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Abstract

This paper describes a system which uses a commercial
spreadsheet program and commercial hardware on an IBM
PC to develop and test a track finding system for the D Zero
Level 1 scintillating Fiber Trigger.  The trigger system
resides in a VME crate.  This system allows the user to
generate test input, write the pattern to the hardware,
simulate the results in software, read the hardware result,
compare the results and inform the user of any differences.

I. INTRODUCTION

The D Zero (D0) Detector is located at Fermilab near
Batavia, Illinois.  It is undergoing a major upgrade for
higher luminosity running with the new Main Injector.
Most new systems require software for engineering
development, board testing and repair, and system
debugging.  An important requirement is that the
engineering tools are flexible and easy to modify so that
prototypes can quickly be converted to finished designs.
We have developed a test system which uses an Excel2

spreadsheet to do all the testing for a level one trigger
system for D0.

II. OVERVIEW

Most of the digital electronics in D0 reside in VME
crates.  A VME crate bus may be connected to a Personal
Computer with a commercial interface board set.3  This
allows the PC to be used to test the VME hardware.

Microsoft’s, MS, Excel V5.x includes Visual Basic for
Applications, VB.  It does not support “peek” and “poke”
operations to physical PC memory directly.  Unfortunately
                                                  
1 Work supported by the U.S. Department of Energy under
contract No. DE-AC02-76CHO3000
2 Excel is a commercial spreadsheet Manufactured by Microsoft
Corp.  We are using it with Microsoft Windows on a PC.
3 We are using a commercial board set made by Bit3 Computer
Corporation Models 403 or 406.  The model 403 only supports 24
bit addressing while the model 406 supports 32 bit addressing.
The PC boards of both model are for Industry Standard
Architecture Bus or ISA, bus.  They do not support Direct
Memory Access, DMA on the ISA bus.

the PC Bit3 board requires this feature.  The 16 low address
bits are output directly to a 64 Kbytes address space and the
higher address byte(s) are output through Input Output PC
“Ports”.

One way to access physical memory under the MS
Windows  operating system is to use their DOS Protected
Mode Interface or DPMI[1].  This is a low level interface
requiring the use of assembler or the ability to use
Assembler code Inline.  Borland “C” is what we used to
write a “Library” of Bit3 interface routines made into a
Window’s Dynamic Link Library, DLL.  Any of the
functions in this Library may then be called from VB, and
even directly from an Excel cell once the function is
“registered”. Registering tells Excel and VB where to find
the function and to load it into memory.  Although Excel
Version 4.x macro language also allows “registering”,
Version 5.x’s VB provides a more useful and relatively
robust wrapper as well as a real programming language.

Once the DLL is created and the Functions are
“Registered”, a worksheet may be constructed so that user
entered data is written directly to the hardware under test.4

Excel provides a user interface for input.  Excel, VB and the
DLL transfer the information to the Device Under Test,
DUT, read the results from the VME crate and present the
results on the display.  In parallel VB and Excel simulate
the DUT and display any differences to the user.  See Fig. 1.

     SIMULATION
      Hardware Test

 User
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Fig. 1.  Functional diagram of Test System.  Simulation
and hardware test occur in the Excel Spreadsheet, the
BIT3.DLL drives the Bit3 hardware.  The VME crate
contains the system under test.

                                                  
4 Within four milliseconds of data entry depending on processor.
Further timings available in Tables 1 through 3 of this paper.
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III.  A BOUT THE D0 TEST

Figure 2 is a worksheet representing one wedge of the
proposed Detector Upgrade.  The small squares with
numbers on them are VB “Textboxes” which represent ~480
round scintillating fibers arranged in sixteen layers logically
grouped into four Superlayers.  Superlayer “A” has four
layers with 16 fibers per layer; “B” has four layers of 24
fibers per layer;  “C” has four layers of 32 fibers per layer;
and “D” has four layers of 40 fibers per layer.

The present prototype D0 Level 1.0 Trigger Electronics
consists of a VME board with several Altera “Flex” Field
Programmable Gate Arrays, FPGA’s.  This hardware is
described in greater detail in another paper[2].
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Fig. 2.  An Excel Worksheet set up to represent the
fibers of one wedge of a Detector upgrade study.

A particle hitting a fiber is represented as a yellow
“Textbox” and represented as a “1” in the underlying cell
and the VME hardware.  Similarly a blue “Textbox” means
a fiber was not “hit” and is represented everywhere by a
“0”.  Adjacent fiber layers overlap.  Each overlapping pair
is called a “doublet”. The logical “or” operation is carried
out on the individual fibers of a doublet pair and is stored in
the first row of cells immediately below the dark
“Textboxes”  The next lower row of cells show the “or”ed
results of adjacent doublets in the same layer.  The third
lower row displays a logical “and” with the other doublet in
the Superlayer. Eight “centroids” can be formed in this
Superlayer.  The number of doublets “or”ed together
increases from two in the “A” Superlayer to five in the “D”
Superlayer.  This provides data reduction and holds the
number of “centroids” constant:  eight per Superlayer5.

The binary values representing each fiber are packed into
words and mapped into VME address space which the
FPGA’s use in place of real detector hits.  Results of the
hardware computation are read back from VME and
                                                  
5 This design is a frozen “proof of principle” design.  Work is
under way to optimize this idea.  See reference [3].

compared to the Excel simulation results.  Differences are
shown as a “1” in the spreadsheet.

User input is by  1) “clicking” on a single “Textbox” to
toggle a single fiber, 2) have the spreadsheet calculate a
track and turn on the fibers that the track goes through, or 3)
input Particle “Events” from an externally generated file.
Other options exist to set all of the fibers to “1” or all to “0”
and for explicit control of the Bit3 card and the VME crate.

IV.  EXCEL AS A DEVELOPMENT ENVIRONMENT

Much has been written about the speed of Excel and VB
as a Rapid Windows application Development
environment6.  It is not an exaggeration to realize a
“hundred times improvement in productivity.”[5]

Excluding doing the ground work of writing the DLL in
“C” and learning how to use it, a spreadsheet with “Buttons”
was first done in about one week.  Users really wanted color
and “Buttons” did not have a color attribute so a new sheet
was made in a second week using another object which does
allow color, “Textboxes”.  Automatic track generation took
a third week.  Reading in a file and adding two side wedges
took a final week.  Saying that each stage took a week is
slightly understating just how rapid development actually is
compared to traditional methods.  One week includes, the
conception of what is desired, algorithm understanding and
design, implementation (in a day or two), testing,
debugging, and slight refinements added or changes made
and some tuning.

The name “Visual Basic” is misleading in that all that is
left of the traditional line numberd Basic is some of the
“for”, “next” syntax.  Line numbers are gone as are the
redundant “let” statement.  Enhancements include both
Subroutine and Function calls.  It has scope rules similar to
Pascal and “C” as well as support for dynamic variables.
The programmer has the option of forcing variables to be
declared or not to be declared with the “option explicit”
directive similar to some FORTRAN implementations.
Block structured syntax is used including Pascal “with”
statement syntax and “case” statements.

Having VB and Excel so tightly coupled is an
empowering technology.  It gives an implementor a choice
of doing things in either the traditional linear programming
method in a procedural language VB, “C” via a DLL and
FORTRAN via DLL with restrictions, or using Excel to
hold data in cells that would normally be held in internal
arrays.  By using a combination of both techniques one can
literally build applications in a day.  The VB syntax

Cells(iRow,iCol).Value = myVariable

                                                  
6 pg. 16 of Reference [4] came up with an acronym, “MARVEL”
for Modular programming, Automated interfaces, Rethinking,
Visual development environments, Extensible programming
languages, Linkage among functions and between applications.



puts whatever is in myVarible in the cell specified by
“iRow” and “iCol” of the “Active” worksheet.  (The
converse is also true.)  Thus data may be collected and
inserted directly into a “Cell” with a procedural language.
Once the data is in the Cells the user may view and further
manipulate it with any Excel or user written function.

Alternatively one may read and write directly from and
to a cell by placing the VME peek or poke function into the
Cell on the sheet.  However in this method one relinquishes
some control as to when the data is actually obtained.  After
the first or second time the sheet is re-calculated Excel stops
accessing the VME crate because it does not know that it is
External!  An individual cell may be explicitly updated by
clicking on the edit box and then clicking on the little check
box of the active cell which is like re-entering the formula
and pressing the “Enter” key.  This is tedious.

The work around to force the VME bus access to take
place is to change either the cell containing the address
and/or value of the read or write function(s).  Thus if all of
the cells containing VME addresses are referenced to a cell
containing a “base address”, the VME I/O will take place
when the base address is changed.  A macro may read and
temporarily store the base address, turn off automatic re-
calculation, write a dummy VME address in the cell that all
of the VME functions are referenced to; restore the original
address, and finally turns on automatic re-calculation.
Excel’s recalculation algorithm recalculates all of the
dependent cells so that the desired actual external VME bus
cycle(s) take place.

VB syntax is object.method format which also may be
chained:  object1.object2...objectn.method.  An object may
be a single object or a collection of like objects indicated by
plural tense: “s”.  Thus objects refers to a collection and
object refers to only one object while
objects(“an_object_name”) or objects(indexNumber) refers
to one member of a collection. The programming paradigm
for the most part becomes “find the right object and method
for what is desired” and then use it. There are a lot of
objects and methods to try to sort through but a very useful
“record macro” feature is provided that allows one to record
a segment and then edit it.

V. VB NOT “TRULY” OOP AND OTHER

SHORTCOMINGS

In Booch’s terminology[6], VB is “Object-Based” and
not truly OOP, or Object Oriented Programming because
VB objects lack “inheritance”. VB does not interactively
allow objects to “inherit attributes from” other objects
(“supertypes [superclasses]”).  For example if an VB object
(“type”, ”class”), does not have a needed feature (attribute)
then a different object must be used.  No provision is
provided in VB to extend the object by giving it a new
attribute or method.  Thus when the “button” object did not
have the “color” attribute a new “ButtonWithColors” object
can not be made by starting with the previous object and

adding new attributes to it.  A whole new object had to be
found: in this case a “Textbox” was used.  Fortunately there
are a rather large number of pre-defined and useful objects
included.  Also other libraries of VB “Custom Controls”,
“Controls” or “VBX” file(s) which may be purchased from
other vendors.

VI.  PERFORMANCE CONSIDERATIONS

All timing was obtained visually by observing a Light
Emitting Diode, LED, on the VME hardware.  The LED
showed when the module was being accessed by the PC.
The PC used was a Gateway 2000 Model “4DX2-66E” with
eight Mbytes Random Access Memory.7  All timing was
with a manual electronic stop watch displaying seconds in
hundredths.

The following VB fragment or its equivalent was used as
the basic timing algorithm:

For longintCount= 1 To longintMax
    integerPlaceVal = VB_Readi(longintAdd)
Next longintCount

Three runs were averaged after the extremes were
discarded.  Values used for longintMax were varied from
3000 Excel cells to 100,000 for the VB and “C” loops to
keep the loops long enough to minimize human timing error
(5 to 13 seconds).

Initially all “C” code was functionally equivalent to
Reference 1.  This produced (unpublished) Times uniformly
slower by 22 to 25 µs than Tables 1 and 2.  Performance
gains were made by not calling two Windows Functions”,
“AllocSelector” and “FreeSelector”, each time a VME read
or write operation was performed.  Instead the address
“Selector” was obtained at DLL and program initialization
and released at termination.  This is contrary to
recommended Windows programming practice as there are
a relatively small number of Windows “Selectors”.
However tying up only 1 Selector provides a rather large
performance gain and the DLL seems to work as advertised.

All Table timings are in µs.  Table 1 is with the Bit3
Base Address in Protected Address Space. Table 2 is with
the Bit3 set in Real Address Space.  The difference between
Table 1 and Table 2 is that ~ 25 µs worth of DPMI code is
not executed each VME read or write operation.

Using DPMI Bit3 > 1Meg=Protected Address
call from read write

1 VB called in an Excel Cell 3616 3996
2 indirect VB call 64 91
3 direct VB call 46 46
4 all "C" in one "C" module 35 36

Table 1  Bit3 Base Address at $800000.  Timings in µs.
                                                  
7 This is an Intel 486 externally clocked at 33 MHz with the CPU
doubled to 66 MHz. on internal 8K byte cache hits   The “E”
indicates this is an EISA bus.  Recall that the Bit3 Models 403 and
406 are ISA cards.



Using DPMI Bit3 < 1Meg=Real Address 
call from read write

1 VB called in an Excel Cell 3570 3670
2 indirect VB call 34 52
3 direct VB call 19 19
4 all "C" in one "C" module 14 13

Table 2 Bit3 Base Address at $D0000.  Timings in µs
.

Table 3 Timings are included as baselines.  Item 4 of this
table is from the Bit3 manual. Table 3, Item 4 is to dual
ported memory without going through VME bus arbitration.
All other times were obtained using the Bit3 as VME bus
arbitrator.8

Timing 1 of Table 3 is included as a reference point.  It
cannot be directly compared to Table 2, Line 4 because it is
implemented in Turbo Pascal rather than “C”.  It might be
used to estimate similar DOS based “C” code without some
Windows overhead.  Both Timings contain similar error
handling logic and both Compilers are by the same vendor
with optimization off.

Turbo Pascal DOS Code
MS Windows NOT Running
Bit Base Address < 1 Meg=Real Address

read write
1 Similar to "C" code above 9 6
2 486 no error checking 3 2
3 Pentium no error checking 2 2
4 Manual without arbitration 1.5-2.0 0.65

Table 3 Bit3 Base Address at $D0000.  Timings in µs.

Bit3 writes are two stage pipelined and are intrinsically
faster than the one stage read as Line 4 of Table 3 shows.
This advantage falls out and even degrades differently on
different call stacks.  Subsequent timings reflect that Read
functions have only one long word argument: the VME
address.  Write functions have an additional argument:  the
value to be written to VME.  Both functions return an
integer used as error reporting.

The first two tables indicate that Excel’s overhead for
cell recalculation is on the order of approximately 3.5 ms.
One sheet has an estimated 2,520 cells with data and/or
functions in them.  Recalculation time varied between 8 and
9 seconds.  Doing the division gives a cell time of 3.17 to
3.57 ms per cell for the 486 described above.  The large
variance in time can be attributed to the non-deterministic
Excel recalculation algorithm.  Using the overlapping region
of the two measurements gives about 3.5 ms per cell.
                                                  
8 This Turbo Pascal code has the form:
  “ival:=memw[$D000:8300]”  {ival read from VME memory }
  “memw[$D000:8300]=ival”    {ival written to VME memory.}
Turbo “C” has similar built in intrinsic arrays and would
presumably produce similar instructions.  Language and compiler
differences at this level running on fast processors are
overshadowed by the relatively slow ISA bus making this useful
comparison for estimating purposes.

VII. Conclusion
Excel and Visual Basic for Applications is an enabling

technology providing excellent and inexpensive tools for
Rapid Application Development.  Besides being relatively
easy to use they are programmable and extensible.  If
Interface Bandwidth is not paramount then it can be a
complete solution.

Windows Performance Penalties to External Interfaces
via DLL calls can be mitigated with care as Tables 1
through 3 show.  In cases where bandwidth is paramount
they may provide a quick intermediate solution as a
prototype until a faster application using other methods can
be developed.

Increased throughput could be obtained by using Direct
Memory Accesses, DMA.  Other Windows schemes
including Dynamic Data Exchange, DDE, and Object
Linking and Embedding, OLE, are expected to be slower
and were not investigated.

Special thanks go to D. Huffman and L. Rasmussen, both
of Fermilab, for invaluable assistance with the DPMI code.
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