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PREFACE

A program is described that calculates exact and optimal (uniformly most accurate unbiased) confidence
limits for linear functions of the normal mean and variance. The program can therefore also be used to
calculate confidence limits for monotone transformations of such functions (e.g., lognormal means). The
accuracy of the program has been thoroughly evaluated in terms of coverage probabilities for a wide range
of parameter values.
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If a known

p and variance

1. INTRODUCTION

transformation of a random variable X is normally distributed with mean

a2, then the mean, variance, and any other distributional property of X

can be expressed in terms of p and a2. For example, if X is lognormally distributed,

i.e., X w A(p, a2) or (equivalently) Y = log(X) N IV(P, a2), then the expected value,

variance, median, and mode of X are, respectively, E(X) = exp(p + 02/2), var(X) =

exp(2p + a2)(exp(a2) — 1), rned(X) = exp(p), and mode(X) = exp(p — a2). Exact

and optimal (uniformly most accurate unbiased) confidence limit procedures have been

developed for linear functions of p and a2 (Land, 1971, 1973) and, therefore, because

confidence limits for a parameter are invariant under smooth, monotone t ransformat ions of

that parameter, for the mean and mode of a lognormal dist ribut ion. In fact, the lognormal

distribution is the only one whose mean can be expressed as a function of a non-trivial

linear combination of p and a2 (Land, 1971), but other functions, including those arising in

connection with other normalizing transformations, can be approximated locally by linear

functions for which exact limits can be const rutted that define approximate limits for the

original parametric functions of interest (Land, 1974, 1988).

Tables have been published to facilitate the calculation of confidence limits for arbi-

trary linear functions of p and a2 (Land, 1975), but their use is often tedious, requiring

repeated interpolation and calculation. An unpublished Fortran program to compute con-

fidence limits directly from sample estimates of p and a2 has been available from the

second author, and has been used by a number of investigators to analyze lognormal data

sets.

The present paper introduces a more efficient computational algorithm, and docu-

ments the program for prospective users. An option has been added which makes it easy

for the user to generate tables of confidence limits. Finally, the accuracy of t he program has

been thoroughly evaluated in terms of coverage probabilities for a wide range of parameter

values.

2. BACKGROUND

Suppose we have

tributed as a2/u times

statistically independent

chi-square with u degrees

1

estimates y w IV(p, a2/y2) and S2 dis-

of freedom (s 2 w (02/v)xt), where y and



u are known. From Land (1971, 1988) the critical value ta(m) for testing, at level a, the

null hypothesis p + A02 = m against the one-sided alternative, p + A02 < m, for known A,

is found by solving for ta(m) the integral equation,

ta(m) cc

! fro(t) dt = a
!

fro(t) dt

—cc —cc

where

fro(t) = (v + t2)-(”+’)’2 exp(wn t/(v + t2)”2)

and

w—~— –Ay2(us2/y2 + (y – m)2)1’2

The corresponding confidence interval of level 1 – a for p + A02 is the set of values m such

that T(m) = y(y – m)/s > ta(m). The upper confidence limit is the largest such value m,

and is found by solving the equation, T(m) = ta(m), for m. A one-sided lower confidence

limit of level 1 – a is the same as an upper limit of level a.

The two-sided case is somewhat more complicated. The null hypothesis p + A02 = m

is rejected in favor of the alternative p + A02 # m if T(m) < tl, a(m) or T(m) > tz,a(m),

where the critical values tl = tl, a(m) and t2 = t2, a(m) are defined by the two integral

equations

t, cc

./
fm(t)dt = (1 -a)

./
fro(t) dt

(2.1)

The level 1 – a confidence interval for p + Aa 2, therefore, is the set of numbers m such

that tl, a(m) ~ T(m) ~ t2, a(m). The upper limit is found by solving for m the equation,

T(m) = tl,a(m), and the lower limit by solving T(m) = t2,a(m).
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From (2. 1), it follows that, for fixed S2 and u, any level 1 — a confidence limit for

p + A02, for arbitrary y, S2, y , and A > 0, is equal to y + (v + 1)/(2A72) m*, where rn*

is the corresponding confidence limit for p + (1/2)02 given a simple, single-sample model

with sample mean y* = O, Y* = (v + 1)1’2, and variance S*2 = 2A7s2/(v + 1)1’2 (Land,

1973). Moreover, given y = O, confidence limits are symmetric with respect to changes

in sign of A , in the sense that a level 1 — a upper limit for p — A02 is identical to the

corresponding level 1 — a lower limit for p + A02, with a change of sign. Thus, it is sufficient

to develop computational procedures for the single-sample case with y = O, y = (v+ 1)1/2,

and A = 1/2. For that case and sampling model, T(m) = –(v + 1)1’2 m/s, and

w ——~— 0+ (zM2/(v + 1) + 772)”2.

3. METHOD

For both the one-sided and two-sided limits, the basic method of approximation is the

secant method. The application to the one-sided case is straightforward. Here, we consider

only the case of a one-sided, lower confidence limit of level 1 – a since it is also a one-sided

upper limit of level a. A solution (there is only one) is found for G(T(nz)) = 1 — a, where

T(m)

f fro(t) dt

G(T(n)) = ‘: (3.1)

~ fro(t) dt
—cc

The two-sided case is more complex, and requires some additional notation. The

upper limit of level 1 — a is that number m such that T(m) = tl,a(nz); i.e., it is necessary

to find the unique pair of numbers m and t2 such that both GI (T(nz), t2) = 1 – a and

G2(T(m), t2) = 1 – a, where

~ fro(t) dt
T(m)

Gl(7’(~), h) = m
f fro(t) dt

—cc

(3.2)

~ t(v+t2)-’/2 fm(t)dt

G(~(~),h) =
T~m)

~ t(v + t2)-’/2 fro(t) dt
—cc
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Similarly, the lower limit is that number m such that T(m) = t2,a(m), and is obtained by

finding the unique pair of numbers tl and m such that both Gl(tl, T(m)) = 1 – a and

Gz (tl,T(m)) = 1 – a. Note that the upper and lower limits are obtained separately.

For the one-sided limit, the secant method alone is used to find the zero of the function

G(T(m)) – a. For the upper two-sided limit, the secant method is applied to find the zero

of the function G2(T(nz), t2)– (1 –a), subject to the constraint that Gl(T(nz), t2) = 1 –a;

for a given m and a, this t2,which depends on m and a, is found by numerically inverting

the integral defining GI. The lower two-sided limit is found in the same manner, after

swit thing the order of the arguments of G1 and G2.

For u = 2 all integrals are evaluated directly, while in other cases they are approxi-

mated using the adaptive quadrature method described in Burden and Faires (1989). With

this method, subintervals are determined so that the integral is approximated with the de-

sired accuracy using Simpson)s rule on each subinterval. This method is generally faster

than simpler integration methods to achieve that same accuracy because the ultimate sub-

division that is used need not be uniformly spaced over the entire interval of integration;

the subintervals can be selected based on the desired accuracy and the variability of the

function to be integrated (for a more complete description, see Burden and Faires 1989).

Although the method is in general straightforward, several numerical considerations

warrant discussion.

Conversion to integral over (–1, 1)

By the change of variable x(t) = t//m, and for –m < A < B < cm, simple

substitutions show that

B B’

! !
fro(t) dt = gin(x) dx

A A’

where A’ = x(A) = A//~, B’ = x(B), and

gin(x) = U–”/2(1 – X2)”’2–1exp(wm x)

for –1 < x <1. Also,

cc

! ()fro(t) dt = @-”12 ~ ‘(”-1)’2r (~) 1(.-1)/2(w~)
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where 1.(u) is the modified Bessel of the third kind.

Similarly

and

cc

! t(u + tz) ()“’2fm(t)dt = –fiu-”/2 ~ ‘(”-’)’2r (~) I(v+,),2(wm)
—cc

These formulas are used for the integrals in the functions G, GI and G2. When

possible, the Bessel function is evaluated using the algorithm written by Cody and Stolz

(Cody and Stolz, 1989).

With the exception of the cases when the Bessel function routine is used, the integrals

are evaluated using the adapt ive quadrature method described above.

Bessel Function Considerations

For numerical reasons, the product e–” 1.(u) is evaluated instead of 1. (u) alone. Nev-

ertheless, numerical problems still arise and the integral must be evaluated directly in these

cases.

The first such case occurs for large values (>> 1000) of the argument u = wn, even

when the product e–U IV(U) is of moderate size. In the program, the integral is evaluated

directly when the argument is larger than 800; a different cutoff value can be selected by

modifying the associated control file ( “Conf95.opt” ).

A second case occurs when the argument u is too small relative to the order, (v – 1)/2.

This is because IV(U) vanishes (quite quickly) as the ratio u/v goes to zero. For this

reason, if the ratio of the argument and the order is less than 0.26 (again, not necessarily

an optimal value but sufficient) then the Bessel function is not used and the integral is

evaluated directly.

Normalization of Intemand

In general, gn (x) can vary widely for different values of u, s and f. To ameliorate

this, gn(x) is normalized by its maximum value on the interval [– 1, I], which occurs at

5



the point

u/2 – 1 – J(u/2 – 1)2 + w~
Xmaz —

Wm

For extreme values of s (large and small) and large u, exponential overflow prevents

the evaluation of the gn (x) to perform the normalization itself. This is circumvented by

scaling ~n(t) by the exponential of w(.s)(v+ 1), where w(s) is the linear function that maps

0.1 to –1 and 7 to O. The same normalization process is used successfully for x gn (x) when

calculating the two-tailed limits.

Inversion of Inteqral

After the scale change from t to x, and defining X(m) = T(m)/ ~m, finding

xl = tl/~~ for fixed m is equivalent to finding xl such that the integral from X(m)

to xl of gn(x) is equal to some constant, C. Inversion of the integral is performed by

calling the adaptive quadrature integration procedure as if to approximate the integral

over the entire interval [X(m), I]. The order of the calculation is such that the current

subinterval over which the integral is being approximated is always the left-most interval

not yet considered. In this way, the integral is built up from the left. The procedure is

stopped when the current value of the integral is sufficiently close to the desired value,

at which time the current upper limit of the right-most subinterval approximated is the

desired value xl. If the approximation exceeds the desired value by more than the desired

accuracy, then a finer subdivision is used. Determination of X2 = t2/~~ is similar,

except that the integrals over the right-most subintervals are approximated first.

Limits of Integration

The functions integrated over the region [– 1, 1] have a single maximum, and generally

vanish rapidly as the distance between x and the maximum increases, especially for large s

and u. Depending on the particular interval of integration, this fact can cause the adaptive

quadrature rout ine to terminate prematurely and return a value of O. The difficulty occurs

because the routine terminates when the difference between the approximate integral (using

a 3-point Simpson)s rule) over an interval [a, b], and the sum of the approximate integrals

over [a, (a+ ~)/2] and [(a+ b)/2, b], is sufficiently small. If the points a and b lie too far from

the maximum, then the approximation to all integrals may be so small that the termination

6



condition is met. If the interval does not contain the

in practice. However, additional steps are taken to

interval does contain the maximum.

maximum, then this is not a problem

avert this from happening when the

For the one-sided limits, the evaluation of integrals in the definition of G (3.1) is

equivalent to evaluating

~ F(x) d.
–1

–1

where F(x) = gn (x) and b ● [—1, I]. The denominator is evaluated either using the Bessel

function routine or by the adaptive quadrature routine, as discussed above. If the adaptive

quadrature rout ine is used, then to avoid premature (and inaccurate) termination of the

routine, the integral is evaluated as

1 (zma. –l)/2 X?na. (

!
F(x) dx =

!
F(x) dx+

!
F(x) dx+

–1 –1 (zma. –l)/2

and the adaptive quadrature routine is called on each

! F(x) dx+
!

F(x) dx

X?na. (zma. +1)/2

subinterval. This successfully pre-

vents premature terminat ion of the adaptive quadrature routine for the cases of int crest.

Ifb < Xmaz then the adaptive quadrature routine is applied directly to the numerator.

However, if b > x~.z then the ratio of integrals is evaluated as

}F(x)dx

l–b

~ F(x) dx
–1

This is done to avoid redundant calculations in the numerator and denominator.

For the two-sided limits, evaluation of GI (a, b) and G2 (a, b) (equation 3.2) involves

approximating expressions of the form

~F(x)dx
a’
1

f F(x) dx
–1

7



where J’(x) = gn(x) or xgn(x) and a’ = a//~, b’ = b//~.

it is expected that it will generally be the case that a’ < Xnaz < b’.

calculations as discussed above, the ratio of integrals is evaluated as

j J’(x) d. + }F(x)dx

1 –-1
b’

; F(x) d.
–1

For la – 0.51>0.25,

To avoid redundant

The adaptive quadrature routine is applied directly to the integrals in the numerator, while

the denominator is evaluated as

This approach is successful for all cases of interest, even if la – 0.5 I ~ 0.25.

Initial Guesses for the Secant Method for One-Sided Limits

Two initial guesses are required for the secant method.

For the one-sided limits, the initial guesses are selected so that in general the sequence

of approximations generated by the secant method is always on one side of the root. By

satisfying this property, the sequence of approximate ions does not oscillate about the root,

which can result in divergence of the secant method, nor are additional (time-consuming)

measures required to address intermediate situations that may lead to possible divergence.

Figure 1 illustrates the general behavior of the function G(T(nz)), which

function of m. In the graph, G(T(nz)) = 0.95 gives the lower one-sided level

limit and G(T(nz)) = 0.05 gives the upper one-sided limit 0.95 confidence

initial guesses are chosen towards the middle of the graph, and then the

generates approximations that gradually move out to the root. This is

is a decreasing

0.95 confidence

limit. The two

secant method

done using an

approximate confidence interval method suggested by David Cox (Land, 1972), which uses

the fact that y + S2/2 is asymptotically normal with mean p + a2 /2 and standard deviation

p(a, u) = ~ a2 /(v + 1) + a4 /(2(v + 2)). Thus, an approximate upper confidence limit of

level a for p+ 02/2, when y = O, is s2/2+ @(cY)$’(s, v). Usable initial guesses, closer to the

middle of the graph than the solution, are of the form s2/2 + C @(cY)$’(s, v). We found that

8



pairs of initial guesses corresponding to C = O and C = 0.15 worked well for the tested

range of values u, a, and s, providing enough separation between the guesses to ensure

convergence. The percentiles O(a) are calculated with accuracy 10-4 using Algorithm 66

available from STATLIB at Carnegie Mellon University, which computes the cumulative

distribution of the standard normal distribution, and a simple root finding procedure.

Other Modifications of Secant Method

For the one-sided limits, the secant method as described above is used to approximate

the root. However, for the two-sided limits additional steps are necessary.

First, guesses for the two-tailed limits of level a are estimated based on the assumption

that the one-sided limits of level 1 – (1 – a)/2 should be “close,” although some fine-tuning

is necessary. For the lower two-tailed limit, the first guess is the one-sided lower confidence

limit (calculated using the algorithm described here) of level (1 – a)/2. The second guess

is the first guess divided by 1.1. For the upper two-tailed limit, it was found that the upper

one-sided limit of level 1 —(1 —a)/2 led to numerical problems, and so the first guess is set at

the slightly larger value corresponding to level 1 – (1 – a)/1. 1, and the second guess is 1.05

times the first. The initial guesses are then modified as necessary to ensure than the root

lies between the two guesses. Then, at each step the approximation generated by the secant

method is checked to see if it lies between the two previous approximations. If it does not,

then the midpoint of the two previous approximations is used as the next approximation.

Finally, the approximations are retained so that the root always lies between them. These

extra steps increase the execution time, but avoid numerical instabilities that are associated

with use of the secant method alone.

In the course of performing verification of the algorithms (section 4), it was necessary

to use values of s well below 0.1, which is the lower bound of previously published values.

In these cases, calculation of the upper two-sided limits requires finding the zero of a

function that has a large derivative at the root. The approximations generated by the

secant met hod, while still in the interval cent aining the root, converge quite slowly, and

usually the maximum number of iterations set by the user is exceeded. For this reason,

when the maximum number of iterations is exceeded when calculating the two-sided limits,

the bisection method alone is used until the difference between approximations is below a

9



value set by the user.

4. RESULTS AND APPLICATIONS

Algorithm Verification

Although the results of the program have been checked with published tables (Land

1971) as well as the earlier program, an additional independent method was also used to

verify the accuracy of the predicted values. This method, described below, is considered

to be a more reliable means of assessing the accuracy of the program.

If a sample is to be drawn from a normal distribution with mean and variance p and

a2, respectively, then the set of all possible values y, S2 is equivalent to the set of all values

for p, q E [0, I], where O(p) is the pth percentile of the standard normal distribution and

x:–l (~) is the @h Percentile of the Chi-squared distribution with n – 1 degrees of free-

dom. Let C(p, q; p, a, a) denote the upper confidence limit calculated using the algorithm

described here of level a on p + *02 using the sample estimates yP and s~. For a given

level of confidence a, the set of pairs (p, q) for which the calculated upper confidence limit

is below the true value p + ~a2, i.e., for which

C’(p, q;p, a,a) < p + ;.2,

should be a region with area 1 — a. Similarly, if CL(p, q; p, a, a) and CU(p, q; p, a, a) denote

1 2 then the set of pairs (p, q) forthe lower and upper two-sided confidence limits for p + ~ a ,

which

should have area 1 — a. Since C(p, q; p,a, a), cL(p, q; p,a, a), and Cu(p, q; p,a, a) are

nondecreasing functions of p (i. e., the confidence limits are nondecreasing functions of the

10



sample mean y), the boundaries of the “failure” regions can be determined, and the areas

thereby estimated.

For a given q, let p(q), pL (q), and pu(q) denote the “critical” values of p such that

c(P(q),mP,~,~) = P + ;~2)

cL(pL(q), q;p, ”,a) = p + :02>

and

respectively. Then we should have

/.1

j ()pqdq=l–a
o

This approach avoids

methods of validation.

y, one can show (see Appendix for details) that

the problem of sampling variation that accompanies Monte Carlo

Further, since the confidence limits are additive in the sample mean

((p+ *02 - C’(0.5, q; p,~, ~))
p(q) = 0-1

o/@i
)

(4.1)

where @ – 1 is the inverse of the standard normal distribution function. A similar relation-

ship holds between pL(q) and CL(p, q; p, a, a) and between pu(q) and Cu(p, q; p, a, a) in

the two-sided case.

The algorithm was checked in this fashion with p = O for the one-sided limits over

the following range: u = 2,3,5,10,100,1000, a = 0.1,1,10 and a = 0.001, 0.005, 0.01,0.1,

0.9, 0.95, 0.99, 0.995, 0.999, with the integrals approximated with tolerance 10-6, and the

confidence limits themselves approximated with tolerance 10–8. Similarly, the two-sided

limits were checked for u = 2,3,5,10,100,1000, a = 0.1,1,10 and a = 0.9, 0.95, 0.99,

0.995, and 0.999. In all cases, the absolute errors between the integrals and 1 – a were

at most 10–6. It should be noted that with this method there are many cases where the

sample s is much less than 0.1 or greater than 10 (the previous limits of published values),

11



depending on the value of q and a. In particular, for a given u, s, and the tolerance c used

here of 10-6, s ranges over the interval (Q@lZQ~) ~ For u= Z range

of values for s is (0.0001, 37.6), while for u = 1000 it is the interval (0.09, 11.1). In all

cases, the chi-squared distribution was calculated using routines from the CDFLIB library

of Fortran routines (Brown and Lovato, 1993).

Although execution times vary depending on the relative error desired and particular

values of u, s and a, some sample output and timings (in seconds) required for the method

to converge with tolerance 10–8 are provided in Table 1 (these calculations were performed

on a personal computer with a Pentium 75MH processor). The two-tailed limits take about

10 times longer to compute than the one-tailed limits. This is because two one-tailed limits

are computed as initial guesses for the secant method, and because an integral must be

inverted during each iteration.

Examples

The program provides exact and optimal (uniformly most accurate unbiased) confi-

dence limits for linear functions of the normal mean p and variance a2 and, therefore,

of monotone transformations of such functions such as the lognormal mean and other

lognormal moments about zero, EX~ = exp(kp + k2a2/2), and the lognormal mode,

iVfX = exp(p – a2 ). Suppose that we have a simple random sample of size 20 on a nor-

mally distributed random variable, which is the logarithm of the variable of int crest, X.

Suppose that the sample mean and standard deviation in the logarithmic scale are y = 2.0,

and s = 0.5. The exact and optimal 95’?70upper confidence limit for EX = exp(p + a2 /2)

is the exponential of the value obtained from the program with input values y, s, A = 0.5

(the default value), u = 19, and y 2 = 20 (the default value given u = 19). That is, the

95% upper confidence limit for EX is exp(2.334) = 10.53. The corresponding limit for

kfX = exp(p – 02) is exp(l.950) = 7.03.

Other, intrinsically nonlinear, parametric functions of interest include the lognormal

cent ral moments,

7722= exp(2p + 02) (exp(a2) – 1)

m~ = exp(3p + 1.5a2)(exp(a2) – 1)2 (exp(a2) + 2),

12



etc., and the means of variates that can be transformed to normality other than by the

logarithmic transformation; e.g., by the square root, cube root, arcsine(square root), and

hyperbolic arcsine (square root) transformations; i.e.,

_E(Y2) = pz +02,

_E(Y3) = p3 + 3pa2,

E(sin2 Y) = ~ (1 – cos(2p)exp(–2a2)) ,

E(sinh2 Y) = ~ (cosh(2p)exp(a2) – 1) ,

respectively, where Y is normally distributed with mean p and variance a2.

Exact solutions for most intrinsically nonlinear functions of p and a2 are not known,

but the functions can be approximated locally by linear functions, yielding approximate

confidence limits. For example, given estimates y for p and S2 for a2, the function p2 + a2

can be approximated locally by the linear truncation of its Taylor series expansion about

the point p = y, a2 = S2: y2 + S2 + 2y(p – y) + (02 – S2) = –y2 + 2y(p + Aa2), where

A = l/(2y). Suppose once more that y = 2.0 and a = 0.5 represent the sample mean

and standard deviation of a normal random sample of size 20. Then u = 19 and 72 = 20,

and A = 0.25. Using the program, two-sided confidence limits at level 0.95 for p + .25a2

are 1.835 and 2.312, which correspond to 3.340 and 5.248, respectively, for the quantity

–y2 + 2y(p + Aa2). Thus, 3.340 and 5.248 are approximate 95’ZO limits for p2 + a2. A

refinement of the method, discussed in Land (1988), involves a second iteration in which

the function is expanded about the maximum likelihood estimates of p and a2 constrained

to the approximate confidence limit in the first iteration (e.g., the maximum likelihood

point on the curve p2 + a2 = 5.248).

The linearization met hod was evaluated by Monte Carlo simulation (Land 1974) for

four of the mean value functions given above; that is, for E(Y2 ) = 10 for a2 between 0.25

and 0.40, E(Y3) = 10 and E(sin2 Y) = 10 for a2 between 0.01 and 0.20, and E(sinh2 Y) =

10 for a2 between 0.01 and 1.0 (Land 1974). For these parametric values and u between

10 and 1000, coverage probabilities were estimated at between 0.892 and 0.909 for the

one-sided lower limits and bet ween 0.892 and O.913 for upper limits at nominal confidence

level 0.90.
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5. SUMMARY

The program described here provides exact and optimal (uniformly most accurate

unbiased) confidence limits for linear functions of the normal mean p and variance a2.

The program (including source code) is available without charge from the authors.

APPENDIX

In this short appendix a proof is provided for the identity shown in equation (4.1).

Only the one-sided interval case is discussed, but the same proof holds for the lower and

upper limits in the two-sided case. In Section 2 it is noted that, if y is the sample mean,

any level 1 — a confidence limit for p + AS2 is equal to y + ~ where ~ does not depend on

y (Land, 1973). Let C denote the confidence limit using the sample mean yl. Then the

calculated confidence limit using the sample mean y2 will obviously be equal to C + y2 — yl.

If we write yi = p + @(pi)a/@, where @(pi) is the pith normal quantile, then, using the

notation defined above, we have that

c’(p2, q; p,~, ~) = C(n,q; k~,~) + !/2 – VI

= C(pl, q; p,~,~) + ~/fi(@(P2) – @(PI))

In particular, letting pl = 0.5 (in which case @(pl) = O),

C’(P2, q; p,~,~) = C(O.5, !7; p,~, ~) + w2)~/fi

This identity holds for arbitrary p2. By definition, the “critical” p(q) satisfies

Using this identity in the previous equation shows that

and solving for p(q) yields the identity in equation (4.1).
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Figure 1. Calculation of lower, one-sided 0.95 confidence limit and
lower, one-sided 0.05 limit (which is also the upper one-sided limit

of level 0.95).
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