL: A Library for Solving Large
Enclosure Radiation Heat Transfer Problems

Micheal W. Glass

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-Am-94AL85000

, I , -

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOnCE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Idormation
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springi?eld, VA22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

Distribution
UC-700

c . '.

SAND95-2049
Unlimited Release

Printed August 1995

CHAPARRAL: A Library for Solving Large
Enclosure Radiation Heat Transfer Problems

Micheal W. Glass
Manufacturing and Environmental Fluid Dynamics

Sandia National Laboratories

Albuquerque, NM 87185

Abstract
Large, three-dimensional enclosure radiation heat transfer problems place a heavy demand on computing resources
such as computational cycles, memory requirements, disk YO, and disk space usage. This is primarily due to the com-
putational and memory requirements associated with the view factor calculation and subsequent access of the view
factor matrix during solution of the radiosity matrix equation. This is a fundamental problem that constrains Saudi's
current modeling capabilities. Reducing the computational and memory requirements for calculating and manipulat-
ing view factors would enable an analyst to increase the level of detail at which a body could be modeled and would
have a major impact on many programs at Sandia such as weapon and transportation safety programs, component
survivability programs, energy programs, and material processing programs. CHAPARRAL is a library package
Written to address these problems and is specifically tailored towards the efficient solution of extremely large three-
dimensional enclosure radiation heat transfer problems.

ASTER

'-

. I

Table of Contents

1 . Inaoduction ... 1
2 . Problem Overview .. 3

2.1 Enclosure Radiation Heat Transfer and the Radiosity Model .. 3
2.2 Calculation of View Factors ... 5

23.1 The Hemi-Cube Method ... 5
233 Errors Associated with the Hemi-Cube Method ... 9
Internal Data Base Storage of View Factors ... 10
Solution of the Radiosity Matrix Equation ... 11

23
2.4

2.4.1 Gauss-Seidel Approach ... 11
2.43 Progressive Refinement Approach ... 12

2.5 Performance .. 14
3 . User's Guide ... 17

3.1
3.2
3.3 FORTRAN Language Interface .. 20

4 . References ... 25
5 . Distribution ... 26

Pseudo Code for Usage of CHAPARRAL ... 17
C Language Interface .. 18

0

iii

0

C

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4
Figure 5:

* Figure 6:
Figure 7:

Geometry and nomenclature for calculating view factors between finite areas. 4
Nusselt’s hemishere method. 6 *

Discretization of the hemicube. ...7
Derivation of delta-view factors. ...7
Geometry where the visibility assumption is violated .. 9
Example of how aliasing can over or under estimate the projected surface area. 10
SRAM fiieset casting.: 15

. *

V

vi

List of Tables

Table 1: Comparison of FACET with the Hemicube Method .. 14
Table 2: Comparison of Data Compression Schemes ... 16
Table 3: Comparison of Solution Methods for Solving the Radiosity Matrix Equation 16

c

vii

Vi i i

1. Introduction

Use of the global net radiation method [I] to solve enclosure radiation problems involves the
calculation of surfaceLto-surface view factor pairs. In a standard finite element analysis, the com-
mon approach is to use the exposed side of elements as radiating surfaces. To adequately resolve
temperature gradients during a finite element thermal analysis, a large number of elements &e re-
quired in the body being modeled which in turn increases the number of radiating surfaces. Be-
cause the number of view factors between the radiating surfaces increases with O(N2), the
calculation of the view factors can easily become a significant, if not dominant, portion of the
computation for realistic problems. This is particularly true for steady-state problems or transient
problems with a changing geometry or mesh. In many cases, there are problems that we cannot
currently solve without sacrificing accuracy &e. a less detailed mesh) for reduced computational
time.

Depending upon the implementation strategy, efficient solution of large radiation enclosure
heat transfer problems typically involves balancing CPU, core memory, and disk I/O require-
ments for a particular problem. Because there is no set formula for determining how these re-
quirements should be allocated, the experience and intuition of the analyst must be relied upon.
CHAPARRAL was written to reduce some of these requirements and allow as much flexibility as
possible.

Traditional view factor algorithms from the heat transfer field have proven to be inefficient for
very large enclosure radiation problems, particularly when obstructing surfaces are present. How-
ever, in the field of computer graphics, new algorithms have been developed for calculating view
factors and solving the radiosity problem for a radiosity based global illumination model. One
such method for calculating view factors, the hemicube method, has been widely used in the com-
puter graphics field with great success. The hemicube method has been implemented within
CHAPARRAL, along with more traditional methods for two-dimensional view factor calculations.
The hemicube method has demonstrated a tremendous speedup over the traditional double area
integration method for three-dimensional geometries. For solution of the radiosity matrix equa-
tion, CHAPARRAL includes both a Gauss-Siedel iterative method and a progressive refinement
method. For some problems, the progressive refinement method can significantly reduce the num-
ber of times the view factors must be accessed, thus speeding up the solution of the matrix equa-
tion. Due to the large memory requirements for storage of the view factor matrix, an internal view
factor database with compressioddecompression algorithms has also been included to reduce the
memory requirements and/or disk VO for storing and accessing the view factors.

1

'

2

2. Problem Overview

2.1 Enclosure Radiation Heat Ransfer and the Radiosity Model
The analysis of thermal radiation heat transfer within an enclosure is complicated because the

energy transfer mechanism introduces nonlinearities into the problem and requires the specifica-
tion of radiation view‘factors. The energy flux leaving a given surface is composed of directly
emitted and reflected energy[l]. The reflected energy flux is dependent upon the incident energy
flux from the surroundings, which can be expressed in terms of the energy flux leaving all other
surfaces. The energy reflected from surface k isgiven by

where qok is the energy flux leaving the surface, &k is the emissivity, o is Boltzmann’s constant, Tk
is the temperature, pk is the reflectivity, and qik is the energy flux incident upon the surface from
its surroundings. The amount of incident energy upon a surface from another surface is a direct
function of the surface-to-surface view factor, Fjk The view factor, Fjk, can be thought of as the
fraction of energy leaving surface k which is incident upon surfacej. The incident energy flux, qik,
can be expressed in terms of the energy flux leaving gU other surfaces as

N

j = 1

where F j k , i s known as the view factor between surface k and surfacej (also called form factor,
configuraoon factor). The view factor F j k represents the fraction of energy leaving surfacej which
is directly incident upon surface k. For N surfaces, using the view factor reciprocity relationship
gives

so that

N

j = 1

therefore

N
4

q o k = ‘koTk + Pk Fkjqoj
j = 1

Equation (5) can be rewritten as

3

N

Bk = Ek + P k 2 FkjBj (6)

where Bk represents the radiosity of surface k and Ek represents the emissivity of surface k. This
represents N equations which can be recast into matrix form as

j = l

or

1 - PlF,, TPlF12 e e e

-P2F21 - P2F, e e e '

-pNFNl -pNFN2 e e e

e e e e e

e e e . e e ..

K B = E

m

Equation (8) is referred to as the radiosity model or radiosity matrix equation. The view factor be-
tween two finite surfaces i andj is given by

where GQ is determined by the visibility of dAj to dAb 64 is equal to one if dAj is visible to dAi and
is equal to zero otherwise. See Figure 1 for the geometric interpretation of the individual terms.

Figure 1 Geometry and nomenclature for calculating view factors between finite areas.

4

As mentioned earlier, enclosure radiation heat transfer problems usually require computer re-
sources of the following nature: (1) CPU processing to calculate the view factors and solve the ra-
diosity matrix equation; (2) core memory for storage of the view factors; and (3) disk storage and
VO for out-of-core storage of the view factors and accessing the view factors when solving the ra-
diosity matrix equation. Efficiently solving problems of this nature requires balancing these three
needs to achieve optimum performance. CHAPAREUL addresses these three areas and provide
some improvement in performance. CHAPARRAL consists of three main sections: (1) calcula-
tion of the geometric view factors; (2) an internal database for storing and accessing the view fac-
tor matrix; and (3) solution of the radiosity matrix equation. In’ this chapter, the implementation of
each of these areas will be discussed in greater detail.

2.2 Calculation of View Factors
Emery et. al. [2] provide an excellent review of the various methods commonly used to calcu-

late view factors. Each has their advantages and disadvantages as detailed in the paper. Therefore,
for greater flexibility, multiple algorithms are available within CHAPARRAL for view factor
computations. Traditional methods were made available by modifying the FACET [3] package to
be a subroutine library and incorporating it into CHAPARRAL. FACET uses traditional methods
such as line integration and double area integration and handles 2D planar, 2D axisymmetric, and
3D geometries. An implementation of the hemicube algorithm is available for 3D geometries. By
default, FACET is used to calculate the view factors for 2D geometries and the hemicube method
is used for 3D geometries. Because the hemicube algorithm is less well known in the heat transfer
field as a method to calculate view factors, more detail on this method is provided next.

2.2.1 The Hemi-Cube Method
When Goral et. al. [4] first introduced the radiosity method to the computer graphics field, the

view factors were calculated using contour line integration; however, even when applied to sim-
ple scenes, this was considered a computationally expensive method. For complex geometries
with obstructed views, the double area integration scheme had to be used and the time to calculate
the view factors became exorbitantly high. With the strive towards real-time image generation,
the first significant contribution from the computer graphics field was in the area of view factor
calculation. Specifically, the hemicube method for view factor calculation was developed to de-
crease the computational effort required for such calculations.

The hemicube method is based upon Nusselt’s hemisphere analogy and was first proposed by
Cohen et. al. in 1985 [5]. Instead of projecting the surfaces onto a hemisphere, a hemicube is
used. Nusselt’s analogy shows that any surface which covers the same area on the hemisphere has
the same view factor. From this it is evident that any intermediate surface geometry can be used
without changing the value of the view factors (see Figure 2). Hence the hemisphere can be re-
placed with a hemicube.

The use of a hemicube allows for the development of very efficient algorithms for calculating

5

Figure 2 Nusselt’s hemishere method.

view factors in a complex environment. The basic algorithm begins by discretizing the surface of
the hemicube into a set of N uniform subpatches which will be called pixels. Each pixel defines a
particular direction and angle from the receiving patch’s centroid. Thus, each pixel contributes a
specific delta-view factor value to the overall view factor between two surfaces if the pixel is cov-
ered by the projection of the transmitting surface onto the discretized hemicube. See Figure 3 for
the geometric interpretation of this method.

The deltaAview factors for each pixel, n=I,2, ...,A7 on the hemicube are found from

c o ~ e i c o ~ e .
Aviewfactor = AFn = 2 JAAj

nr
See Figure 4 for the geometric interpretation of the terms used in Equation (10). The overall

view factor is then calculated by

N
Fii = ZAF,

n = l

For efficiency, the delta-view factor for each pixel is calculated only once and stored in a look-
up table €or later use. This lookup table actually only contains values for 1/4 of the top face and

6

fY
Figure 3 Discretization of the hemicube.

2 2 2 r = x + y + l
1
r cos0 = cosei = cosej = -

AF,, = TU,, 1
Itr

2 2 2 r = l + y + z
Z 1
r r cose, = - cosej = -

Z AF,, = TU,,
xr

Figure 4 Derivation of delta-view factors for (a) pixel on
top of hemicube and (b) pixel on the side of the hemicube.

7

1/2 of each side face due to symmetry.

The top face of the hemicube represents a 90" viewing frustum and each sideface represents
one half of a 90" viewing frustum which is well known in the field of computer graphics. Hence,
aIl the developments for projecting environments within the fi-ustum can be taken advantage of
for computational efficiency.

One can see that instead of calculating view factors on a pair by pair basis, the hemicube algo-
rithm allows for an entire row of view factors F'$f = I , 2,3, . . . , N to be calculated at the same
time after projecting 'the environment onto the hemcube for surface i. Pseudo-code for the hemic-
ube algorithm is given below

Loop on the number of enclositres, n
Initialize the hemicube delta view factors
Loop on the number of surfaces, i

Calculate surface areas, centroids, and normals
End loop
Loop on the number of surfaces, i

Initialize view factor row Fg = 0 for all j
Initialize hemicube ID buffer to NULL surface ID
Initialize hemicube zb@er to maximum real number
Place hemicube at surface centroid
Loop on number of hemicube sides (including top)

Align view direction with top or si&
Loop on number of surfaces, j

Project sw$ace j onto the hemicube
Scan convert and zbuffer surface jprojection onto hemicube sides

End loop
Sum contribution to F p Fii = Fii + XAF of grid cells with zbuffered ID = j

End loop
End loop

End loop

8

2.2.2 Errors Associated with the Hemi-Cube Method
The hemicube algorithm is based upon various assumptions about the environmental geome-

try which if violated, will produce inaccurate values for the view factors [6]. The kuee major as-
sumptions of the hemicube algorithm are: (1) proximity - the distance between surfaces is great
compared to the,effective diameter of the surfaces; (2) visibility - the visibility between any two
surfaces does not change; and, (3) aliasing - the true projection of each visible surface onto the
hemicube’can be accurately accounted for by using a finite resolution hemicube.

The proximity assumption is’violated whenever surfaces &e close compared to their effective
diameters or are adjacent to one another. In such cases the distance between the centroid of one
surface to all points on the other surface can vary greatly. Because the view factor dependence on
distance is nonlinear, the result is a poor estimate of the view factor. The most common violation
of this assumption occurs when surfaces are adjoint. Baum, et. al. [6] used a hybrid scheme which
combined the hemicube method with an analytical method when the proximity assumption was
violated.

The visibility assumption requires that the term 6G in Equation (9) remain constant across sur-
face i. Because 60 is a discontinuous function, the single point evaluation at the centroid of sur- -
face i can introduce significant errors to the value of the view factor. This is depicted in Figure 5
where surface 1 has a complete view of surface 2 from its centroid but in fact surface 3 occludes
much of surface 2 from surface 1, In such a case the hemicube algorithm will overestimate Fg by
using Fd0 calculated from the centroid of surface 1. To reduce this error, surface 1 could be subdi-
vided into smaller subelements with the hemicube method applied to each subelement and the re-
sults combined to produce a more accurate value for the view factor.

Figure 5 Geometry where the visibility assumption is violated

9

The aliasing assumption, that surfaces project exactly onto a whole number of hemicube pix-
els, is similar to aliasing problems associated with graphical image displays. Because of the finite
resolution of the hemicube, the projected areas and resultant view factors may & over or under
estimated as shown in Figure 6. Aliasing effects can be reduced by increasing the resolution of the
hemicube, by using multiple hemicube subsamples and filtering the results, or by using jittered
hemicubes.

urface Projection

Pixels Covered

Over Estimate Under Estimate

Figure 6 Example of how aliasing can over or under estimate the projected surface area.

In this initial release of CHAPARRAL, only hemicube jittering has been implemented. With
jittered hemicubes, each hemicube is randomly rotated about its parent surface’s normal vector.
This reduces any preferential alignment of surfaces edges along the hemicube’s discretized
boundaries.

2.3 Internal Data Base Storage of View Factors
When solving radiation heat transfer problems, memory usage can be a major area of concern.

The view factor matrix can be either stored in core memory or in a disk file. Depending upon the
problem, the view factor matrix may either be sparse or full. If the matrix is stored in full form,
one can quickly run into limitations - either core memory limitations or available disk space. For
a problem with 5000 participating surfaces, 25 megawords of memory is required to store the en-
@re view factor matrix! From experience, disk r/O (particularly on the Cray or over NFS) is al-
ways a bottleneck and should be avoided whenever possible. In CHAPAJlRAL, disk VO has been
eliminated from the resource balancing equation by allowing the view factors to always be stored
in core memory. Though storing the view factors in core memory eliminates the disk VO bottle-
neck, one can quickly run into core memory limitations. On Sandia’s Cray/YMp, processes are
limited to 32 megawords of core memory usage so this limit can be easily exceeded on problems
of more than 5000 participating surfaces. On other systems without this memory limit, the memo-
ry requirements can still quickly exceed the amount of physical memory which can lead to exces-
sive swapping as virtual memory is accessed. For this reason, when the view factor matrix is
stored in memory, CHAPARRAL uses data compression to reduce the required amount of memo-

10

..

ry. The view factor matrix is stored row-by-row and each row is compressed separately. This re-
quires CPU overhead to perform the data decompression each time the view factors are accessed,
which adds a new dimension to balancing CPU and memory requirements for a job, but the mem-
ory savings can be substantial.

To implement the data compression, an internal database is used to store the view factor ma-
trix and associated parameters. Access to the database is accomplished through a defined Applica-
tion Programmer’s Interface (MI). This allows the internal workings of thedatabase to be
transparent to the user and supplies a well defined hterface for the data compression/decompres-
sion routines. The MI is described in further detail in Chapter 3.

Severid data compression/decompression schemes are available. These include: (1) no com-
pression; (2) byte runlength encoding (BRLE); (3) word runlength encoding (WRLE); and (4)
Lempil-Zev-Walsh encoding (LZW). WRLE compressioddecompression is available because
some computer architectures access words much than faster bytes. Runlength encoding is proba-
bly the lowest level compression scheme available. The user’s choice of a data compression
schemes will depend upon speed/memory requirements of the particular problem.

..

* 2.4 Solution of the Radiosity Matrix Equation
Solving the radiosity matrix equation requires solving a system of linear equations which, de-

pending upon the geometry of the model, may be dense or sparse. Though there are many meth-
ods available for this type of problem, some are better suited than others. Direct methods are not
very well suited because of the potentially large size of the problem, thus iterative methods have
been used almost exclusively. Of the iterative methods available, Gauss-Seidel has probably been
the most widely used; and progressive refinement, one of the newer methods, can be advanta-
geous in certain situations. Both of these methods are available in CHAPARRAL and are briefly
described below.

2.4.1 Gauss-Seidel Approach
Gauss-Seidel is a variation of the Jacobi method and provides a true relaxation method which

usually improves the speed at which the method converges to a solution. This iterative approach
converges to a solution by solving the system of equations one row at a time. Physically, this
means that the evaluation’of the ith row of equations provides an estimate of the radiosity of sur-
face i based on the current radiosities of all the other surfaces. Hence, the energy leaving surface i
is determined by gathering in the energy from the rest of the environment. As such, the solution to
the radiosity problem is calculated one surface at a time. Pseudo-code for the algorithm is given
below.

11
,

. .

Loop on the number of enclosures

Loop on the number of su@aces

Set Bi = starting guess

End loop

While not converged
. Loop on number of sur$aces, i

n

End while
End loop

2.4.2 Progressive Refinement Approach
As an illumination model, the overwhelming cost of @e radiosity method is the computation

of the view factors. As with thermal radiation codes, this cost is reduced by calculating the view
factors once at the beginning of a calculation and storing them for repeated use in the iteration cy-
cle. k~ such an environment, the storage cost for the view factors are O(N2). In 1988, Cohen et. al.
[7] proposed a progressive refinement method for the radiosity illumination model which comput-
ed the view factors on the fly, thus reducing the storage costs to O(N).

For the progressive refinement approach, the problem is formulated so that the contribution
. made by surface i to all the other surfaces is calculated. This represents an iterative column solu-

tion to the set of radiosity equations. Physically, this means that the energy leaving surface i is
shot out into the environment and its effect on all the other surfaces is calculated. Because the
hemicube method and basic ray-tracing methods compute the view factors on a row-by-row basis, '

the reciprocity relationship (Equation 3) must be used to transform a row of view factors into a
column of view factors. To converge gracefully and as quickly as possible, the surfaces are pre-
sorted according to the energy that each surface has to shoot. Theoretically, the solution is not
converged until all the emitted and reflected energy is dispersed throughout the environment. But,
the final solution may be approached to within a certain error tolerance very quickly and with only
a fraction of the view factors calculated as compared to the full matrix fonnulation. As an exam-
ple, &hen et. al. r/l computed the global illumination of a steel mill scene composed of 30000
surfaces subdivided into 50000 patches. The full matrix formulation would have required the
computation of 1 .5~10~ view factors requiring 6 Gbytes of storage space. The progressive refine-
ment method needed only one column of view factors requiring 0.12 Mbytes of storage space.
Additionally, the solution converged to an acceptable value after the energy from 2000 surfaces
had been shot or less than 5% of the total number of view factors had been calculated! -

12

While the progressive refinement approach to solving the radiosity problem has demonstrated
tremendous speedups for image synthesis, its usefulness to heat transfer calculations may not
have as big an impact. While the method converges rapidly to an acceptable resultfor image syn-
thesis, are the error tolerances as tight as they would.probably be in an engineering calculation or
is the converged solution merely a visually acceptable result? Another reason this approach works
so well as an illumination model is the fact that in image synthesis there are usually light sources
included which have a much larger amount of energy to shoot than the other surfaces. By shooting
the energy from the light sources first, and Qen.%om the major surfaces that are impacted with
that energy, a very reasonable image can be obtained in a shod period of time. But the presence of
only a few highly emissive surfaces may not always be the case for heat transfer problems. One
has only to look at a metal casting problem as an example where the vast majority of surfaces
have emissive powers of the same order. And for transient problems, a breakpoint will exist where
it is cheaper to calculate all the view factors first rather than repeatedly calculating a smaller num-
ber of view factors for each time step. On the other hand, this approach may prove to be very use-
ful when solving transient problems where the geometry changes with time and hence the view
factors will also change and cannot be precomputed for the duration of the calculation. Pseudo-
code for this method is given below.

Loop on the number of enclosures
Loop on the number of surfaces, i

set Bi = Ei

set ABi = Ei

End loop

While not converged

Choose su@ace i, such that ABi*Ai is largest

Loop on the number of surfaces, j
Set b a d = ABi*p,Fji

Set ABj = ABpbad

Set Bj = BJ+Arad

End loop
ABi=0

End while

End loop

13

2.5 Performance

Case Number

1

2

3

4

To demonstrate the various aspects of CHAPARRAL, a finite element model of a SRAM fire-
set casting was used as an example model. This model [8] consists of 3297 elements with 4538 ra-
diating surfaces in 2 enclosures (3495 and 1043 surfaces in the top and bottom enclosures '
respectively). This model is shown in Figure 7. The three main parts of CHAPARRAL will now
be discussed in further detail. All timing values are for a Sun Sparcstation 10/30 workstation.

For flexibility, multiple algorithms are available for view factor computations. The available
algorithms include those available in FACET along with an implementation of the hemicube algo-
r i b . By default, FACET is used to calculate the view factors for 2D geometries and the hemic-
ube method is used for 3D geometries. The advantage of using the hemicube method for 3D
geometries is illustrated by Table 1. Comparison of the various data compression schemes is
shown in Table 2. From Table 2 it can be seen .that for this particular test problem, there is no per-
formance penalty for using WRLE compression. Comparison of the two methods for solving the
radiosity matrix equation is shown in Table 3.

Time (min) to Calculate
View Factors for:

Enclosure 1 Enclosure 2

Method Used to
Calculate View

Factors

Hemicube 19.4 1.8

FACET 15.1 2.8

FACET 204.1 51.4

FACET 292.6 12.3

Table 1: Comparison of FACET with the Hemicube Method

14

Figure 7 SRAM fireset casting.

15

Table 2: Comparison of Data Compression Schemes

AIgorithm

None

WRLE

BRLE

LZW

Time (sec) to compress all the
view factor rows for:

Time (sec) to *

decompress all the view
- factor rows for both

Total Mb
of Storage

Enclosure 1 Enclosure 2 enclosures

51.3 5 0.5 3

13.4 5 0.7 3

12.2 15 1.8 7

7.8 41 5.6 25

Table 3: Comparison of Solution Methods for Solving the Radiosity Matrix Equation

Time (sec) to Solve the Radiosity
Compression Matrix Equation for:

Scheme Solution Method

Gauss-S eidel

NONE 107 5.3

WRLE 100 5.7

I BRLE I 150 6.0

I 354 32.1

Progressive
Refinement

I NONE I 69 I 4.8

WRLE 70 4.9

BRLE 80 10.2

I LZW I 126 I 11.9

16

3. User’s Guide

The CHAPARRAL library is written in both C and FORTRAN with both a C and FORTRAN
interface. The routines reside in a non-sharable library called libvf.a. Its location will be depen-.
dent upon your installation. On the Department 1500 / Building 880 LAN at Sandia National
Labs, it resides in the directory /usr/local/lib on all the hardware platforms available on
the IRN. For internal Sandia use, a standalone program called chaparral is available which ac-
cepts’COYOTE [9] input files and just calculates the view factors. For users running on multi-
processor, shared memory machines, limited support for multiprocessing is available. Currently,
the hemicube method is the only portion of the code ha t has been written to take advantage of a
multi-processing architecture. For the Sun Microsystem’s Solaris 2.x operating system, a special
version of the library, libvfmt.a exists which utilizes multithreading. The multithreading currently
uses Solaris threads. However, wh& POSIX threads become readily available on other multi-pro-
cessor architectures, the port should be very easy. When running on a Sun Sparccenter 2000 with
N processors, the standalone chaparral application demonstrates an almost N times speedup.

Informational output from the CHAPARRAL library, as defined by the debug output level, is
written to standard output.

3.1 Pseudo Code for Usage of CHAPARRAL
Below is pseudo code outlining the usage of CHAPARRAL. The portions of the pseudo code

that are handled by CHAP’ are indicated by boldface type.

General code initialization
Initialize internal view factor dutubase
If view factor matrix has been previously computed

Else
Read view futors into &base from pre-existing disk file

Loop on the number of enclosures

End loop
Wrire out view factor dafabase to d i s k m

Calculafe view factors for this enclosure

Endif

Loop on number of enclosures
Calculafe surfacejluxes via Gauss-Siehl or
CQlculafe surface fluxes via Progressive Refinement

17

I

End loop

End of code

3.2 C Language Interface

1. Initialize internal view factor database

init-vfdbase (nun-enclosures, max-surfaces, st’orage-format)

int
int

int

nm-enclosures total number oi enclosures
max-surfaces maximum # of surfaces from all the en-

closures.
format compression format: O=no storage,

l=no compression, 2=word run length
encoding, 3=byte run length encoding,
and 4=LZW encoding

2. Calculate view factors

viewfactor (enclosure, nsurfaces, x, y, z,
connectivity, isaram, rsaram) .

int ienclosure current enclosure number
int nsurfaces number of surfaces in this enclosure
float *x array of x-ccordinates for nodes
float *y array of y-coordinates for nodes
float * z array of z-coordinates for nodes
int *iconnectivity surface element connectivity array
int *igaram integer parameter array:

[O] dimensionality of problem: 1=2D
axismetric (FACET), 2=2D pla-
nar (FACET), 3=3D (hemicube), -

[l] partial enclosure flag: O=full
3=3D (FACET)

18

,

enclosure, l=partial enclosure

even integer

y, and z arrays

O=off, l=on

[2] hemicube resolution, must be an

[3] number .of nodes i .e. 'length of x, .

141 least squares smoothing flag:

[51 number of rotations
[6] number of x-grid divisions
[7] 'number of y-grid divisions
[8] number of z-grid divisions
[9] check for blocking: O=off, l=on
[lo] maximum number of surface subdi-

[113 debug output level
1121 Number of' child processes (or

threads) to use with the hemicube
algorithm

visions

float *r-param real parameter array:
[O] area of enclosure if this is a

partial enclosure problem

3. Read the view factors from a pre-existing disk file into the internal database

read-vf dbase (filename)

char *filename file name
int format storage format: O=ASCII, l=native ma-

chine binary, 2=XDR, 3=NETCDF (for-.
mats 2 and 3 are not yet supported).

4. Write the view factor matrix to a disk file

writ e v f dbase (filename , format)

char *filename file name
int format storage fonnat: O=ASCII, l=native ma-

chine binary, 2=XDR, 3=NETCDF (for-
mats 2 and 3 are not yet supported).

19

5. Solve the radiosity matrix equation

radsolve-gauss (enclosure, radq, tsurf, eps, sigma, -
tol, niter, iter)

int
float
float
float

. float
float
int
int

enclosure
*radq .

*tsurf
*eps
sigma
to1
niter
iter

current enclosure number
array of surface fluxes
array of surface temperatures
array of surface emissivities
Stefan-Boltzmann constant
convergence tolerance
maximum number of iterations
if 0, no convergence reached, else the
actual number of iterations

radsolve_prog (enclosure, radq, tsurf, eps, sigma,
tol, niter, iter)

int
float
float
float
float
float
int
int

enclosure
*radq
*tsurf
*eps
sigma
to1
niter
iter

current enclosure number
array of surface fluxes
array of surface temperatures
array of surface emissivities
Stefan-Boltzmann constant
convergence tolerance
maximum number of iterations
if 0, no convergence reached, else the
actual number of iterations

3.3 FORTRAN Language Interface

1. Initialize internal view factor database

call INIT-VFDB(num-enclosures, max-surfaces, iformat)

integer
integer

integer

nun-enclosures
max-surfaces

iformat

total number of enclosures
maximum number of surfaces
from all the enclosures.
compression format: O=no
storage, l=no compression,
2=word run length encoding,
3=byte run length encoding,

20

and 4=LZW encoding

' 2. Calculate view factors

call WFACTOR(ienclosure, nsurfaces, x, y, z ,
iconnectivity, i-param, r-param)

integer .
integer

real

real

real

integer

integer

ienclosure
nsurf aces

Y (* I

current enclosure number
number of surfaces in this
enclosure
array of x-ccordinates for
nodes
array of y-coordinates for
nodes

z (* I array of z-coordinates for

iconnectivity (5 * I surface element connectivi-

i-param (*)

nodes

ty array
integer parameter array:
(1) dimensionality of prob-

lem: 1=2D axisymmetric
(FACET) 2=2D planar
(FACET), 3=3D (hemicube),

(2) partial enclosure flag:
O=full enclosure, l=par-
tial enclosure

(3) hemicube resolution, must
be an even integer

(4) number of nodes i.e.
length of x, y, and z ar-
rays

(5) least squares smoothing
flag: O=off, l=on

(6) number of rotations
(7) number of x-grid divi-

(8) number of y-grid divi-

(9) number of z-grid divi-

-3 =3D (FACET)

sions

sions

sions

21

(10 check for blocking :

(11 1 maximum number of surf ace

(l2)debug level for FACET !+

(13 Number of child processes
(or threads) to use with
the hemicube algorithm

real parameter array:
(1) area of enclosure if this

is a partial enclosure
problem

O=off, l=on

subdivisions

,

real
. .

rsaram (*)

3. Read the view factors from a pre-existing disk file into the internal database

call RI-VFDB (filename)

character* (*) filename file name

4. Write the view factor matrix to a disk file

call WR-VFDB(filename, iformat)

character* (*) filename
integer iformat

file name

l=native machine binary,
2=XDR, 3=NETCDF (formats 2
and 3 are not yet supported).

storage format: O=ASCII ,

5. Solve the radiosity matrix equation

call RADSOL-GAUSS(ienclosure, radq, tsurf, eps,
sigma, tol, niter, iter)

integer ienclosure current enclosure number
real radq (* 1 array of surface fluxes
real tsurf (*)

real eps (* I
real sigma
real to1
int niter
int iter

array of surface temperatures
array of surface emissivities
Stefan-Boltzmann constant
convergence tolerance
maximum number of iterations
if 0, no convergence reached,
else the actual number of it-

22

erations

call RADSOL-PROG(ienclosure, radq, tsurf, eps,
sigma, tol, niter, iter)

integer
real
real
real
real
real
int
int

ienclosure
radq (*)
tsurf (*)

eps (* I
sigma
to1
niter
iter

23

current enclosure number
array of surface fluxes . - -
array of surface temperatures
array of surface emissivities
S t e f an-Bo1 t zmann cons t ant
convergence tolerance
maximum number of iterations - -
if 0, no convergence reached,
else the actual number of it-.
erations

24

4. References

r11

r21

r31

r41

PI

r71

r91

Siegel, R. and Howell, J. R., Thermal Radiation Heat Transfer, McGraw Hill, Ny, 2nd
Edition, 1981.

Emery, A. E, Johansson, O., Lobo, M., and Abrous, A., “A Comparative Study of Meth-
odr for Computing the D i m e Radiation ViewJactors for Complex Structures,” AIAA f

Shapiro, A. B., ‘#FACET - A Radiation View Factor Computer Code for Axisymtric,
2 0 Planar, and 30 Geometries with Shudowing,” Lawrence Livermore Laboratory
Technical Report UCID-19887, August 1983.

Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B., “Modeling the Interac-
tion of Light Between Diffuse Surfaces,” Computer Graphics, 18(3):213-222,1984.

Cohen, M. E and Greenberg, D. P., “The Hemi-Cube: A Radiosity Solution for Complex
Environments, Computer Graphics,” 19(3):3 1-40, 1985.

Baum, D. R., Rushmeier, H. E., and Winget, J. M., “Improving Radiosity Solutions
Through the Use of Analytically Determined Form-Factors,” Computer Graphics,

Cohen, M. E, Chen, S. E., Wallace, J. R., and Greenberg, D. P., “A Progressive Refine-
ment Approach to Fast Radiosity Image Generation, Computer Graphics,” 22(4):15-84,
1988.

Hogan, R. E., Glass, M. W., Schunk, P. R., and Gartling, D. K., ‘‘Them1 Analysis of the
Cooling and Solidifrcation of Investment Castings,” Proceedings of the lSt International
Conf. on Transport Phenomena in Processing, S. I. Guceri, Ed., March 22-26,1992.

%artling, D. K. and Hogan, R. E., “Coyote 11 - A Finite Element Computer Program for
Nonlinear Heat Conduction Problems, Part 11 - User’s Manual,” SAND94-1179, Sandia
National Laboratories, Albuquerque, NM, 1994.

ASME / ASCE)ASH 29th SDM Conference, AIAA paper 884223,1988. . .

23(3):325-334, 1989.

25

5. Distribution

M. S. Engelman.
Fluid Dynamics International
500 Davis Street, Suite 600
Evanston, IL.60201

S. N. Smith
McDonnell Douglas Aerospace
13100 Space Center Blvd
Houston, "X 77059-3556 ..

MSO841 1500
MS0833 1503
MSO828 1504
MS0827 1511
MSO827 1511
MS0834 1512'
MSO834 1512
MSO834 1512
MS0834 1512
MSO835 1513
MSO835 1513
MSO835 1513
MSO835 1513
MSO835 1513
MSO835 1513
MSO835 1513
MS0835 1513
MSO835 1513
MSO835 1513
MSO835 1513
MSO835 1513
MSO835 1513
MSO835 1513
MSO835 1513
MSO835 1513

26

P. J. Hommert
J. H. Bifjae
E. D. Gorham
D. K. Gartling
M. W. Glass (25)
A. C. Ratzel
M. R. Baer
R. J. Gross
M. L. Hobbs
R. D. Skocypec
D. R. Adkins
R. L. Akau
B. L. Bainbridge
E. A. Boucheron
D. Dobranich
R. C. Dykhuizen
S. E. Gianoulakis
.L. A. Gritzo
D. M. Hensinger
R. E. Hogan
R. R. Lober
V. F. Nicolette
V. J. Romero
M. P. Sherman
S. R. Tieszen

MS 0826 1514 W. L. Hermina
MS 0825 1515 W. H. Rutledge'
MS 0833 1516 . C. W. Peterson
MS 0443 1517 H. S. Morgan
MS 0437 1518 R. K. Thomas
MS 9043 8743 M. L. Callabresi
MS 9018 8523-2 Central Tech Files
MS 0899 13414 Technical Library (5)
MS 0619 13416 Technical Publications
MS 0100 7613-2 Document Processing

. for DOE/OSTI (10)

4

Org. Bldg. Name Rec'd by [Org. Bldg. Name Rec'd by

Sandia Mationall Laboratories

	1 Inaoduction
	2 Problem Overview
	Enclosure Radiation Heat Transfer and the Radiosity Model
	Calculation of View Factors
	The Hemi-Cube Method
	Errors Associated with the Hemi-Cube Method

	Internal Data Base Storage of View Factors
	23
	Solution of the Radiosity Matrix Equation
	2.4.1 Gauss-Seidel Approach
	2.43 Progressive Refinement Approach

	2.5 Performance

	3 User's Guide
	Pseudo Code for Usage of CHAPARRAL
	C Language Interface
	FORTRAN Language Interface

	4 References
	5 Distribution
	Geometry and nomenclature for calculating view factors between finite areas
	Discretization of the hemicube
	Derivation of delta-view factors
	Geometry where the visibility assumption is violated
	Example of how aliasing can over or under estimate the projected surface area
	SRAM fiieset casting
	Table 1: Comparison of FACET with the Hemicube Method
	Table 2: Comparison of Data Compression Schemes
	Table 3: Comparison of Solution Methods for Solving the Radiosity Matrix Equation

