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Abstract 

This paper presents a fast linear time algorithm for rapid identification of tandem 

repeats. It utilizes indices calculated from non-continuous and overlapping k-tuples 

so that tandem repeats with insertions and deletions can be recognized. It has been 

made available through the GRAIL (GRAILBornl.gov) and GENQ UEST (Q@ornl.gov) 

Internet servers. Its performance is compared with that of another Internet server 

Pythia. 

Introduction 

Repetitive sequences are abundant in human DNA sequences. By one estimate, from 

30% to 50% human genome consists of repeats of one form or another (Benson and 

Waterman, 1994). In this paper, we focus on repetitive sequences in which short 

words are repeated many times, referred to as tandem repeats or microsatellites in the 

literature. Tandem repeats are highly polymorphic and have been used as polymorphic 

markers in DNA. A number of genetic diseases are caused by an amplified number of 

tandem repeats within or adjacent to a gene (Verkerk et al., 1991). Repetitive sequences 

also present a problem for sequence comparison because they tend to produce non- 

biologically significant alignments. It is therefore important to have efficient methods 

to recognize tandem repeats. 



Benson and Waterman (1994) developed a method that scans a sequence from left 

to right looking for a potential repeat pattern (a basic unit that constitutes a repetitive 

sequence), and then uses a specialized dynamic programming algorithm (wraparound 

dynamic programming developed by Landau and Schmidt (1993)) to find the bound- 

aries and the alignment of the repetitive sequence. The algorithm requires several 

input parameters such as the period size (the length of the basic repeat unit or pat- 

tern) and the pattern detection parameter (used for initial scanning of a sequence for 

potential repeat pattern). It is not a linear time algorithm because it uses a dynamic 

programming algorithm. 

Another method proposed by Milosavljevic and Jurka (1993) utilizes a data com- 

pression technique to locate tandem repeats. If a pattern is duplicated many times, 

copies of the pattern can be replaced by pointers to the pattern, thereby reducing the 

number of bits required to represent the sequence segment covered by the patterns. 

This may signal a tandem repeat. This algorithm is a linear time algorithm. 

In this paper, we describe a fast look-up method that can scan DNA sequences 

rapidly for tandem repeats. The algorithm uses a new look-up technique and is linear 

in time. 

We use the definition of tandem repeats given by Benson and Waterman (1994). A 

pattern is any particular segment of sequence. A tandem repeat is the concatenation of 

two or more copies of a pattern. These copies may vary from each other in the form 

of substitutions, insertions, or deletions. 

Methods 

Look-up table techniques have been used to identify matching words or segments in 

sequence comparison methods (e.g., FastA, Pearson and Lipman, 1988). G' wen two 

sequences, 

ACTTGACT 

TTGACATA 

A look-up table can be calculated from the first sequence that records the position 

of different nucleotides, i.e., A appears at positions 1 and 6,  C appears at positions 2 
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and 7, etc. 

offset -7 -6 -5 

s c o r e 1  0 1 1  

M T 3 4 8  

-4 -3 -2 11 0 1 2 3 4 5 6 7 

3 1 0 1 2 5 1 0 0 1 1  

Then the second sequence is scanned from left to right. For each nucleotide, the po- 

sitions of the nucleotide in the first sequence are fetched from the table and offsets 

(the differences of the nucleotide’s positions in the two sequences) are calculated. For 

example, the first nucleotide of the second sequence is T which also occurs at positions 

3 and 4 in the first sequence. So we get two offsets 3 - 1 = 2 and 4 - 1 = 3. Each 

nucleotide in the second sequence, if it is also present in the first sequence, produces 

one or more offsets. For each offset, we maintain a counter which counts how many 

nucleotides produce this offset. The contents of these offset counters are called offset 

scores. The offset scores for the second sequence are 

If these two sequences share a common word w at a certain offset, that offset will get 

a score 2 the length of w. Clearly the word TTGAC shared by the two sequences 

produces the highest offset score 5 at offset 2. 

Similarly, a k-mer with b 2 2 can also be used to build the table, though it takes 

more time and space. The technique can be used to compare a sequence with itself 

to detect tandem repeats. However, .the patterns in tandem repeats typically are 

not duplicated exactly. Substitutions, insertions, or deletions make it difficult to use 

the lookup technique described above where an insertion or a deletion can interrupt 

otherwise matching segments. 
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Recently, a new look-up technique, which uses indices calculated from non-continuous, 

overlapping tuples, was employed in the FLASH program (Califano and Rigoutsos) for 

sequence homology search and is described below. 

Given a sequence, a1a2...an, where ai, 1 5 i 5 n, can have s different values (for 

DNA, s = 4), let X be a function that maps ai to an integer in [O,s - 11. A fixed 

number of indices are calculated for each position in the sequence as follows: given a 

window size b, and a tuple length of k 5 w, for each position i, a k-tuple is formed by 

selecting k ordered elements from the window starting at i, say blb2 ... bk ,  where bl = 

a;. It is important that bl = ai because we are calculating indices for position i. An 

index can be calculated from this k-tuple as follows: 

k 
I = X(b*) * 2 - l  

t=l 

Because we require that the first element is always ai, there are d = (;I:) different 

such k tuples ((k) is a binomial coefficient, Le., the number of ways to choose m ordered 

positions from n positions), therefore d indices for each position in a sequence. One 

way of selecting the k positions from a window is by masking. A vector of length w 

has k positions set to 1 and other positions set to 0. For w = 5 and k = 3, there are 

d = (:I:) = 6 such vectors. They are 

11100 

11010 

11001 

10110 

10101 

10011 

For a sequence segment TGTAT, applying the first vector to the segment results 

in the 3-tuple TGT. Totally we have six 3-tuples, TGT, TGA, TGT, TTA, TTT, and 

TAT, that are used for calculating indices. 
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Indices calculated from non-continuous k-tuples allow insertions and deletions be- 

tween matching segments, and overlapping k-tuples provide rich indices for each posi- 

tion in a sequence. 

The new indexing technique is used here to recognize tandem repeat as follows. We 

build a lookup table by scanning a sequence from left to right. For each position i in 

the sequence, we calculate the d indices Il, Iz, ..., Id as before. For each It, 1 5 t 5 d, 

we first store a pair (t,i) at the lookup table entry It, which means an index It has 

been generated from the t-th vector for the current position i, and then we search the 

same table entry It for positions that share the same index It calculated from the same 

vector. Suppose a pair ( t , j )  is stored in the same table entry It, that is, the index 

If has also been generated from the t-th vector for position j .  We say that position 

i has one vote for position j .  After all the indices 4, I,, ...,Id have been processed, 

the position (the window that beginning at that position) that receives the most votes 

from position i is the one that most resembles the window starting at i. 

Note that for each position i, we only need to look for position j < i that most 

resemble position i, so we can build the lookup table as we scan the sequence. If 

position i votes for position j < i and position j votes for position k < j ,  then we say 

that position i votes for k. Therefore, only the most recent position for each index 

needs to be stored, and for each table entry, we need only to store at most d positions. 

Now instead of storing a pair (t ,  i) at a table entry I, we store i at the t-th column at 

entry I. The lookup table is depicted in Table 1. 

Table 1. Lookup table. Given window size w, tuple length k, and the number of 

values s that a position can have, d = @It) 
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If there is a tandem repeat in the sequence, the first pattern of the tandem repeat 

will get the most votes, and the last position that votes for the first pattern marks the 

end of the tandem repeat. 

Space is not as much a problem here as it is in FLASH. Since we are looking for 

tandem repeat of short pattern, for each position, we only need to look forward (to 

the left of the position) limited distance (let's called it look-forward-distance), and the 

table size is at most dk". For the parameters that we are using in our present system, 

w = 5, k = 3, s = 4, and d = 6, the table size is 486. 

Let f be the look-forward-distance. Our algorithm identify tandem repeats with 

pattern sizes from 1 to f in one pass. In a comparison, a fixed pattern size is a required 

input parameter to the method by Benson and Waterman (1994). 

Our algorithm is a linear time algorithm. We scan the sequence only once, and 

for each position, only constant number of indices are calculated and looked up in the 

table. 

Implementation and Results 

The algorithm was implemented in C language, and has been incorporated into the 

GENQUEST and GRAIL Internet email servers. To access GENQUEST, send an 

email message to Q@ORNL.GOV. 

To illustrate the use of the algorithm, we have applied it to the Human Tissue 

Plasminogen Activator Gene (GenBank Release 89, accession number K03021). The 

parameters we used were w = 5, k = 3, and d = 6. Two annotated tandem repeats, a 

(RY repeated n times) run (7170-7225) and a TGATAGA tandem repeat region 

(23888-24458), were identified. Two other un-annotated tandem repeats, a (AC)n run 

followed by a (TC)n run (16910-16961) and a poly(A) segment (17107-17132), were 

also identified by our algorithm. These four tandem repeats were reported by the 

Pythia server (Milosavljevic and Jurka, 1993). Regions identified by our algorithm 

but not reported by Pythia include several poly(A) segments (1015-1047,26467-26486, 

29083-29104,19160-19178) and an interesting tandem repeat region (21562-21597) 

A AATAATAATAATAAATAAATAATAAATAAATAAAT. 
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This can be considered as a tandem repeat of pattern AAAT with deletions (underscore 

means deletion): 

AAAT A A T  A A T  A A T  AAAT AAAT A A T  AAAT AAAT AAAT 

Pythia also uses a linear time algorithm, but in practice, our algorithm is 5-6 times 

faster (note, we compare our algorithm with only that portion of the Pythia server 

which identifies simple repeat regions). 

Conclusions 

We have presented a fast linear time algorithm for recognizing tandem repeats. Our 

algorithm is a one pass algorithm. No information about the periodicity of tandem re- 

peats is needed. The use of the indices calculated from non-continuous and overlapping 

k-tuples allow tandem repeats with insertions and deletions to be recognized. 
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