
A Fast bok-up Algorithm for Detecting Repetitive
DNA Sequences

X 'Guan and E. C. Uberbacher

Informatics Group
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6364

Tbe submitted manuscript has been
authoriz+d by a contractor of the US.
Gawrnment under contract No. DE-

Aco584oR21400. Accordingly, the U.S.
Government retains a nonexclusive,

m y a l 5 - b lice= to publish OT reproduce
the pubIisbed form of this contribution, or
allow others to do 00, for U.S. Government
v"

To be submitted as full article to The First Pacific SymposiUm on Bibcomputing Ritz GzrZton Hotet
- & J A W , Hawaii, January 34,1996.

*Research was supported by the Office of Health and Environmental Research, U.S.
Department of Energy under contract No. DE-ACOS-84OR21400 with Martin Marietta Energy
Systems, Inc.

ai DISTRIBUTION OF THIS &MENT IS UNLIM~D

A Fast Look-Up Algorithm for
Detecting Repetitive DNA Sequences

X. Guan and E. C. Uberbacher

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN 37831-6364

Abstract

This paper presents a fast linear time algorithm for rapid identification of tandem

repeats. It utilizes indices calculated from non-continuous and overlapping k-tuples

so that tandem repeats with insertions and deletions can be recognized. It has been

made available through the GRAIL (GRAILBornl.gov) and GENQ UEST (Q@ornl.gov)

Internet servers. Its performance is compared with that of another Internet server

Pythia.

Introduction

Repetitive sequences are abundant in human DNA sequences. By one estimate, from

30% to 50% human genome consists of repeats of one form or another (Benson and

Waterman, 1994). In this paper, we focus on repetitive sequences in which short

words are repeated many times, referred to as tandem repeats or microsatellites in the

literature. Tandem repeats are highly polymorphic and have been used as polymorphic

markers in DNA. A number of genetic diseases are caused by an amplified number of

tandem repeats within or adjacent to a gene (Verkerk et al., 1991). Repetitive sequences

also present a problem for sequence comparison because they tend to produce non-

biologically significant alignments. It is therefore important to have efficient methods

to recognize tandem repeats.

Benson and Waterman (1994) developed a method that scans a sequence from left

to right looking for a potential repeat pattern (a basic unit that constitutes a repetitive

sequence), and then uses a specialized dynamic programming algorithm (wraparound

dynamic programming developed by Landau and Schmidt (1993)) to find the bound-

aries and the alignment of the repetitive sequence. The algorithm requires several

input parameters such as the period size (the length of the basic repeat unit or pat-

tern) and the pattern detection parameter (used for initial scanning of a sequence for

potential repeat pattern). It is not a linear time algorithm because it uses a dynamic

programming algorithm.

Another method proposed by Milosavljevic and Jurka (1993) utilizes a data com-

pression technique to locate tandem repeats. If a pattern is duplicated many times,

copies of the pattern can be replaced by pointers to the pattern, thereby reducing the

number of bits required to represent the sequence segment covered by the patterns.

This may signal a tandem repeat. This algorithm is a linear time algorithm.

In this paper, we describe a fast look-up method that can scan DNA sequences

rapidly for tandem repeats. The algorithm uses a new look-up technique and is linear

in time.

We use the definition of tandem repeats given by Benson and Waterman (1994). A

pattern is any particular segment of sequence. A tandem repeat is the concatenation of

two or more copies of a pattern. These copies may vary from each other in the form

of substitutions, insertions, or deletions.

Methods

Look-up table techniques have been used to identify matching words or segments in

sequence comparison methods (e.g., FastA, Pearson and Lipman, 1988). G' wen two

sequences,

ACTTGACT

TTGACATA

A look-up table can be calculated from the first sequence that records the position

of different nucleotides, i.e., A appears at positions 1 and 6, C appears at positions 2

2

and 7, etc.

offset -7 -6 -5

s c o r e 1 0 1 1

M T 3 4 8

-4 -3 -2 11 0 1 2 3 4 5 6 7

3 1 0 1 2 5 1 0 0 1 1

Then the second sequence is scanned from left to right. For each nucleotide, the po-

sitions of the nucleotide in the first sequence are fetched from the table and offsets

(the differences of the nucleotide’s positions in the two sequences) are calculated. For

example, the first nucleotide of the second sequence is T which also occurs at positions

3 and 4 in the first sequence. So we get two offsets 3 - 1 = 2 and 4 - 1 = 3. Each

nucleotide in the second sequence, if it is also present in the first sequence, produces

one or more offsets. For each offset, we maintain a counter which counts how many

nucleotides produce this offset. The contents of these offset counters are called offset

scores. The offset scores for the second sequence are

If these two sequences share a common word w at a certain offset, that offset will get

a score 2 the length of w. Clearly the word TTGAC shared by the two sequences

produces the highest offset score 5 at offset 2.

Similarly, a k-mer with b 2 2 can also be used to build the table, though it takes

more time and space. The technique can be used to compare a sequence with itself

to detect tandem repeats. However, .the patterns in tandem repeats typically are

not duplicated exactly. Substitutions, insertions, or deletions make it difficult to use

the lookup technique described above where an insertion or a deletion can interrupt

otherwise matching segments.

3

Recently, a new look-up technique, which uses indices calculated from non-continuous,

overlapping tuples, was employed in the FLASH program (Califano and Rigoutsos) for

sequence homology search and is described below.

Given a sequence, a1a2...an, where ai, 1 5 i 5 n, can have s different values (for

DNA, s = 4), let X be a function that maps ai to an integer in [O,s - 11. A fixed

number of indices are calculated for each position in the sequence as follows: given a

window size b, and a tuple length of k 5 w, for each position i, a k-tuple is formed by

selecting k ordered elements from the window starting at i, say blb2 ... bk , where bl =

a;. It is important that bl = ai because we are calculating indices for position i. An

index can be calculated from this k-tuple as follows:

k
I = X(b*) * 2 - l

t=l

Because we require that the first element is always ai, there are d = (;I:) different

such k tuples ((k) is a binomial coefficient, Le., the number of ways to choose m ordered

positions from n positions), therefore d indices for each position in a sequence. One

way of selecting the k positions from a window is by masking. A vector of length w

has k positions set to 1 and other positions set to 0. For w = 5 and k = 3, there are

d = (:I:) = 6 such vectors. They are

11100

11010

11001

10110

10101

10011

For a sequence segment TGTAT, applying the first vector to the segment results

in the 3-tuple TGT. Totally we have six 3-tuples, TGT, TGA, TGT, TTA, TTT, and

TAT, that are used for calculating indices.

4

Indices calculated from non-continuous k-tuples allow insertions and deletions be-

tween matching segments, and overlapping k-tuples provide rich indices for each posi-

tion in a sequence.

The new indexing technique is used here to recognize tandem repeat as follows. We

build a lookup table by scanning a sequence from left to right. For each position i in

the sequence, we calculate the d indices Il, Iz, ..., Id as before. For each It, 1 5 t 5 d,

we first store a pair (t,i) at the lookup table entry It, which means an index It has

been generated from the t-th vector for the current position i, and then we search the

same table entry It for positions that share the same index It calculated from the same

vector. Suppose a pair (t , j) is stored in the same table entry It, that is, the index

If has also been generated from the t-th vector for position j . We say that position

i has one vote for position j . After all the indices 4, I,, ...,Id have been processed,

the position (the window that beginning at that position) that receives the most votes

from position i is the one that most resembles the window starting at i.

Note that for each position i, we only need to look for position j < i that most

resemble position i, so we can build the lookup table as we scan the sequence. If

position i votes for position j < i and position j votes for position k < j , then we say

that position i votes for k. Therefore, only the most recent position for each index

needs to be stored, and for each table entry, we need only to store at most d positions.

Now instead of storing a pair (t , i) at a table entry I, we store i at the t-th column at

entry I. The lookup table is depicted in Table 1.

Table 1. Lookup table. Given window size w, tuple length k, and the number of

values s that a position can have, d = @It)
5

If there is a tandem repeat in the sequence, the first pattern of the tandem repeat

will get the most votes, and the last position that votes for the first pattern marks the

end of the tandem repeat.

Space is not as much a problem here as it is in FLASH. Since we are looking for

tandem repeat of short pattern, for each position, we only need to look forward (to

the left of the position) limited distance (let's called it look-forward-distance), and the

table size is at most dk". For the parameters that we are using in our present system,

w = 5, k = 3, s = 4, and d = 6, the table size is 486.

Let f be the look-forward-distance. Our algorithm identify tandem repeats with

pattern sizes from 1 to f in one pass. In a comparison, a fixed pattern size is a required

input parameter to the method by Benson and Waterman (1994).

Our algorithm is a linear time algorithm. We scan the sequence only once, and

for each position, only constant number of indices are calculated and looked up in the

table.

Implementation and Results

The algorithm was implemented in C language, and has been incorporated into the

GENQUEST and GRAIL Internet email servers. To access GENQUEST, send an

email message to Q@ORNL.GOV.

To illustrate the use of the algorithm, we have applied it to the Human Tissue

Plasminogen Activator Gene (GenBank Release 89, accession number K03021). The

parameters we used were w = 5, k = 3, and d = 6. Two annotated tandem repeats, a

(RY repeated n times) run (7170-7225) and a TGATAGA tandem repeat region

(23888-24458), were identified. Two other un-annotated tandem repeats, a (AC)n run

followed by a (TC)n run (16910-16961) and a poly(A) segment (17107-17132), were

also identified by our algorithm. These four tandem repeats were reported by the

Pythia server (Milosavljevic and Jurka, 1993). Regions identified by our algorithm

but not reported by Pythia include several poly(A) segments (1015-1047,26467-26486,

29083-29104,19160-19178) and an interesting tandem repeat region (21562-21597)

A AATAATAATAATAAATAAATAATAAATAAATAAAT.

6

mailto:Q@ORNL.GOV

This can be considered as a tandem repeat of pattern AAAT with deletions (underscore

means deletion):

AAAT A A T A A T A A T AAAT AAAT A A T AAAT AAAT AAAT

Pythia also uses a linear time algorithm, but in practice, our algorithm is 5-6 times

faster (note, we compare our algorithm with only that portion of the Pythia server

which identifies simple repeat regions).

Conclusions

We have presented a fast linear time algorithm for recognizing tandem repeats. Our

algorithm is a one pass algorithm. No information about the periodicity of tandem re-

peats is needed. The use of the indices calculated from non-continuous and overlapping

k-tuples allow tandem repeats with insertions and deletions to be recognized.

References

[l] Altshcul,S.F., Gish,W., Miller,W., Myers,E.W., and Lipman, D.J. (1990) “Basic

Local Alignment Search Tool,” Journal of Molecular Biology, vol. 215,403-410.

[2] CaJifano,A. and Rigoutsos, I. “FLASH: A Fast Look-up Algorithm for String Ho-

mology,” CABIOS. To appear.

[3] Claverie,J.-M. and States, D.J. (1993) “Information Enhancement Methods for

Large Scale Sequence Analysis,” Computers 6 Chemistry, vol. 17, 191-201.

[4] Benson, G. and Waterman, M.S. (1994) “A Method for Fast Database Search for

all k-nucleotide Repeats,” Proc., Proc., The 2nd International Conference on In-

telligent Systems for Molecular Biology, AAAI Press.

[5] Guan,X. Mural,R. Petrov,S. and Uberbacher,E.C. (1993) “A Sensitive Sequence

Comparison Server for DNA and PROTEINS,” Proc., Genome Sequencing and

Analysis Conference V, Hilton Head Island, South Carolina.

[6] Landau,G. and Schmidt,J. (1993) “An Algorithm for Approximate Tandem Re-
peats,,, Fourth Annual Symposium on Combinatorial Pattern Matching, 120-133.

7

[7] Milosavljevic,A. and Jurka,J. (1993) “Discovering Simple DNA Sequences by the

Algorithmic Significance Method,” CABIOS, vol. 9,407-411.

[8] Pearson,W.R. and Lipman,D.J. (1988) “Improved Tools for Biological Sequence

comparison,” Proc. National Academy of Sciences, USA, vol. 85, 2444-2448.

[9] Verkerk, A. J. M. H. et al, (1991) “Identification of a Gene (FMR-1) Containing

a CGG Repeat Coincident with a Breakpoint Cluster Region Exhibiting Length

Variation in Fragile X Syndrome,” Cell, 65,905-914.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, r m m -
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

~

~ -_ ~
~ ~ ~ - .

8

