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ABSTRACT 

Recent experiments with femtosecond lasers provide a test bed for 
theoretical ideas about electron processes in hot dense plasmas. We briefly 
review aspects of electron conduction theory likely to prove relevant to 
femtosecond laser absorption. We show that the Mott-Ioffe-Regel limit implies a 
maximum inverse bremsstrahlung absorption of about 50% at temperatures near 
the Fermi temperature. We also propose that sheath inverse bremsstrahlung 
leads to a minimum absorption of 7-10% at high laser intensity. 
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Fsec laser and transport processes 

A new generation of high power short-pulse lasers was made possible by 
the technique of chirped pulse amplification.(l) These lasers generate pulses in 
the femtosecond range, typically 100 fsec, and can be used to prepare a well- 
characterized solid-density plasma. Recent femtosecond laser experiments give 
data concerning electron transport in hot dense matter, data valuable precisely 
because of the simplicity of the experimental conditions. 

Electron transport, which we take to include AC electrical conduction as 
well as heat conduction, is a key to understanding the laser interaction. The AC 
conductivity determines the absorption and controls how much energy is 
deposited in the target. Heat conduction determines how far the energy spreads 
and this determines the temperature. 

Typical parameters for a femtosecond pulse laser are: total laser energy, 0.1 
Joule per pulse; pulse length, 100 fsec; power, 1 terawatt; focal spot diameter as 
low as IO microns; laser intensity, 1012 - 1018 Watts/cm2; wavelength 
in the visible and repetition rate above one shot per second. Most crucial to 
control of the target interaction is the contrast between peak power in the pulse 
and the background laser emission ("prepulse"); for a well-adjusted laser this 
contrast can be better than 104, and after harmonic conversion the contrast 
improves to 108. 

As we understand it, the laser interacts with the target over a skin depth of 
100 A. The absorbed energy is carried into the target to a depth of - 500 A 
during the laser pulse by an electron thermal wave. At high intensity, the target 
expands as much as 100 A during the laser pulse, a velocity of 100 km/sec. At 
low intensity there is virtually no expansion during the heat pulse. The peak 
electron temperature ranges from 1 eV at low intensities to 1000 eV at the 
highest intensities. The absorbed energy is transformed into electron thermal 



energy, ionization energy, ion thermal energy, kinetic energy of hydrodynamic 
motion, magnetostatic energy and x-rays emission. 

Femtosecond laser targets are not in thermal equilibrium. The electron 
temperature is higher than the ion temperature. The ionization is usually less 
than equilibrium ( L E )  or even than a steady collisional-radiative non-LTE 
ionization state and the radiation is much less than an equilibriuh (black-body) 
distribution. However the collision rates probably suffice to bring free electrons 
to a local equilibrium distribution. 

Femtosecond laser experiments explore the transition from solid state to 
plasma and the transport phenomena must be examined from viewpoints 
traditionally associated with these two distinct phases of matter. 

How does solid matter become a plasma? 

The ideal solid is translationally invariant and its elementary excitations are 
labelled by wave-vector k or crystal momentum p. The atomic vibrations are 
travelling sound waves or phonons. Electron excitations are described in terms 
of energy bands and Bloch functions. Inner-shell electrons are associated with 
narrow bands of propagating states, and even electrons far above the Fermi level 
can be Bragg-reflected and therefore have energy gaps at the Brillouin zone 
boundaries. Bragg-reflection gives the electrons an  effective mass m*(k) which 
can be significantly different from the usual electron mass. 

The dense plasma is disordered; there is short-range ion correlation but no 
long-range order. Because of this phonons no longer propagate very well. Free 
electrons have energies defined in k-space, but bound electrons are localized on 
specific ions. The ions have definite charge states whose probabilities are 
determined by a Saha equation. The electrons make transitions corresponding 
to excitation and ionization processes, but the zero-order Hamiltonian is diagonal 
in a representation which assigns integer charge to each ion rather than one 
which assigns a definite momentum to each electron. 

How do solid-state energy levels evolve into those of the plasma? The 
effect of temperature, aside from disordering the ion positions, is to excite 
electrons to states of higher energies. Quite generally, excited electrons (bound 
or free) are less able to screen the nuclear charge than they were in states of lower 
energy. This means the self-consistent electrostatic potential grows stronger as 
electrons begin to be thermally excited. In turn, this increases the spacing of 
energy levels and moves lines to shorter wave-lengths. What is the change in 
the electron band-gaps? 

It seems clear that as temperature rises the core bands become very narrow, 
both as a result of the stronger potential and as a consequence of disorder, which 
spoils the resonant hopping required for propagating states. However, band 



gaps at energies above the original Fenni energy evidently decrease with loss of 
Bragg scattering even if the potential ultimately becomes stronger. This is seen 
in the optical properties of liquid metals. (2) In particular, conduction electrons 
in liquid metals (and presumably in hotter plasmas) respond with essentially the 
free-electron mass. 

There remain questions how ionic and covalent materials behave as their 
temperature is raised. To a certain extent one can make predictions based on the 
room-temperature band-structure. On the high-temperature side one has the 
usual plasma picture. In the range between , there are various possibilities of 
charge transfer, excitonic phases, etc. For example, room temperature glass 
consists of Si(4+)0(2-) ions. Partway to the plasma state, there will doubtless be 
some free electrons, i.e., electrons in 3s,3p conduction bands, but we do not know 
how the core charge states vary. 

Electron Conduction Theory 

The classical theory of Brownian motion shows the connection between 
diffusion and frictional drag forces which determine the mobility 
(u = velocity/force) for an electron. Already this simple theory gives an 
expression for the AC conductivity of nondegenerate electrons, 

where n = electron number density, e = electron charge (cgs), m = electron mass, 
and z = mp = electron collision time. The average is taken over the velocity 
distribution when z depends on electron energy. 

In the 1930's Sommerfeld and Frank studied electron transport in simple 
metals using the Boltzmann equation with Fermi-Dirac statistics for the 
unperturbed distribution function. This theory also gives Eq. (1) for degenerate 
or nondegenerate electrons (the average is weighted by E df/dE, the derivative 
of the equilibrium distribution function). 

When we use Eq. (1) to calculate absorption, we must solve Maxwell's 
equations for the evanescent laser wave penetrating into the target over a skin 
depth 6 = c/%. This calculation gives a useful qualitative formula for the 
absorbed energy fractiori(3): 

A = ~ / w ~ ' I :  

Here a+, is the electron plasma frequency and 2 is an average collision time 
(strictly, l / z  = < l/z(E) > is the appropriate average). Eq. (2) describes steady- 
state absorption of a homogeneous laser beam by an idealized homogeneous 
target, so 9 and z do not depend on position, and applies in the high-frequency 
limit cln: >> 1 (this is the case at high target temperatures). The target is 



assumed to have a sharp interface and to be overdense to the laser (o << op). 
Eq. (2) should be corrected for hydrodynamic expansion of the target, 
temperature gradients, the spatial beam profile and the hedependence of laser 
energy and target temperature. These corrections are straightforward aspects of 
a numerical simulation. 

Another theory of laser absorption is given by the radiative kinetic 
equation which describes inverse bremsstrahlung transitions (absorption and 
stimulated emission). It is not difficult to show, using the Kramers cross-section 
for radiative rates, that the radiative kinetic equation gives the same result as Eq. 
(1) for conditions csrr: >> 1 when Ao << kT (non-degenerate electrons) or Ao << 
Ef (degenerate electrons, discussed further below). The agreement with Eq. (1) 
requires that we use a high-frequency Coulomb logarithm, In A = n/ d3 in the 
evaluation of Eq. (1). For lower frequencies (a < 1) one must corredt the 
radiative kinetic equation to include interference in electron-ion multiple- 
scattering (4), and then one obtains again Eq. (1). At high frequencies ( Ao >> kT 
or Ao >> Ef), the radiative kinetic equation gives a different answer discussed 
below. 

Starting with a quantum equation of motion for the density matrix, Kohn 
and Luttinger(5) derived a transport theory for nondegenerate electrons. The 
equation of motion is expanded with respect to a DC applied electric field (linear 
response) and also with respect to the perturbation due to randomly located ions. 
When averaged over ion positions, the diagonal elements of the density matrix 
correspond to the Boltzmann distribution function and are larger, in a certain 
sense, than the off-diagonal elements. The diagonal elements are governed by 
an equation essentially equivalent to the Boltzmann equation. 

Kubo recast the density-matrix equation of motion to obtain a general 
formal expression for the electrical conductivity(6), relating the dissipation 
produced by Joule heating to fluctuations in the spontaneous currents existing in 
thermal equilibrium in the absence of the applied field (“Fluctuation-dissipation 
theorem’,). 

Another systematic theory of conduction phenomena is given by the 
Green’s function perturbation theory (7). This theory reproduces all the 
previous results and is readily extended to the BCS superconducting state. 
Disordered materials with strong scattering pose a problem of high-order 
perturbation theory; one method for treating this case is the coherent potential 
approximation (8). 

In research on heavily doped semiconductors a rule has emerged, known as 
the Mott-Ioffe-Regel limit, to the effect that the minimum electron mean free path 
is approximately the atomic spacing(9). With this rule goes a minimum 
electrical conductivity and an  explanation for any smaller values of the 
conductivity: that would require localized electrons unable to propagate. 



Lee and More (10) propose this limit applies to laser plasmas at temperatures of 
kT G Ef because these are the conditions of maximum electron-ion scatttering. 
(Localized conduction electrons are very unlikely in a high-temperature system.) 

The condensed-matter theories mainly discuss electron scattering by 
screened ion potentials. In plasma physics the Coulomb potential gives a long- 
range interaction which is traditionally treated by the Fokker-Planck 
approximation, applied by Spitzer and Harm(ll), Rosenbluth et al. (12) and 
others. For dense plasmas the Coulomb collisions can also be handled by the 
method of correlation functions, i. e., the Ziman formula. 

The Ziman formula shows how interference between scattering on different 
centers limits the electron mean free path. In particular the Ziman formula gives 
the small-angle cutoff required for a finite Coulomb logarithm.(l3) The simplest 
version of this formula is 

Here A k = electron momentum, A q  = momentum transferred in the collision, 
S(q) = ion structure factor, do/di2 = electron-ion differential scattering cross- 
section. The formula is derived with the Born approximation for this cross- 
section, but the Born approximation is rarely justified except for fully-ionized or 
low-Z plasmas. When a higher-order cross-section is used one has kept some 
terms in a multiple-scattering series (and ignored others). For many years it has 
been known that an expression like Eq. (3) should be used for inverse 
bremsstrahlung absorption(Ichimaru, ref. 14). 

Much of the recent literature on transport in strongly coupled plasmas 
consists of evaluating the Ziman formula with various approximations for the 
structure factor S(q), and various treatments of the electron screening of the ion 
potential. In this context we mention work of Ashcroft and Schaich(l5), Hansen 
et a1.(16)/ DeWitt et a1.(17), Ichimaru et a1.(18), and Perrot and Dharma- 
Wardana(l9). Because most of these authors are present to describe their own 
work, we do not need to summarize these important developments further. 

Some Points to Discuss 

1. Momentum Transfer cross-section 

To obtain the collision h e  'I: which appears in transport theory the 
electron-ion differential cross-section must be weighted by (1-cos e), where 8 is 
the scattering angle. The importance of collisions is determined by the 
momentum-loss they cause. 



The factor (1 - cos 0) = q2/ 2k2 appears explicitly in the Ziman formula. 
For Brownian motion this effect emerges from a treatment of correlated random 
walks. In the Green’s function theory, it appears as the difference between the 
average of a product of Green’s functions and the product of the averages(7). 
Kubo derives this effect from a memory-function in his Colorado lectures(6). 
All transport theories include this effect, so it is not a difficult question. 

2. Landau-Peierls’ effect. 

The infxitive derivation of the Boltzmann equation seems to fail under 
conditions where A /z > kT, because in that case one cannot defend the picture of 
a small wave-packet traveling between collisions. The inequality is satisfied in 
low-intensity femtosecond laser interactions for many materials. Theoretical 
analyses from various viewpoints(e.g., ref. 5) have shown there is no Landau- 
Peierls’ effect, i.e., no quanfmn correction to Eq. (1) when ( A /z > kT). The 
nature of the transport in these circumstances is close to Brownian motion of 
large electron wave-packets and we began with the observation that Eq. (1) 
governs this case. 

3. Quantum AC transport 

The question here concerns high frequencies, Ao > kT . The Kubo 
formula and the radiative kinetic equation contain a factor [1-exp(-Ao /kT)] in 
which the first term (unity) describes absorption and the second term describes 
stimulated emission. Eq. (1) has no such factor. Does this mean the Boltzmann 
equation fails? 

For nondegenerate electrons the quantum theories give a conductivity equal 
to a factor (kT/ Am )[1- exp(-Ao /kT)] times the result in Eq. (1). 
Ao << kT this factor reduces to unity and we have again Eq. (1). 

When 

For degenerate electrons, the quantum theories give a more complicated 
result, and it is quite remarkable that this agrees with Eq. (1) up to photon 
energies of the order of the Fermi energy, much larger than kT. It is well-known 
that Eq. (1) gives a good description of liquid metals interacting with visible 
light.(2) Thus the quantum correction only affects the ultra-violet or soft x-ray 
absorption. 

4. Electron-electron collisions 

The greatest technical difficulties of conduction theory are associated with 
electron-electron collisions. In the Boltzmann transport theory one has a 
nonlinear integro-differential equation for the perturbed part of the distribution 
function. The equation simplifies to a Fokker-Planck approximation, expressed 
by the Lenard-Balescu collision operator, but still requires a nontrivial numerical 
calculation. 



Fortunately we are mainly interested in target plasmas having high ion 
charge states - for example, aluminum has Z* = 11 for intense laser pulses. In 
this case the relative importance of electron-electron scattering is small, 
proportional to 1 /Z*, and we simply neglect electron-electron collisions in view 
of the uncertainties in other aspects of the modelling. 

Is the electron-electron interaction even a l/Z* correction? In degenerate 
matter it is well-known that e-e collisions are inhibited by the exclusion principle 
(two electrons within kT of the Fermi level must find final states also in this 
narrow energy range). 

There is also the subtlety that when electrons carry a given current and a 
pair of electrons collide, their individual momenta change, and the distribution 
function f(v) changes, but there is no change in the total current of the electrons. 
Electron-electron collisions have an indirect effect, for example, moving an 
energetic electron down to lower energies where its next electron-ion collision 
will happen sooner. Even this effect is partly cancelled because, while reducing 
the energy of one electron, the electron-electron collision raises the energy of the 
collision partner. 

Thus the high-energy part of the distribution is affected by electron-electron 
collisions, and while this plays an important role in the DC conductivity and/or 
the heat conduction, Eq. (1) shows that the high-frequency AC conductivity is 
less sensitive to high-energy electrons and this is another reason to omit e-e 
collisions from a laser absorption model. 

5. Minimum Mean Free Path 

The range of temperatures near the Fermi energy represents the boundary 
between solid-state and plasma physics. In this case the electron mean free path 
must be very short because one has strong lattice disorder and the conduction 
electrons have enough excitation that they can lose energy by exciting other 
electrons from the Fermi sea. Even in cold matter, electrons with energies a few 
eV above Ef have mean free paths no more than a few atomic diameters. At 
higher temperatures electrons have reduced Coulomb cross-sections but this 
effect is not yet significant at temperatures near Ef. 

It is also evident that despite the strong disorder electrons are not localized 
or trapped because they are constantly exposed to small energy transfers from 
other free electrons. Thus we expect the collision time to be essentially that 
associated with a mean free path of 2 I& (i.e., one atomic diameter), (10) 

T =  2 R o / q  (4) 
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If we combine this approximation with Eq. (2) for the absorption, we find a 
maximum inverse bremsstrahlung absorption, 

Amax = 1.407 (aon)1/6 (Z*)-1/3 (5) 
where a, = .529 10-8 cm is the Bohr radius, and the numerical value for 
aluminum is A,, = 53.3% (assuming a valence of 3). 

The weak dependence on electron density is the most striking feature of Eq. 
(5). If there is no other absorption mechanism, Eq. (5) predicts a maximum 
absorption of 50% at temperatures near the Fermi temperature for all target 
materials. (It is assumed that insulators break down to a metallic state with a 
well-defined electron density and Fermi temperature.) At higher and lower 
temperatures the mean free path is longer and the absorption is lower. 

Eq. (5) is not a rigorous limit on the inverse bremsstrahlung absorption 
because of the corrections discussed in connection with Eq. (2). However any 
material showing absorption significantly above Eq. (5) is probably showing an 
additional absorption mechanism (such as line absorption). 

6. Nonlinear phenomena 

Whereas the Kubo formula claims to give the exact linear response 
conductivity, when we think about laser plasmas we rapidly leave the linear 
regime. The AC electric field of the laser is of the order of a billion volts per 
centimeter and the temperature gradient is more than a kilovolt per micron or 
1011 Kelvin per centimeter. Even referred to voltage or temperature changes 
over one mean free path these numbers are large enough to cast doubt on the 
application of linear-response theory. 

One specific nonlinear-response phenomenon is the Silin effect: at high 
laser intensity, the electron quiver velocity is larger than the thermal velocity and 
should replace it in the collision cross-sections (leading to a smaller collision 
rate). There is every reason to believe this effect occurs in high-power 
interaction with low-density plasmas. For femtosecond laser interactions, 
however, the incident laser field is partly cancelled by a reflected wave leading to 
a smaller electric field, and smaller quiver velocity, and the high target density 
implies a high collision rate, so the quiver energy is thermalized and the thermal 
velocity keeps up with the quiver velocity. 

The Fourier law for heat conduction breaks down in very high temperature 
gradients, another nonlinear response phenomenon. It is replaced by a nonlocal 
conduction process which usually implies a maximum heat current, q = f n v kT, 
where n = electron density, v = electron thermal velocity, T = electron 
temperature and f is a constant which should be 0.6 on the Knudsen model (free 
streaming electrons). There is an extensive literature based on modeling laser- 



plasma experiments with inhibited heat conduction, meaning values of f as low 
as 0.05. For the moment the femtosecond laser experiments seem to be 
compatible with the theoretical value, f = 0.6. 

A related issue is the possible existence of non-Maxwellian 
electron distributions. These can be caused by atomic processes (depletion of 
energetic electrons by ionization) as well as by the laser absorption itself or by 
escape of the most energetic electrons. Because the Coulomb cross-section 
depends strongly on electron energy, a depletion of the high-energy portion of 
the distribution would strongly affect the heat transport coefficients. 
However in femtosecond laser plasmas, the laser absorption pushes the 
distribution out of equilibrium only over the skin depth while thermalization can 
occur throughout the plasma heated by the electron thermal wave. 

Finally we mention instability effects, for example, a mechanism by which 
electrons generate ion sound waves when they carry a large enough current to 
have a supersonic drift velocity. Such effects have a threshhold and are not 
included in the linear-response formalism. 

7. Geometric Effects 

It has been suggested that the anomalous skin effect could occur in 
femtosecond laser plasmas if the electron mean free path were to exceed the skin 
depth. This could, hypothetically, occur at high laser intensities where the target 
temperature reaches 1 keV in aluminum. However the criterion for the 
anomalous skin effect is two-fold: the ratio of mean free path to skin depth must 
exceed ~ t y  but also must exceed m. This second condition is very hard to 
satisfy in a femtosecond laser-heated target, and for this reason we are skeptical 
that the anomalous skin effect occurs in these plasmas. 

The author has proposed a different surface-related absorption mechanism, 
Sheath Inverse Bremsstrahlung, which generalizes the surface-assisted 
absorption mechanism of Holstein. This mechanism applies for very high 
temperatures ( 1 keV) on targets which still have a sharp interface with the 
vacuum, and which may again correspond to conditioris difficult to achieve. For 
the ideal sharp interface, the theory gives an extra absorption 

Here v = (kT/m)1/2 is the average electron thermal velocity. The formula 
predicts as much as 10% absorption at keV temperatures. 

Finally, it should be mentioned that the laser focal spot is almost certainly 
surrounded by a large toroidal magnetic field. While preliminary estimates 
show this field does not greatly alter the conductivity responsible for absorption 
of the laser, more thorough study of magnetic effects is certainly required. 
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Practical Theory of Conduction Phenomena 

The comprehensive conductivity model of Lee and More (10) combines a 
semi-empirical solid/liquid conductivity, the high-temperature Spitzer result, 
and a minimum conductivity obtained from Eq. (4). It is in general agreement 
with several laser reflectivity experim&ts, when combined with appropriate . 
modelling of the hydrodynamics.(21) It is essential that the AC conductivity be 
calculated from the DC model by Eq. (1) as written to obtain good agreement 
with experiment. The new experiments with shorter laser pulses and higher 
intensities will give much more conclusive tests of all these ideas about 
conduction phenomena, just because of the reduced importance of the 
hydrodynamic corrections to the raw data. 

It remains to mention several other comprehensive practical models for 
conduction coefficients developed by Rinker(22), Drska and Vondrasek(23), and 
Kalitkin and Ermakov(24). 
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