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Abstract 
Large, three-dimensional enclosure radiation heat transfer problems place a heavy demand on computing resources 
such as computational cycles, memory requirements, disk YO, and disk space usage. This is primarily due to the com- 
putational and memory requirements associated with the view factor calculation and subsequent access of the view 
factor matrix during solution of the radiosity matrix equation. This is a fundamental problem that constrains Saudi's 
current modeling capabilities. Reducing the computational and memory requirements for calculating and manipulat- 
ing view factors would enable an analyst to increase the level of detail at which a body could be modeled and would 
have a major impact on many programs at Sandia such as weapon and transportation safety programs, component 
survivability programs, energy programs, and material processing programs. CHAPARRAL is a library package 
Written to address these problems and is specifically tailored towards the efficient solution of extremely large three- 
dimensional enclosure radiation heat transfer problems. 
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1. Introduction 

Use of the global net radiation method [I] to solve enclosure radiation problems involves the 
calculation of surfaceLto-surface view factor pairs. In a standard finite element analysis, the com- 
mon approach is to use the exposed side of elements as radiating surfaces. To adequately resolve 
temperature gradients during a finite element thermal analysis, a large number of elements &e re- 
quired in the body being modeled which in turn increases the number of radiating surfaces. Be- 
cause the number of view factors between the radiating surfaces increases with O(N2), the 
calculation of the view factors can easily become a significant, if not dominant, portion of the 
computation for realistic problems. This is particularly true for steady-state problems or transient 
problems with a changing geometry or mesh. In many cases, there are problems that we cannot 
currently solve without sacrificing accuracy &e. a less detailed mesh) for reduced computational 
time. 

Depending upon the implementation strategy, efficient solution of large radiation enclosure 
heat transfer problems typically involves balancing CPU, core memory, and disk I/O require- 
ments for a particular problem. Because there is no set formula for determining how these re- 
quirements should be allocated, the experience and intuition of the analyst must be relied upon. 
CHAPARRAL was written to reduce some of these requirements and allow as much flexibility as 
possible. 

Traditional view factor algorithms from the heat transfer field have proven to be inefficient for 
very large enclosure radiation problems, particularly when obstructing surfaces are present. How- 
ever, in the field of computer graphics, new algorithms have been developed for calculating view 
factors and solving the radiosity problem for a radiosity based global illumination model. One 
such method for calculating view factors, the hemicube method, has been widely used in the com- 
puter graphics field with great success. The hemicube method has been implemented within 
CHAPARRAL, along with more traditional methods for two-dimensional view factor calculations. 
The hemicube method has demonstrated a tremendous speedup over the traditional double area 
integration method for three-dimensional geometries. For solution of the radiosity matrix equa- 
tion, CHAPARRAL includes both a Gauss-Siedel iterative method and a progressive refinement 
method. For some problems, the progressive refinement method can significantly reduce the num- 
ber of times the view factors must be accessed, thus speeding up the solution of the matrix equa- 
tion. Due to the large memory requirements for storage of the view factor matrix, an internal view 
factor database with compressioddecompression algorithms has also been included to reduce the 
memory requirements and/or disk VO for storing and accessing the view factors. 
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2. Problem Overview 

2.1 Enclosure Radiation Heat Ransfer and the Radiosity Model 
The analysis of thermal radiation heat transfer within an enclosure is complicated because the 

energy transfer mechanism introduces nonlinearities into the problem and requires the specifica- 
tion of radiation view‘factors. The energy flux leaving a given surface is composed of directly 
emitted and reflected energy[l]. The reflected energy flux is dependent upon the incident energy 
flux from the surroundings, which can be expressed in terms of the energy flux leaving all other 
surfaces. The energy reflected from surface k isgiven by 

where qok is the energy flux leaving the surface, &k is the emissivity, o is Boltzmann’s constant, Tk 
is the temperature, pk is the reflectivity, and qik is the energy flux incident upon the surface from 
its surroundings. The amount of incident energy upon a surface from another surface is a direct 
function of the surface-to-surface view factor, Fjk The view factor, Fjk, can be thought of as the 
fraction of energy leaving surface k which is incident upon surfacej. The incident energy flux, qik,  
can be expressed in terms of the energy flux leaving gU other surfaces as 

N 

j =  1 

where F j k , i s  known as the view factor between surface k and surfacej (also called form factor, 
configuraoon factor). The view factor F j k  represents the fraction of energy leaving surfacej which 
is directly incident upon surface k. For N surfaces, using the view factor reciprocity relationship 
gives 

so that 

N 

j =  1 

therefore 

N 
4 

q o k  = ‘koTk + Pk Fkjqoj  
j = 1  

Equation (5) can be rewritten as 
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N 

Bk  = Ek + P k  2 FkjBj (6) 

where Bk represents the radiosity of surface k and Ek represents the emissivity of surface k. This 
represents N equations which can be recast into matrix form as 

j = l  

or 

1 - PlF,, TPlF12 e e e 

-P2F21 - P2F, e e e '  

-pNFNl -pNFN2 e e e 

e e e e e 

e e e . e  e .. 

K B = E  

m 

Equation (8) is referred to as the radiosity model or radiosity matrix equation. The view factor be- 
tween two finite surfaces i andj  is given by 

where GQ is determined by the visibility of dAj to dAb 64 is equal to one if dAj is visible to dAi and 
is equal to zero otherwise. See Figure 1 for the geometric interpretation of the individual terms. 

Figure 1 Geometry and nomenclature for calculating view factors between finite areas. 
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As mentioned earlier, enclosure radiation heat transfer problems usually require computer re- 
sources of the following nature: (1) CPU processing to calculate the view factors and solve the ra- 
diosity matrix equation; (2) core memory for storage of the view factors; and (3) disk storage and 
VO for out-of-core storage of the view factors and accessing the view factors when solving the ra- 
diosity matrix equation. Efficiently solving problems of this nature requires balancing these three 
needs to achieve optimum performance. CHAPAREUL addresses these three areas and provide 
some improvement in performance. CHAPARRAL consists of three main sections: (1) calcula- 
tion of the geometric view factors; (2) an internal database for storing and accessing the view fac- 
tor matrix; and (3) solution of the radiosity matrix equation. In’ this chapter, the implementation of 
each of these areas will be discussed in greater detail. 

2.2 Calculation of View Factors 
Emery et. al. [2] provide an excellent review of the various methods commonly used to calcu- 

late view factors. Each has their advantages and disadvantages as detailed in the paper. Therefore, 
for greater flexibility, multiple algorithms are available within CHAPARRAL for view factor 
computations. Traditional methods were made available by modifying the FACET [3] package to 
be a subroutine library and incorporating it into CHAPARRAL. FACET uses traditional methods 
such as line integration and double area integration and handles 2D planar, 2D axisymmetric, and 
3D geometries. An implementation of the hemicube algorithm is available for 3D geometries. By 
default, FACET is used to calculate the view factors for 2D geometries and the hemicube method 
is used for 3D geometries. Because the hemicube algorithm is less well known in the heat transfer 
field as a method to calculate view factors, more detail on this method is provided next. 

2.2.1 The Hemi-Cube Method 
When Goral et. al. [4] first introduced the radiosity method to the computer graphics field, the 

view factors were calculated using contour line integration; however, even when applied to sim- 
ple scenes, this was considered a computationally expensive method. For complex geometries 
with obstructed views, the double area integration scheme had to be used and the time to calculate 
the view factors became exorbitantly high. With the strive towards real-time image generation, 
the first significant contribution from the computer graphics field was in the area of view factor 
calculation. Specifically, the hemicube method for view factor calculation was developed to de- 
crease the computational effort required for such calculations. 

The hemicube method is based upon Nusselt’s hemisphere analogy and was first proposed by 
Cohen et. al. in 1985 [5]. Instead of projecting the surfaces onto a hemisphere, a hemicube is 
used. Nusselt’s analogy shows that any surface which covers the same area on the hemisphere has 
the same view factor. From this it is evident that any intermediate surface geometry can be used 
without changing the value of the view factors (see Figure 2). Hence the hemisphere can be re- 
placed with a hemicube. 

The use of a hemicube allows for the development of very efficient algorithms for calculating 
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Figure 2 Nusselt’s hemishere method. 

view factors in a complex environment. The basic algorithm begins by discretizing the surface of 
the hemicube into a set of N uniform subpatches which will be called pixels. Each pixel defines a 
particular direction and angle from the receiving patch’s centroid. Thus, each pixel contributes a 
specific delta-view factor value to the overall view factor between two surfaces if the pixel is cov- 
ered by the projection of the transmitting surface onto the discretized hemicube. See Figure 3 for 
the geometric interpretation of this method. 

The deltaAview factors for each pixel, n=I,2, ...,A7 on the hemicube are found from 

c o ~ e i c o ~ e .  
Aviewfactor = AFn = 2 JAAj 

nr 
See Figure 4 for the geometric interpretation of the terms used in Equation (10). The overall 

view factor is then calculated by 

N 
Fii = ZAF, 

n = l  

For efficiency, the delta-view factor for each pixel is calculated only once and stored in a look- 
up table €or later use. This lookup table actually only contains values for 1/4 of the top face and 
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Figure 3 Discretization of the hemicube. 

2 2 2  r = x + y + l  
1 
r cos0 = cosei = cosej = - 

AF,, = TU,, 1 
Itr 

2 2 2  r = l + y + z  
Z 1 
r r cose, = - cosej = - 

Z AF,, = TU,, 
xr 

Figure 4 Derivation of delta-view factors for (a) pixel on 
top of hemicube and (b) pixel on the side of the hemicube. 
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1/2 of each side face due to symmetry. 

The top face of the hemicube represents a 90" viewing frustum and each sideface represents 
one half of a 90" viewing frustum which is well known in the field of computer graphics. Hence, 
aIl the developments for projecting environments within the fi-ustum can be taken advantage of 
for computational efficiency. 

One can see that instead of calculating view factors on a pair by pair basis, the hemicube algo- 
rithm allows for an entire row of view factors F'$f = I ,  2,3, . . . , N to be calculated at the same 
time after projecting 'the environment onto the hemcube for surface i. Pseudo-code for the hemic- 
ube algorithm is given below 

Loop on the number of enclositres, n 
Initialize the hemicube delta view factors 
Loop on the number of surfaces, i 

Calculate surface areas, centroids, and normals 
End loop 
Loop on the number of surfaces, i 

Initialize view factor row Fg = 0 for all j 
Initialize hemicube ID buffer to NULL surface ID 
Initialize hemicube zb@er to maximum real number 
Place hemicube at surface centroid 
Loop on number of hemicube sides (including top) 

Align view direction with top or si& 
Loop on number of surfaces, j 

Project sw$ace j onto the hemicube 
Scan convert and zbuffer surface jprojection onto hemicube sides 

End loop 
Sum contribution to F p  Fii = Fii + XAF of grid cells with zbuffered ID = j 

End loop 
End loop 

End loop 
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2.2.2 Errors Associated with the Hemi-Cube Method 
The hemicube algorithm is based upon various assumptions about the environmental geome- 

try which if violated, will produce inaccurate values for the view factors [6]. The kuee major as- 
sumptions of the hemicube algorithm are: (1) proximity - the distance between surfaces is great 
compared to the,effective diameter of the surfaces; (2) visibility - the visibility between any two 
surfaces does not change; and, (3) aliasing - the true projection of each visible surface onto the 
hemicube’can be accurately accounted for by using a finite resolution hemicube. 

The proximity assumption is’violated whenever surfaces &e close compared to their effective 
diameters or are adjacent to one another. In such cases the distance between the centroid of one 
surface to all points on the other surface can vary greatly. Because the view factor dependence on 
distance is nonlinear, the result is a poor estimate of the view factor. The most common violation 
of this assumption occurs when surfaces are adjoint. Baum, et. al. [6] used a hybrid scheme which 
combined the hemicube method with an analytical method when the proximity assumption was 
violated. 

The visibility assumption requires that the term 6G in Equation (9) remain constant across sur- 
face i. Because 60 is a discontinuous function, the single point evaluation at the centroid of sur- - 
face i can introduce significant errors to the value of the view factor. This is depicted in Figure 5 
where surface 1 has a complete view of surface 2 from its centroid but in fact surface 3 occludes 
much of surface 2 from surface 1, In such a case the hemicube algorithm will overestimate Fg by 
using Fd0 calculated from the centroid of surface 1. To reduce this error, surface 1 could be subdi- 
vided into smaller subelements with the hemicube method applied to each subelement and the re- 
sults combined to produce a more accurate value for the view factor. 

Figure 5 Geometry where the visibility assumption is violated 
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The aliasing assumption, that surfaces project exactly onto a whole number of hemicube pix- 
els, is similar to aliasing problems associated with graphical image displays. Because of the finite 
resolution of the hemicube, the projected areas and resultant view factors may & over or under 
estimated as shown in Figure 6. Aliasing effects can be reduced by increasing the resolution of the 
hemicube, by using multiple hemicube subsamples and filtering the results, or by using jittered 
hemicubes. 

urface Projection 

Pixels Covered 

Over Estimate Under Estimate 

Figure 6 Example of how aliasing can over or under estimate the projected surface area. 

In this initial release of CHAPARRAL, only hemicube jittering has been implemented. With 
jittered hemicubes, each hemicube is randomly rotated about its parent surface’s normal vector. 
This reduces any preferential alignment of surfaces edges along the hemicube’s discretized 
boundaries. 

2.3 Internal Data Base Storage of View Factors 
When solving radiation heat transfer problems, memory usage can be a major area of concern. 

The view factor matrix can be either stored in core memory or in a disk file. Depending upon the 
problem, the view factor matrix may either be sparse or full. If the matrix is stored in full form, 
one can quickly run into limitations - either core memory limitations or available disk space. For 
a problem with 5000 participating surfaces, 25 megawords of memory is required to store the en- 
@re view factor matrix! From experience, disk r/O (particularly on the Cray or over NFS) is al- 
ways a bottleneck and should be avoided whenever possible. In CHAPAJlRAL, disk VO has been 
eliminated from the resource balancing equation by allowing the view factors to always be stored 
in core memory. Though storing the view factors in core memory eliminates the disk VO bottle- 
neck, one can quickly run into core memory limitations. On Sandia’s Cray/YMp, processes are 
limited to 32 megawords of core memory usage so this limit can be easily exceeded on problems 
of more than 5000 participating surfaces. On other systems without this memory limit, the memo- 
ry requirements can still quickly exceed the amount of physical memory which can lead to exces- 
sive swapping as virtual memory is accessed. For this reason, when the view factor matrix is 
stored in memory, CHAPARRAL uses data compression to reduce the required amount of memo- 
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ry. The view factor matrix is stored row-by-row and each row is compressed separately. This re- 
quires CPU overhead to perform the data decompression each time the view factors are accessed, 
which adds a new dimension to balancing CPU and memory requirements for a job, but the mem- 
ory savings can be substantial. 

To implement the data compression, an internal database is used to store the view factor ma- 
trix and associated parameters. Access to the database is accomplished through a defined Applica- 
tion Programmer’s Interface (MI). This allows the internal workings of thedatabase to be 
transparent to the user and supplies a well defined hterface for the data compression/decompres- 
sion routines. The MI is described in further detail in Chapter 3. 

Severid data compression/decompression schemes are available. These include: (1) no com- 
pression; (2) byte runlength encoding (BRLE); (3) word runlength encoding (WRLE); and (4) 
Lempil-Zev-Walsh encoding (LZW). WRLE compressioddecompression is available because 
some computer architectures access words much than faster bytes. Runlength encoding is proba- 
bly the lowest level compression scheme available. The user’s choice of a data compression 
schemes will depend upon speed/memory requirements of the particular problem. 

.. 

* 2.4 Solution of the Radiosity Matrix Equation 
Solving the radiosity matrix equation requires solving a system of linear equations which, de- 

pending upon the geometry of the model, may be dense or sparse. Though there are many meth- 
ods available for this type of problem, some are better suited than others. Direct methods are not 
very well suited because of the potentially large size of the problem, thus iterative methods have 
been used almost exclusively. Of the iterative methods available, Gauss-Seidel has probably been 
the most widely used; and progressive refinement, one of the newer methods, can be advanta- 
geous in certain situations. Both of these methods are available in CHAPARRAL and are briefly 
described below. 

2.4.1 Gauss-Seidel Approach 
Gauss-Seidel is a variation of the Jacobi method and provides a true relaxation method which 

usually improves the speed at which the method converges to a solution. This iterative approach 
converges to a solution by solving the system of equations one row at a time. Physically, this 
means that the evaluation’of the ith row of equations provides an estimate of the radiosity of sur- 
face i based on the current radiosities of all the other surfaces. Hence, the energy leaving surface i 
is determined by gathering in the energy from the rest of the environment. As such, the solution to 
the radiosity problem is calculated one surface at a time. Pseudo-code for the algorithm is given 
below. 

11 
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. .  

Loop on the number of enclosures 

Loop on the number of su@aces 

Set Bi = starting guess 

End loop 

While not converged 
. Loop on number of sur$aces, i 

n 

End while 
End loop 

2.4.2 Progressive Refinement Approach 
As an illumination model, the overwhelming cost of @e radiosity method is the computation 

of the view factors. As with thermal radiation codes, this cost is reduced by calculating the view 
factors once at the beginning of a calculation and storing them for repeated use in the iteration cy- 
cle. k~ such an environment, the storage cost for the view factors are O(N2). In 1988, Cohen et. al. 
[7] proposed a progressive refinement method for the radiosity illumination model which comput- 
ed the view factors on the fly, thus reducing the storage costs to O(N). 

For the progressive refinement approach, the problem is formulated so that the contribution 
. made by surface i to all the other surfaces is calculated. This represents an iterative column solu- 

tion to the set of radiosity equations. Physically, this means that the energy leaving surface i is 
shot out into the environment and its effect on all the other surfaces is calculated. Because the 
hemicube method and basic ray-tracing methods compute the view factors on a row-by-row basis, ' 

the reciprocity relationship (Equation 3) must be used to transform a row of view factors into a 
column of view factors. To converge gracefully and as quickly as possible, the surfaces are pre- 
sorted according to the energy that each surface has to shoot. Theoretically, the solution is not 
converged until all the emitted and reflected energy is dispersed throughout the environment. But, 
the final solution may be approached to within a certain error tolerance very quickly and with only 
a fraction of the view factors calculated as compared to the full matrix fonnulation. As an exam- 
ple, &hen et. al. r/l computed the global illumination of a steel mill scene composed of 30000 
surfaces subdivided into 50000 patches. The full matrix formulation would have required the 
computation of 1 .5~10~ view factors requiring 6 Gbytes of storage space. The progressive refine- 
ment method needed only one column of view factors requiring 0.12 Mbytes of storage space. 
Additionally, the solution converged to an acceptable value after the energy from 2000 surfaces 
had been shot or less than 5% of the total number of view factors had been calculated! - 

12 



While the progressive refinement approach to solving the radiosity problem has demonstrated 
tremendous speedups for image synthesis, its usefulness to heat transfer calculations may not 
have as big an impact. While the method converges rapidly to an acceptable resultfor image syn- 
thesis, are the error tolerances as tight as they would.probably be in an engineering calculation or 
is the converged solution merely a visually acceptable result? Another reason this approach works 
so well as an illumination model is the fact that in image synthesis there are usually light sources 
included which have a much larger amount of energy to shoot than the other surfaces. By shooting 
the energy from the light sources first, and Qen.%om the major surfaces that are impacted with 
that energy, a very reasonable image can be obtained in a shod period of time. But the presence of 
only a few highly emissive surfaces may not always be the case for heat transfer problems. One 
has only to look at a metal casting problem as an example where the vast majority of surfaces 
have emissive powers of the same order. And for transient problems, a breakpoint will exist where 
it is cheaper to calculate all the view factors first rather than repeatedly calculating a smaller num- 
ber of view factors for each time step. On the other hand, this approach may prove to be very use- 
ful when solving transient problems where the geometry changes with time and hence the view 
factors will also change and cannot be precomputed for the duration of the calculation. Pseudo- 
code for this method is given below. 

Loop on the number of enclosures 
Loop on the number of surfaces, i 

set Bi = Ei 

set ABi = Ei 

End loop 

While not converged 

Choose su@ace i, such that ABi*Ai is largest 

Loop on the number of surfaces, j 
Set b a d  = ABi*p,Fji 

Set ABj = ABpbad  

Set Bj = BJ+Arad 

End loop 
ABi=0 

End while 

End loop 

13 



2.5 Performance 

Case Number 

1 

2 

3 

4 

To demonstrate the various aspects of CHAPARRAL, a finite element model of a SRAM fire- 
set casting was used as an example model. This model [8] consists of 3297 elements with 4538 ra- 
diating surfaces in 2 enclosures (3495 and 1043 surfaces in the top and bottom enclosures ' 
respectively). This model is shown in Figure 7. The three main parts of CHAPARRAL will now 
be discussed in further detail. All timing values are for a Sun Sparcstation 10/30 workstation. 

For flexibility, multiple algorithms are available for view factor computations. The available 
algorithms include those available in FACET along with an implementation of the hemicube algo- 
r i b .  By default, FACET is used to calculate the view factors for 2D geometries and the hemic- 
ube method is used for 3D geometries. The advantage of using the hemicube method for 3D 
geometries is illustrated by Table 1. Comparison of the various data compression schemes is 
shown in Table 2. From Table 2 it can be seen .that for this particular test problem, there is no per- 
formance penalty for using WRLE compression. Comparison of the two methods for solving the 
radiosity matrix equation is shown in Table 3. 

Time (min) to Calculate 
View Factors for: 

Enclosure 1 Enclosure 2 

Method Used to 
Calculate View 

Factors 

Hemicube 19.4 1.8 

FACET 15.1 2.8 

FACET 204.1 51.4 

FACET 292.6 12.3 

Table 1: Comparison of FACET with the Hemicube Method 
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Figure 7 SRAM fireset casting. 
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Table 2: Comparison of Data Compression Schemes 

AIgorithm 

None 

WRLE 

BRLE 

LZW 

Time (sec) to compress all the 
view factor rows for: 

Time (sec) to * 

decompress all the view 
- factor rows for both 

Total Mb 
of Storage 

Enclosure 1 Enclosure 2 enclosures 

51.3 5 0.5 3 

13.4 5 0.7 3 

12.2 15 1.8 7 

7.8 41 5.6 25 

Table 3: Comparison of Solution Methods for Solving the Radiosity Matrix Equation 

Time (sec) to Solve the Radiosity 
Compression Matrix Equation for: 

Scheme Solution Method 

Gauss-S eidel 

NONE 107 5.3 

WRLE 100 5.7 

I BRLE I 150 6.0 

I 354 32.1 

Progressive 
Refinement 

I NONE I 69 I 4.8 

WRLE 70 4.9 

BRLE 80 10.2 

I LZW I 126 I 11.9 
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3. User’s Guide 

The CHAPARRAL library is written in both C and FORTRAN with both a C and FORTRAN 
interface. The routines reside in a non-sharable library called libvf.a. Its location will be depen-. 
dent upon your installation. On the Department 1500 / Building 880 LAN at Sandia National 
Labs, it resides in the directory /usr/local/lib on all the hardware platforms available on 
the IRN. For internal Sandia use, a standalone program called chaparral is available which ac- 
cepts’COYOTE [9] input files and just calculates the view factors. For users running on multi- 
processor, shared memory machines, limited support for multiprocessing is available. Currently, 
the hemicube method is the only portion of the code ha t  has been written to take advantage of a 
multi-processing architecture. For the Sun Microsystem’s Solaris 2.x operating system, a special 
version of the library, libvfmt.a exists which utilizes multithreading. The multithreading currently 
uses Solaris threads. However, wh& POSIX threads become readily available on other multi-pro- 
cessor architectures, the port should be very easy. When running on a Sun Sparccenter 2000 with 
N processors, the standalone chaparral application demonstrates an almost N times speedup. 

Informational output from the CHAPARRAL library, as defined by the debug output level, is 
written to standard output. 

3.1 Pseudo Code for Usage of CHAPARRAL 
Below is pseudo code outlining the usage of CHAPARRAL. The portions of the pseudo code 

that are handled by CHAP’ are indicated by boldface type. 

General code initialization 
Initialize internal view factor dutubase 
If view factor matrix has been previously computed 

Else 
Read view futors  into &base from pre-existing disk file 

Loop on the number of enclosures 

End loop 
Wrire out view factor dafabase to d i s k m  

Calculafe view factors for this enclosure 

Endif  

Loop on number of enclosures 
Calculafe surfacejluxes via Gauss-Siehl or 
CQlculafe surface fluxes via Progressive Refinement 
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End loop 

End of code 

3.2 C Language Interface 

1. Initialize internal view factor database 

init-vfdbase (nun-enclosures, max-surfaces, st’orage-format) 

int 
int 

int 

nm-enclosures total number oi enclosures 
max-surfaces maximum # of surfaces from all the en- 

closures. 
format compression format: O=no storage, 

l=no compression, 2=word run length 
encoding, 3=byte run length encoding, 
and 4=LZW encoding 

2. Calculate view factors 

viewfactor (enclosure, nsurfaces, x, y, z, 
connectivity, isaram, rsaram) . 

int ienclosure current enclosure number 
int nsurfaces number of surfaces in this enclosure 
float *x array of x-ccordinates for nodes 
float *y array of y-coordinates for nodes 
float * z  array of z-coordinates for nodes 
int *iconnectivity surface element connectivity array 
int *igaram integer parameter array: 

[O] dimensionality of problem: 1=2D 
axismetric (FACET), 2=2D pla- 
nar (FACET), 3=3D (hemicube), - 

[l] partial enclosure flag: O=full 
3=3D (FACET) 
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, 

enclosure, l=partial enclosure 

even integer 

y, and z arrays 

O=off, l=on 

[2] hemicube resolution, must be an 

[3] number .of nodes i .e. 'length of x, . 

141 least squares smoothing flag: 

[51 number of rotations 
[6] number of x-grid divisions 
[7] 'number of y-grid divisions 
[8] number of z-grid divisions 
[9] check for blocking: O=off, l=on 
[lo] maximum number of surface subdi- 

[113 debug output level 
1121 Number of' child processes (or 

threads) to use with the hemicube 
algorithm 

visions 

float *r-param real parameter array: 
[O] area of enclosure if this is a 

partial enclosure problem 

3. Read the view factors from a pre-existing disk file into the internal database 

read-vf dbase ( filename) 

char *filename file name 
int format storage format: O=ASCII, l=native ma- 

chine binary, 2=XDR, 3=NETCDF (for-. 
mats 2 and 3 are not yet supported). 

4. Write the view factor matrix to a disk file 

writ e v f  dbase ( filename , format ) 

char *filename file name 
int format storage fonnat: O=ASCII, l=native ma- 

chine binary, 2=XDR, 3=NETCDF (for- 
mats 2 and 3 are not yet supported). 
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5. Solve the radiosity matrix equation 

radsolve-gauss (enclosure, radq, tsurf, eps, sigma, - 
tol, niter, iter) 

int 
float 
float 
float 

. float 
float 
int 
int 

enclosure 
*radq . 

*tsurf 
*eps 
sigma 
to1 
niter 
iter 

current enclosure number 
array of surface fluxes 
array of surface temperatures 
array of surface emissivities 
Stefan-Boltzmann constant 
convergence tolerance 
maximum number of iterations 
if 0, no convergence reached, else the 
actual number of iterations 

radsolve_prog (enclosure, radq, tsurf, eps, sigma, 
tol, niter, iter) 

int 
float 
float 
float 
float 
float 
int 
int 

enclosure 
*radq 
*tsurf 
*eps 
sigma 
to1 
niter 
iter 

current enclosure number 
array of surface fluxes 
array of surface temperatures 
array of surface emissivities 
Stefan-Boltzmann constant 
convergence tolerance 
maximum number of iterations 
if 0, no convergence reached, else the 
actual number of iterations 

3.3 FORTRAN Language Interface 

1. Initialize internal view factor database 

call INIT-VFDB(num-enclosures, max-surfaces, iformat) 

integer 
integer 

integer 

nun-enclosures 
max-surfaces 

iformat 

total number of enclosures 
maximum number of surfaces 
from all the enclosures. 
compression format: O=no 
storage, l=no compression, 
2=word run length encoding, 
3=byte run length encoding, 
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and 4=LZW encoding 

' 2. Calculate view factors 

call WFACTOR(ienclosure, nsurfaces, x, y, z ,  
iconnectivity, i-param, r-param) 

integer . 
integer 

real 

real 

real 

integer 

integer 

ienclosure 
nsurf aces 

Y ( * I  

current enclosure number 
number of surfaces in this 
enclosure 
array of x-ccordinates for 
nodes 
array of y-coordinates for 
nodes 

z ( * I  array of z-coordinates for 

iconnectivity ( 5  * I  surface element connectivi- 

i-param ( * ) 

nodes 

ty array 
integer parameter array: 
(1) dimensionality of prob- 

lem: 1=2D axisymmetric 
(FACET) 2=2D planar 
(FACET), 3=3D (hemicube), 

(2) partial enclosure flag: 
O=full enclosure, l=par- 
tial enclosure 

(3) hemicube resolution, must 
be an even integer 

( 4 )  number of nodes i.e. 
length of x, y, and z ar- 
rays 

(5) least squares smoothing 
flag: O=off, l=on 

(6) number of rotations 
(7) number of x-grid divi- 

(8) number of y-grid divi- 

(9) number of z-grid divi- 

-3 =3D (FACET) 

sions 

sions 

sions 
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( 10 check for blocking : 

(11 1 maximum number of surf ace 

(l2)debug level for FACET !+ 

(13 Number of child processes 
(or threads) to use with 
the hemicube algorithm 

real parameter array: 
(1) area of enclosure if this 

is a partial enclosure 
problem 

O=off, l=on 

subdivisions 

, 

real 
. .  

rsaram ( * ) 

3. Read the view factors from a pre-existing disk file into the internal database 

call RI-VFDB (filename) 

character* ( * )  filename file name 

4. Write the view factor matrix to a disk file 

call WR-VFDB(filename, iformat) 

character* ( *  ) filename 
integer iformat 

file name 

l=native machine binary, 
2=XDR, 3=NETCDF (formats 2 
and 3 are not yet supported). 

storage format: O=ASCII , 

5. Solve the radiosity matrix equation 

call RADSOL-GAUSS(ienclosure, radq, tsurf, eps, 
sigma, tol, niter, iter) 

integer ienclosure current enclosure number 
real radq ( * 1 array of surface fluxes 
real tsurf ( * )  

real eps ( * I  
real sigma 
real to1 
int niter 
int iter 

array of surface temperatures 
array of surface emissivities 
Stefan-Boltzmann constant 
convergence tolerance 
maximum number of iterations 
if 0, no convergence reached, 
else the actual number of it- 
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erations 

call RADSOL-PROG(ienclosure, radq, tsurf, eps, 
sigma, tol, niter, iter) 

integer 
real 
real 
real 
real 
real 
int 
int 

ienclosure 
radq ( * ) 
tsurf ( * )  

eps ( * I  
sigma 
to1 
niter 
iter 

23 

current enclosure number 
array of surface fluxes . - -  
array of surface temperatures 
array of surface emissivities 
S t e f an-Bo1 t zmann cons t ant 
convergence tolerance 
maximum number of iterations - -  
if 0, no convergence reached, 
else the actual number of it-. 
erations 
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