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ABSTRACT

A generic vibratory-response modeling program has been developed as a tool for &signing high-precision optical positioning
systems. Based on muhibody dynamics theory, the system is modeled as rigid-body stmcmes connected by linear elastic
elernenq such as complex actuators and bearings. The full dynamic properties of each element are determined
experimentally or theomticdly, then integrated into the program as inertial and stifi?hessmatrices Utilizing this program, the
theoretical and experimental verification of the vibratory behavior of a double-multilayer monochromator support and
positioning system is presented Results of pammctric desigo studies that investigate the inlluence of support floor dynamics
and highlight important design issues are also presented Overal~ good matches between theory and experiment demonstmtc
the effectiveness of the program as a dynamic modeling tool.

Kcywordx Vibration isolatioq positioning stability, vibratory-response modeling

1. INTRODUCTION
‘J

At the Advanced Photon Source (Al%), a third-generation 7-GcV synchrotrons radiation l%cility at Argonne National
Laboratory, high-precision positioning of large-scale optical &vices is critical for achieving successfid experiments. Optical
inatrumz such as mirrom sliq and monochromators, principally rely am precision actuators for focusing positioxtin~
slitting andlor tuning X-ray beams to micron-size dimensions and to meV energies. The large mass of each systenL on the
order of 1000 kg and the need for positioning versatility and precision present a challenge to the vibration stability of the
supporting structures and to the design of the positioning actuators. Potential vibration excitation sources at the APS site
include ambient ground motion from seismic activity or machine or human activity in or near the experimental ikcility. Also,
certain applications may include an excitation source as part of the optical system itselfl such as cooling flow through optical
components that interact with the beam.

In an effort to predict the vibratory response of optical positioning systems during their desi~ a modeliug progmm has Iwen
developed by Basdogan’ that is based on the theory of mukibody dynamics. The model consists of lumped body elements
connected by linear spring elements with stifihess values experimentally or theoretically determined Concurrently, at the
APS, an initiative has been undertaken to develop support and actuator systems that are standard and modular in design.2
This initiative facilitates the design of new instrument support systems by utilizing a standard set of predesigned
components, such as actuators and couplings. Establishing a &tabase of the mechanical vibratory properties of the standard
components will provide valuable tiormation when desigoing new systems for vibration stability. In addition, the
mechanical vibratory information of common commercial devices is equally important. Currently, such &tabases do not
exist but are under development fm incorporation into an improved version of the vibratory modeling progmm of Basdogan.

The submined manuscript has been authored

by a contractor of {he U.S. Government
under contract No. w-31 -109 -EN G-38.
Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or
reDroduce the published form of this

contribution, or allow others to do so, for US.
Government purposes.



DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.



t

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



.

‘+L?.17fAWRcWSTVSh.

BUM

Figure 1. Double-multilayer monochromator (DMM) system: 1) crystal-housing vacuum chambers; 2) XZ stage; 3) 3-
point kinematic mount stages; 4) self-aligning couplin~ 5) middle fkame; 6) truss fkame

This paper presents the application of this modeling program to a double-muklayer monoebromator (DMM) system,3 shown
in Figure 1. In synchrotrons radiation facilities, such as the AI%, monoehromators are typically the @t optical element on a
beamline that accepts the full central-cone power of the radiation source.4 Their primary purpose is the extraction of a
specitic band of energy from the broad radiation spectrum for various researeh programs including crystallography,
spectroscopy, adsorption analysis, inelastic X-ray scattering, etc. Dif&wtion * a pair of cr@al$ the desired energy ean be
seleeted by adjusting their incident arigle to the beam and by adjusting theii relative spacing. The typical angular sensitivity
nee&d to accomplish energy selection is on the order of microradians snd must be performed by mechanical actuators. The
design complexity of monochromators is aflketed by parameters such as &sired energy bandwi~ crystal material, total
power loading, power density, and X-ray beam size, and thus monochromators are &signed for specific purposes. Figure 1
shows the current DMM system under study along with the optical schematic of the diffiwting mukilayer crystals.

2. MODELING PROGRAM

An earlier version of the vibration-modeling program presented here was developed and sueeessftdly applied to a high-
precision optical table and mirror support system by Basdogan.’ These two systems represent typical preeision-motion
systems having high stability requirements. Here, an improved version of the program is applied to the DMM system
introduced above. Currently, the program determines the solution of a fi-ee,undampe~ linear, muhibody system connected
with compliant elements, such as actuators, sprin~ and self-aligning couplings. The modal parameters that are determined
from the solution are the natural frequencies and the corresponding mode shapes. The program produces a three-dimensional
(3D) representation of the structure undergoing modal deformation. By applying the theory of multilmdy dynamicsj the
program’s generic format permits the analysis of a system with any number of rigid bodies interconnected with compliant
elements.

Figure 2 describes the steps involved in producing a theoretical model using the program. The first step is to generate a
geometric model of the system. For each rigid body, a coordinate system is chosen that is consistent throughout the analysis.
The theoretical information must then be determined regarding the mass, the mass-eentroi~ and the mass moments of inertia
of each rigid body. Depending on the system’s complexity, the geometric model information can be manually calculated.
However, in complex systems without simple geometries, the use of 3D solid modeling sofisvare facilitates this step. In most
case% the systems to be analyzed are designed using this type of sollware, so that the geometric information is automatically
available.
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Figure 2. Program modeling process

Each rigid body’s ~eometric prowrties are then identified in the momam in matrix form. ‘1’hemafter. the mechanical
properties of ~ c~pliant elk~s, such as actuators, are &term&d- and identified in the program ~ 6 X 6 stiflhesa
matrices. Currently, the program does not calculate the damped response, and thus the damping matrices are not required
The stiilhesa properties of the compliant elemena in some case% can be analytically determined Such cases incIude
actuators with a simple compliant eleme@ such as a beam or ahafl that has deterministic compliant directions. In other
caae% the mechanical properties must be measured experimentally because of assembly complexity, fhstener joints, frictional
force% and inconsistency of any pre-loading forces.

The coordinate data identi~ the spring connection points between rigid bodies to the modeling program. In this step, vectors,
defined in a rigid body’s coordinate syst~ are attached to the body’s center of mass and end at the spring connection point
on the body. Once the mass propertied spring connection vecto~ and stifihesa matrices are defined the relative
displacement of each spring is fbnm.dated This step identifies the coupling between rigid bodies and provides information to
the global stifiesa matrix.

Running the processing kernel calculates the eigenvalues and eigenvectors @m which the system natural frequencies and
mode shape parameters are known. A graphical representation of mode shapes is then plotted and displayed by the program.

3. THEORETICAL MODEL

3.1 simdifications and Assum~tions

In modeIing red systems, the structure must tirst be analyzed to determine the sauce of major compliance. The compliance
in the DMM structure primarily stems fkom the actuator and bearing elements that provide the positioning motions of the
multilayer crystals. These include the 3-point kinematic mount stages, the self-aligning couplings, and the actuatodbearing
elements comprising the XZ stage assembly. The other support elements, the base truss tkune, the middle support tie, and
the XZ stage &ame, do not contribute to significant compliance in the flequency range of interest (<50 Hz) and are treated as
rigid bodies. This assumption was verified experimentally. The rigid body assumption of the frames can also be determined
beforehand utilizing finite element software.
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Figure 3. Kinematic deaeription of a) a single rigid body, and b) a multibody system connected by a spring element.

Another consideration is the contribution of the actuators and bearing element masses to the overall reaponw of the atmctum.
In the analysis of the DMM support sym the masses of the vertical stages the horimntd _ and the self-aligning
couplings that make up the 3-point pseudo-kinematic mount support are eunsidered negligible. In additi~ each mount
comprisii the 3-point kinematic support mount is treated as a lumped spring element Thus for esoh moun~ the sdf%eaa
definitions of the horizontal stage, the vertieal sta~ and the selfhl.igning coupling are combined using the traditional linear
relationships for determiningg the equivalent spring rate of springs attached in series andh in parallel.

Linear system theory is also assumed in the theoretical modeling of the DMM stmctum. This is valid because only very low
amplitude vibratory motion is expeo@ msuking in negligible higher order displacement and rotation terms in the equations
of motion. In Afitim the spring elements m the stmeture are assumed linear fbr very small deflections about an opemting
point. Some of the elements that make up the kinematic mounts do not have linear _ behavior over the range of
applied static loads. Examples of these are the cylindrical rolling bearings in the vertical stagek and the ball bearing raceway
interfaces in the self-aligning coupling assembly. For small dynamic pedmrbations about a static preload conditicaL the use of
linear system theory is reasonable.5

3.2 Kinematics of Multibodv DvDamies

The kinematic description of an unconstrained rigid body in space is given in terms of independent translation and rotation
coordinates. Given a ref~ce point on a rigid body with its local coordinate system fixed to this reference, the coxdiguration
of the body is &fined by the tmnslation of the ref-e point and by the rotation of the local coordinate system with respeet
to a global coordinate system. The rotation of the body in the global coordinate system is described using a 3 X 3
transformation matrix that depends on three orientation coordinates.

Figure 3a illustrates the kinematic description of a single, unconstrained rigid body in space. The global and local-body
coordinate systems are given by XYZ and XiY~fi respectively. The position vector of an arbitrary point P on this rigid body is
given by the vector r!

(1)

where Rf is the global position veetor of the refaence point Oi, Ai is the transformation matrix that defines the orientation of

the body in the global coordinate systeq and iii is a constant vector defining the location of the arbitrary point with respect
to the body reference poin~

3.3 Equations of Motion

Figure 3b illustrates a multibody system connected by a spring element. The number of &grees of freedom in a multibody
system is equivalent to the number of indepen&nt coordinates required to &scribe the system. These coordinates ~



referred to as genemlized coordinates, and the numberof independent genemlized coordinates in a system of ~
unconstrained rigid bodies is equal to 6 X ~. A vector q of the independent geneml~ coordinates is then defined as

IiIT IT
= e rRiT OiT...R%T LY’b=. (2)

The dynamic equations of motion of a system of rigid bodies connected by spring elements and having the origin of the body
Cooke syk rigidly attached to the center of bs are written in ma&x~pa&tion f- ase

i=12...JZ&

where R’ and 61 am the independent genemlized coordinate vectors associated with the orthogonal translations,

(3)

R:,R;, R;,
and rotational tramdations #, 6’; q$, mpectively, with each body denoted by i. ‘l%e sub-matri&s m’m aud m~w are the mass

(m~ces associated with the tiation and orientation c~ respectively. Q~L is the centri@aI fome vector,

neglected m this work because very low angular velocities are expected And (Q$)~ and (Q~~ me the vectors of

genemlized fbmes amociat~ respectively, with genemlized translation and orientation coordiMtes. They are defined as

[ 1(Q:)e =G’= ~M; +f(uj xF;) ,
j=l k=l

(4)

(5)

where F and M are the fomes and moments applied to the rigid body at point i on bodyj. These fmcea and moments also
include the spring forces generated by the compliant elemenq such as the positioning actuators and bearings. The
generalized fome and moment components of equations 4 aud 5 can be developd fm a set of rigid bodies that am connected
by spring elements as shown in Figure 3b. Here? two rigid bodies am show denoted by i andj, and are connected by a
spring with spring constant k at points P’ and P’, respectively. The deformed and undeformed spring length is 1 and 1%
respectively. Thw the spring force F’~that is acting between the two bodies acting along the line connecting points ~ and P
is titten SSe

Fk= k(l - 1($, (6)

where

(7)

(8)
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Mgure 4. Mnltilayer monoehromator theoretical model

The final and initial position veetors of the point ~ with respeet to point ~ am r: and r~O and are given by

The genemlized force vectom in the right-hand side of Equation 3, with the exception of the eentrK@ fwce veetor, are
functions of the linear spring constants that represent the actuators in the stmctum. For the undamped case, the equations of
motion can be combined and represented in the more traditional fbrm

Mq+Kq=O. (lo)

Equation 10 repnxents the governing equation of motion for the free-undamped case of multibody vibrations. M is the
global mass ma- K is the global stiffhess mat@ and q is the generalize coordinate veetor defined by Equation 2.
Equation 10 cm be evaluated to determine the natural tiquencies and mode shapes of the monoehromator system by
applying the standard eigenvalue approach.’ Figure 4 shows the theoretical depietion of the monoehrornator structure under
investigation. This figure shows that the representation of the camplex actuators and bezuing components can be simplified to
3D linear spring elements connecting the rigid bodies. Earlier work by Basdogan~ implemented the use of this simplification
and was sueeesstld in modeling comparable high-precision optical systems. This WOAalso neglected the inertial properties
of the components that contribute to significant compliance in the system. As show the DMM theoretical model comprises
four rigid bodies intercomected with a number of spring elements that represent stage% bearing gui&s, or worm-gear
actuators. Note that the vacuum chambers are combined with their respective support body to form a single, larger body in
the model. This assumption is valid because the interface between a support element and the vacuum chamber has negligible
compliance. Also, for experimental purpose% the DMM was supported on pneumatic isolators to demwple the DMM
structure t%omfloor dynamics. These isolators were inclu&d as part of the theoretical model. The spring elements are 3 x 3
stifihess matrices in this model, neglecting the generalized fomes that are associated with the rotational translations. This
assumption is appropriate because, afier evaluating each actuator, the actuators do not ei%ctively transmit concentrated
moment forces due to their incorporation of self-aligning rolling bearings. 5 However, the generic design of the modeling
program still pexmits a Ml 6 x 6 stiffness definition for any actuator design.
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4. EXPERIMENTAL MODEL

4.1 Exr.wximental Modal Analvsis

TypicaIly, experimental modal analysis is perfbrmed on a structure with the goal of ver@ng and comparing analytical
results or to determine the modal parameters of a stmcture that does not lend itself to a convenient analytical approach.*
Several methodologies exist for implementing modal analysig and choosing the correct one depends on the objective of the
study? A common objective is to study the stmcture undergoing vibration m its normal opemting environment. A second
objective, which is the one adopted ~ is to study the response of the stmctum undergoing known excitations. The
methodology in acquiring the modai pammetera uses single input mndom force excitation h an electm+mmic shaker

easuring the maponse from piezo-ekctric accelerometers. From the input and output digitized aud scaled six thewhile m
frequency response function (FRF) is calculated for each measurement point on the stmcture. Utilizing curve-fitting
techniques to generate an analytical fimction from the FRF da@ the resonant fkquenci~ damping and residues can be
estimated and used to plot the resulting modal deflection points on the atmctum. For multi-degrees of f+eedom (DOF), the
frequency mponae transfer iimction is defined as

where i is the measured response DOF, k measured rnputDOF, r the modal vector number, zfw the residue, p, is a system
pole, and n is the number of modal tlequencies.

4.2 kJSUIODtiOOSill Emerirnental Modal Analvsis

Four tic assumptions are made on a atructm undergoing experimental modal analysis fix the frequency response tmnafer
flmtiontobevalid. F~theatructm is assumed to behave linearly, indicating that the reapmse of the WrWturetoauy
combination of forces is the sum of the individual maponses of each f- acting alone. ~ ,Wtioq the response level is
linearly proportional to the input level. The second assumption requirea that the atmctum be time invarian~ i.e., the
parameters that are to be detemined by modal anaIyais are constants whose values do not depend on time. Thi@ reci@xWy
must be confbrmed to by the atmctme. Given aahucturewith an excitation at degree of=m i thatproducesa mponseat
&greeof hedorn k, by reciprocity, the mponse of the stmctme at degree of ~dom i is the same if the excitation wem
applied at degree of freedom k. For the FRF this assumption is written as

Finally, observabili~ is required of the stmctum, implying that the complete measurem ent set must contain enough
information to generate a behavioral model of the system. A non-observable system may have components that me not
rigidly attach~ xesulting in missing data or &ta that descnibe an incomplete model of the system. Mom generally, a non-
observable system has degrees of freedom that are not measured.

4.3 Exmxirnent Model

Figure 5 highlights the measurement locations taken on the structure. Although the lower and middle ties are considered
rigid in the modeling program, additioml points we~ included along the tlame beams to veri~ this assumption. The DMM
assembly is supported on pneumatic bladders such that the floor stifiess and damping are uncoupled from the DMM
structure. The Wructmd frequency response up to 100 Hz is studied using random fixed excitation fimm an electrodynamics
shaker while measurin g the response from piezo-crystal accelerometers. All data were taken using a I&channel DSP
analyzer and were processed on commercial modal analysis software.



I
I

z
Y

‘w
Fkure5. DMMmeasurementlocation& Random exeitationis applied atpoint linthe~Y, Zdireetion~

5. RESULTS

5.1 Free-Undamned Resvonse

A graphical representation of the DMM in its undef~ed state is shown in Figure 6a. Each of the four planar smfkees
representa a sur%ce of each DMM body. Because the entire DMM assembly is supported on “SOWpneumatic bladders, it is
possible to find all six rigid-body modes, both experimentally and theoretically. Appl@g the stii3hess matrices for the
bl- the six rigid-body mode shapes were determined analytically, four of which are d@icted in Figure 6C with their
comesponding experimental result in Figure 6b. As aho~ there is good agreement between the theoretically sad
experimentally detmmined rigid-body modes, demonstmtm“ g the effective use of pneumatic bladders for decoupling the floor
dynamics.

Figure 7 compares the experimental and theoretical model results for selected natural frequencies below 50 Hz The lowest
non-rigid body mode is observed at 29.44 Hz. At this tkequency, the XZ stage exhibits significant linear motion in the X
direction and significant rotational motion about the Y-axis, which is verified experimentally at 23.33 w indicating that the
four-shaft guide bearings and the horizontal worm gear actuator have the highest compliance relative to other actuator
elements. The top plate of the XZ stage, corresponding to the base of the second vacuum chamber, contributes primarily to
the resonances at 37.58 Hz aud 42.50 ~ in agreement with experimental results. The last two mode shapes at 33.49 Hz and
52.88 Hz are associated with deflection of the kinematic mount positioning stage% which contributes to a Ml upper rigid
body rotation about the Z axis and pure out-of-phase translation along the X axis. Note that the XZ stage exhibits significant
translational and rotational motion even at 52.88 Hz, By observing the experimental results, it is clear that the system
resonance’s result flom the actuators’ compliance. Therefore, the rigid body modeling assumption for the structural elements
is a correct one because no significant structural deformation is observed

While the mode shapes agree very well with experimental results, the calculated natural frequencies only agee to within a
few Hz. This slight disagreement could be due to various reasons. First, the actuator stiftless properties applied in the model
may not exactly match the properties of the real actuator. This problem can be solved by statistically measuring the
properties of several representative actuators and obtaining a uniform set of properties. Seco@ the load distribution (static
load) on the actuators was not precisely used in determining their loaddependent stifi%esses; i.e., all the kinematic mount
actuators were modeled with the same vertical stiffness. The stifiess of the actuators has some dependence on the applied
load due to their design complexi~, therefore, it is possible that each of the three kinematic mounts will have its own
stifl%ss property. TWA each body mass property is not exactly determined At the time of analysis, some components that
are mounted inside the DMM vacuum chambers were not available for the solid modeling sothvare; therefore, the lumped
mass properties may not exactly match those of the real system.
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5.2 Case Study

The DMM was modeled as a flee-floating strudum in space with a relatively “soft” interacti~ provided by the pneumatic
isolators, bebween the laboratory floor and the base tie. Although MS is satisfactory from an analytical standpoin~ the
design engineer is also interested in the DMM’s vibratory behavior in the actual opemting environm ent. To this en~ the
modeling program was modified to simulate actual operating conditi~ that is, with the DMM bolted to the experiment
floor on the beamli.ne. This modeling was accomplished by changing the spring stiflhess definition of the pneumatic
isolators to a value several orders of magnitude greater, essentially making them noncompliant

The lowest five natural frequencies of the bolted-down simulation results are shown in Figure 8. The tirst four mode shape
deflections indicate that the primary source of compliance stems tlom the kinematic mount actuators between the base flame
and the upper DMM assembly. These mode shapes occur at much lower Iiequencies compared to the “floating” ease
scenarios. Upper rigid-body translation and rotations occur at the lowest four modes, while the lifting portion of the X2 stage
exhibits significant deflection at 33.93 Hz.

The drop in mtural frequency as indicated by the low values ( 14.14 ~ 18.05 Hz, 22.14 ~ and 28.17 Hz) that results from
the bolted-down simulation is an inherent effkct of multiple-body vibrating systems. To gain fimdarnentzd insight, the base
i%wneand upper assembly of the DMM system can be modeled as a simple two-body, spring-mass system, as shown in
Figure 9. Therefore, the natural frequency of the deflection mode shape ean be determined for the floating and for the bolted-
down configuration by adjusting the value of the spring stiflhess k,, representing the pneumatic bladders. In Figure !@ the
masses of the base &me and the upper DMM assembly are represented by ml and mz, respectively. The spring stiffness of
the kinematic mount actuators is given by k2. A parametric study of this system revealed that the deflection mode tkquency
response of a tlee undamped system is always higher than the flequency response of a grounded system. (The 2-body system
of Figure 9 is groun&d by increasing the stiffness value of k,.) The plot in Figure 9b shows the results of this parametric
study and indicates that, as the m2/m, ratio incxeases from zero, the ratio of the natural frequency response of the !Yee
configuration to the mtural fi-equency response of the bolted-down configuration is always greater than 1
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Figure 9. a) Sipliiied 2-body spring-mass system. b) Parametric study results.

.The principal concern in this case study result is the signifieaut natuml frequency reduction of the primary &flection mode
shapes that stem from the 3-point kinematic mount actuators. The goal of a positioning system design at the APS is to
achieve high fkquency response above the lowest chamctmW“ “cnatural frequency, between 6.7 Hz and 7.6 @10 at the APS
site, Although the DMM bolted-down condition results in frequencies that are close to the experimental floor dynamic% the
DMM system performance is not expected to be adversely ail%cte~ beeause the amplitude levels of the experimental floor
vibrations are on the order of 10’s of nanometers in most places and the floor motion is relatively uniform throughout the
APS. However, disturbances fium local water pumping systems or rotating motors nearby ~y excite the low tlequency
modes on the D~ afikedng the intensity and position of the monochromatic X-rsy beam that the DMM produces.

6. CONCLUSIONS

This study inve+gated the application and experimental verification of a generic vibratory modeling program to detwmine
the vibratory response of a high-precisi~ double-muhilayer monochromator. Based on the theory of multibody dynamics,
the modeling program was designed with a generic algorithm. As such systems with different rigid-body con@rations and
numbers, and diffkrent actuator and bearing designs, can be modeled by updating the program mass property matrices and the
coordinate vectors to the actuator and bearing connection points. The program then calculates the modal paramete~ that i%
the free and undamped natural frequencies and mode shape% of the DMM and presents the results in a 3D form. Although all
the natuml frequencies are calculated in the DMM structure, the number corresponding to the degrees of ileedom in the
formulatio~ this study focused only on frequencies less than 50 Hz. In this study, the DMM system is assumed to follow
linear system theory. This assumption is reasonable given the low vibratory amplitude motions that are expected.

This program allows the design engineer to accurately assess the rigidity of a structure, based on the mtural frequencies and
mode shape% during the design process, where undesirable vibratory behavior can be corrected before committing to
manufacturin~ Presently at the APS, these precision optical support systems are designed with the empirical knowledge and
expedience of the design engineer. Thw this work can result in more efficient and economical tiiture designs. In addition,
this program can also be implemented to identi~ the actuator specitication$ that i%by using an itemtive process, the actuator
stitlhess properties can be identified to gain the most optimum system performance. h is also possible to build a property
database of common actuators, which have been experimentally verifi~ as a tool for analyzing other complex optical
systems during the design phase. This work is in progress. Additionally, the program will be upgraded to include the
actuator damping properties, as well as response to input excitation, with the end goal of determining vibratory amplitudes.
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