
^ r ? P U < i H T £ n Enhanced Version of the TOTIfiH rv,j t .u Therraal and ̂ ^zs^^^^x
Earth Sciences Department *****

Lawrence Livermore National Laboratory DE90 010351

November 6, 1989
DRAFT 1.0

QA Level III WBS 1,2.2.2.2
Activity 1-20-1

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Govcrnijjertt. Neither the United Stales Government nor any agency thereof, nor any of their
employees, makes any warranty,, express OT implied, of assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom*
mendaUon, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency (hereof.

MASTER t&

V-TOUGH — an Enhanced Version of the TOUGH Code for the
Thermal and Hydrologic Simulation of Large-Scale Problems in

Nuclear Waste Isolation

J.J. Nitao
Earth Sciences Department

Lawrence Livermore National Laboratory

Abstract

The TOUGH code developed at Lawrence Berkeley Laboratory (LBL) is being ex­

tensively used to numerically simulate the thermal and hydrologic environment around

nuclear waste packages in the unsaturated tone for the Yucca Mountain Project. At the

Lawrence Livermore National Laboratory (LLNL) we have rewritten approximately 80

percent of the TOUGH code to increase its speed and incorporate new options. The

geometry of many problems requires large numbers of computational elements in order

to realistically model detailed physical phenomena, and, as a result, large amounts of

computer time are needed In order to increase the speed of the code we have incorpo­

rated fast linear equation solvers, vectorization of substantial portions of code, improved

automatic time stepping, and implementation of table look-up for the steam table prop­

erties. These enhancements have increased the speed of the coda for typical problems

by a factor of 20 on the Cray 2 computer. In addition to the increase in computational

efficiency we have added several options: vapor pressure lowering; equivalent continuum

treatment of fractures; energy and material volumetric, mass and flux accounting; and

Stefan-Boltzmann radiative heat transfer.

1

Contents
1 Introduction 3

2 Vectorization 3

3 Steam Table Look-up 5

4 Linear Equation Solvers 7

5 Automatic Time Stepping 6

6 Other Enhancements 9
6.1 Equivalent Continuum 9
6.2 Vapor Pressure Lowering 10
6.3 Radiative Heat Transfer 10

6.4 Energy and Material Accounting 11

7 Discussion 11

References 12

A Appendix: Technical Summary of Changes to the TOUGH Code 13
A.l List of New Features 13
A.2 Dimensioning and Compiling the Model 14
A.3 Ordering the Elements to Minimize Bandwidth 16
A.4 Instructions for Running the Program 16
A.5 New Input Options 17
A.6 Format of Mass and Energy Balance File 23

2

1 Introduction

Yucca Mountain, Nevada, is currently being investigated by the Department of Energy as

a proposed rr-pository site for the storage of high-level nuclear waste. Investigations at

Lawrence Livermore National Laboratory include the numerical modelling of the thermal

and fluid environment around the waste package in conjunction with laboratory and field

experiments The TOUGH code, which was originally developed at Lawrence Berkeley Lab­

oratory [Preuss,1987], is one of the codes being used to simulate the thermal and hydrologic

environment around the nuclear waste packages. These simulations invotve the transport of

water, air, and heat in the porous fractured rock found at the site. The reader is referred to

a previous report (Nifcao, 1988] for references related to the work in this area. In this report

we wish to describe the extensive modifications that have made to the code. Overall, about

80 percent of the code has been rewritten, enough, we feel, to justify calling it V-TOUGH,

which stands for Vectorized TOUGH.

The original LBL TOUGH code is very modular and "cleanly" coded which is unusual

for a targe simulation code. We have attempted to continue this practice in our enhanced

version. The new version runs about 20 times faster than the original version for the

near-field nuclear waste simulation problem described previously in jNitao,1988],

2 Vectorization

Most supercomputers, such as the Cray, Convex, and Alliant computers, have special hard­

ware that enables the very fast execution of arithmetic operations between arrays, or vectors,

of numbers. In order to take advantage of this capability the code must be vectorized: writ-

3

ten such that, as much as possible, the longest do loops are inner and no data dependencies

occur from one pass of the loop to the other passes. Optimizing the code in such a manner

may require the use of more physical memory since in vectorization there is an advantage

to storing quantities in arrays. Thus, there is some trade-off between memory usage and

speed, which may be one of the reasons why the original code was not highly vectorized.

The vectorization that we have performed may not have been feasible several years ago

when the added memory was not available

In this section we do not consider the vectorization involved in the linear equation

solver; this aspect will be covered in a later subsection devoted to that topic. The primary

areas where vectorization was performed is in the subroutine MULTl which generates the

Jacobian matrix, EOS which calls the PVT subroutines, and in the various PVT subroutines

themselves. These routines were all completely rewritten in order to vectorize as many loops

as possible. Vectorization often requires, as alluded to before, more physical memory usage

because of the need for temporary arrays. In older to redvce the amount of memory we

took advantage of the fact that most modern compilers re-use the memory of local variables

(unless the variable is declared to be static by the FORTRAN SAVE command) by placing

it back onto to a "heap" after return from the subroutine. Thus, as much as possible, arrays

were not placed in COMMON but kept as local variables. Although much of the PVT and

constitutive type computations were highly vectorized, with regards to the characteristic

curves, only the equivalent continuum characteristic curves are vectorized; but, with the

new code structure it would not be difficult to ''ectorize the other characteristic curves as

well.

4

3 Steam Table Look-up

The steam table properties include the mass density and specific internal energy of subcooled

and superheated water as well as the saturation pressure. In the formulation used by the

code, the density and internal energy are expressed as functions of pressure and temperature

while the saturation pressure is computed as a function of temperature. The original code

used complex functional fits to compute the steam table values. The number of arithmetic

operations required by these formulae are very large and can, therefore, use a significant

amount of computer time. We have, therefore, replaced them by an efficient table look-up

scheme. Table look-up applied to steam tables is somewhat complicated by the fact that

range of interest for the pressure varies with temperature and the fact tha t the properties

of water vary at different rates above and below the saturation line so that it is difficult to

maintain a constant pressure interval without generating an excessively large table. (The

advantage of using tables for the dependent variable having constant intervals will be seen

later.) In the method that we used, we first generate the table for the saturation pressure

function at every 2° C intervals from 5° to 501° C (these limits as well as others can easily

be changed). The tables for the density and internal energy of subcooled water are then

generated for different pressures at these same temperature points. The pressure intervals

are constant and s tar t from the saturation pressure at the temperature point and increase to

a maximum pressure which we took to be 24.7 MPa. It was found that only three pressure

intervals (four pressure points) were sufficient to give good accuracy due to the fact that

the properties of subcooled water arc- almost linear in temperature and pressure. A similar

procedure is used to generate the superheated steam properties with the pressure points

5

beginning at the saturation pressure and decreasing at constant intervals to a minimum

pressure of 100 Pa. (In the look-up stage, the ideal gas law is used for pressures below this

minimum.) Thirty pressure intervals are used for the superheated water properties.

The table look-up algorithm is now described. Suppose we are interested in the de­

termining the internal energy u of superheated water at some temperature and pressure

(7b, Po). We first show how to find the saturation pressure P,at(To) at To- If AT is the

temperature interval the table index t is defined by

i = T 0 /AT (1)

and is used to linearly interpolated between the table values Ptab,at(i) and Ptabsat[i + 1).

We now mubt find the table position j for the pressure given by

j = (Po - P,„«(To))/APi (2)

where AF, is the constant pressure interval for the »'-th temperature position. The value of ti

is now determined by a two dimensional interpolation between the table values of it at (i, j),

[i 4- l,j), [i,j + 1), and (i + \,j + 1). Linear interpolation is performed first with respect

to the jf index, first at i and then at i + 1. The two values that result are then linearly

interpolated. This procedure can be performed very efficiently since the use of constant

intervals eliminates the need to search through the table and is very easily vectorized.

The arrays holding the tables must be initialized at the beginning of each run either

by computing the values from subroutines that were in the original code or, if it exists, the

table is read in from an unformatted file called TABLE that was created from a previous

run.

6

4 Linear Equation Solvers

At each time step the model needs to solve a set of non-linear equations for the primary

variables. The Newton-Raphson algorithm which is used to solve the equations is an itera­

tive procedure requiring the solution of a system of linear equations at each iteration. There

can be several thousand computational elements and each element has associated with it

three equations. Therefore, the linear equatioa solution can consume a significant amount

of time.

The enhanced model has three separate user options for the linear equation solver to be

used: Option (0), block-banded gaussian elimination with no pivoting; Option (1), staudard

banded gaussian elimination with partial pivoting from the Linpack library; and Option. (2),

a Cray 2 highly optimized banded gaussian elimination with partial pivoting [White, 1988],

Note that the MA28 solver used in the original code is not available. Option (0) was the

solver used to run the problem described in |Nitao,1988]. The other two options were added

to the code later. On the Cray 2, option (1) witi the Linpack routines optimized for the Cray

2 is about twice as fast as option fO) while option (2) is about 5 times faster. Thus, option (2)

is the preferred method on the Cray 2. Option (1) is included because optimized versions

of the Linpack routines are available on many machines including the Alliant computer.

Option (0) seems to be faster than option (1) when non-optimized Linpack routines are

used on such machines as the Sun Workstation. Note that portable FORTRAN source code

is available for option (0) and for the non-machine optimized version of option (1), but

portions of option (2) is not portable since they are in Cray 2 assembly language.

7

5 Automatic Time Stepping

The automatic time step option in the original version of TOUGH was based on cutting

back the time step when the Newton-Raphson iterations failed to converge. We found that

a better algorithm is to control the maximum change in the solution vector from one time

step to the next. This control can be accomplished by estimating the time step for the

solution to change by a specified amount based on the solution change that ocurred in the

previous two time steps. During an iteration, if the change in solution from the previous

time step is too large, a re-estimation is performed and the time step started over. This

method also controls to some extent the time discretization error.

We now describe the method in more detail. Let «,- be the i-th component of the

solution vector at the current iteration of the Newton-Raphson method, and £", be equal

to uv minus the »-th component of the solution vector at the end of the previous time step.

Now, let (Su{)max be the maximum allowed change in the solution. We define the new

reference time step 6t by

J t = (l + „) (K) (3)

Here, tu is a "damping" factor [Grabowski et al., 1979] that is chosen between 0 to 1 in

order to prevent the time step from changing too rapidly. We used a value of 0.8. The value

of St is adjusted to stay within 0.5 to 4.0 times the time step size taken in the previous

time step. If the reference time step is less than the curiei)*; time step because the solution

changed too much, then the current time step is replaced by 0.8 times the reference, and the

Newton-Raphson is restarted. The factor 0.8 is there to allow for some margin to prevent

too many restarts.

8

6 Other Enhancements
6.1 Equivalent Continuum

Description of and references to the equivalent continuum method for modelling fracture-

matrix flow are given in JNitao,1988], and we assume that the reader is familiar with the

theory. Suppose that the the suction pressures for the matrix and fracture are known

functions of the hquid saturation, Pcm[sm) and Pcm{sj), respectively. Since the model

computes the bulk saturation s/, of the equivalent medium instead of the matrix and fracture

saturation, s m and »/, these quantities must be solved in terms of the the bulk saturation if

we are to compute the characteristic curves of the matrix and fracture. The bulk saturation

is defined in terms of s m and $/ through the relation

_ sf<l>f + sm[l- 4>t)<t>m , .

" */ + (l--Wm W

where <fim is the matrix porosity and <f>j is the fracture porosity defined in [Nitac,1938], The

equivalent continuum assumes that the suction pressures Ere equal

PtmM = Pcf(Sf} (5)

In our implementation we generate a table of suction head versus bulk saturation. The entry

for the suction head is tabulated at exponentially spaced intervals. For each value of suction

head we quate both the suction pressure of the matrix and fracture to the given value as

assumed by (5). By inverting the saturation vs. suction head relation we may find sm and

Sf in terms of the current head value. Using (4) we compute the bulk saturation si,. The

resulting table is then used during the model run to compute suction pressure as a function of

bulk saturation. The composite relative permeability of the equivalent continuum is a linear

9

combination of the relative permeabilities fo? the matrix and fractures. This quantity is also

tabulated for each entry of suction heat', since the relative permeabilities can be computed

using matrix and fracture saturations expressed as kni/vn function of suction head. Sivct

the bulk saturation is knowu 11 the same point, the result is a table for equivalent continuum

relative permeability versus bulk saturation.

6.2 Vapor Pressure Lowering

V vpor pressure fo^triiig is implemented by lowering the saturated vapor pressure through

the Kelvin type law [Marshall and Holmes, 1979]

P o = i W r) e x P ^ (6)

where

Paat[T) saturation pressure of bulk water as function of temperature T

Pi liquid molar density

T temperature in Kelvin

R the gas constant

6.3 R a d i a t i v e H e a t Transfer

It is usfful in some situations to be abie co moc'.el radiative heat transfer between compu­

tational elements. An example is the heat transfer across *,he air gap between the waste

package and the wall of the borehole. The Stefan-Boltzmann law is us?J to compute the

flux qR between elements 1 and 2 by the equation

qR = C{TS - Tx*) (7)

10

where T\ and 2j are absolute temperatures and C is some user supplied and geometry

dependent constant.

8.4 Energy and Material Accounting

A new postprocessing capability that has been added to the model is the ability to keep

track of the amount in and flow between elements of the energy and mass of various phases

and components. In the TOUGH code, computational elements are classified as to their

rock type. The phase and component fluxes between the various rocktypes are computed at

the frequency of the time step output and saved onto a file. The total phasic and component

energy and mass of each rock type is also written to this file. A post processing program is

then used after the run to exttact the desired data.

7 Discussion

With the new enhancements to the TOUGH code we are able to extend the size and com­

plexity of models describing the near-field thermal and hy drological impact of nuclear waste

packages. Large 2D problems with 2000 nodes, such as the one described in [Nitao,1988j can

be run in less than one hour on the Cray 2; whereas, it would have required 20 hours before.

Small 3D problems are also possible. Further work, will, however, be required to increase

the efficiency of the code to handle larger 3D problems. Such problems spend a significant

portion of their time solving the system of linear equations in the Newton-Raphson scheme.

Therefore, the focus of future work will be on more efficient linear equation solvers.

11

References

Grabowski, J.W., P.K. Vinsome, R.C. Lin, A. Behie, and B. Rubin, A Fully Implicit

General Purpose Finite-Difference Thermal Model for In Situ Combustion and Steam,

Society of Petroleum Engineers paper, SPE 8396 (1979). NNA.900312.0192

Marshall, T.J. and J.W. Holmes, Soil Phyaiea, Cambridge University Press (1979). NNA.891212.0026

Nitao, J.J., Numerical Modeling of the Thermal and Hydrological Environment around a

Nuclear Waste Package using the Equivalent Continuum Approximation: Horizontal

Emplacement, Lawrence Livermore National Laboratory Report, UCED-21444 (1988).

NN1.880630.0013

Preuss, K., TOUGH User's Guide, Lawrence Berkeley Laboratory Report, LBL-20700,

(1987). NNA.900312.0190

White, S., A More Robust Gaussian Elimination/Backsolve Package for the Cray 2, Na­

tional Magnetic Fusion Energy Computer Center Buffer, vol. 12, no. 11 (Nov. 1988).

NNA.900312.0191

12

Appendix: Technical Summary of Changes to the TOUGH
Code

1 List of New Features

1. The MA28 matrix solver is replaced by a banded solvers which have higher levels

of vectorization. The new solvers are significantly better for rectangular or near

rectangular meshes, but may not be optimal for irregular meshes. (Elements need to

be ordered by the user to minimize matrix band-width. See the the later subsection

which shows how to do this.)

2. The functions that evaluate the steam aad water properties have been replaced by a

fast table look-up algorithm. A file called TABLE containing table information will

be created the first time. It will be used in subsequent runs instead of recomputing

the tables.

3. The automatic time stepping has been significantly improved and is based on control­

ling the maximum changes in the solution vector at each time step.

4. The output files that the program generates have been changed. The names are now

derived from a run name which the program requests from the user. This modification

enables more than one run to be made at one time.

5. The save file Information is written out each time that the output file is.

6. A new output file is created which contains mass and energy balances and fluxes

between rock types.

7. The MESH, INCON, and LINEQ files are no longer created.

13

8. Coefficient generation and equation of state routines have been vectorized.

9. Vapor Pressure Lowering has been implemented.

10. Incorporated Sfcefan-Boltzmann radiative heat transfer.

11. Incorporated an equivalent continuum treatment of flow in fractured porous media.

Multiple rock types can have different equivalent continuum parameters

12. The model was ported to the Unix environment. Through the use of the unix m4

macropreprocessor the model can be configured to run on either the Craya using the

LTSS OS or on a Unix machine, e.g. the Sun or Alliant, making code development

easier in the future.

13. The model has variable dimensioning using FORTRAN77 parameter statements. Di­

mensioning is done by modifying a file separate from the source code and using the

m4 macro preprocessor,

A.2 D imens ion ing a n d Compi l ing t h e M o d e l

Steps in dimensioning and compiling model:

Step 1. Edit or create the file 'dim.h' which should contain the following three

lines:

define(NELM,68)

define(NCONM,127)

define(N3HMX,6)

14

where the numbers after the resp. symbols represent

NELM must be > no. of elements (68 in this example)

NCONM must be > no. of connections (127)

NBHMX must be > half bandwidth (6)

with option ILOPT=3 described later,

NBHMX must be exactly equal to the half

bandwidth of the system

Step 2. Execute the following command on the cray or sun:

m4 < raw-src-file > final-arc-file

(dim.h is read in during this process and must be set with the

desired model dimensions)

Step 3. To compile and load on the cray 2 for ILOPT option 1:

civic i=final-src-file,x

For linear equation option (ILOPT) 1

civic i=nnal-src-nle,lib=(omnilib,baselib.fortlib) :<•

For ILOPT option 2

civic i=final-src-fiIe,lib=(bfactsol,baselib,fortlib),x

Here, bfactsol is the library containing the Cray 2 optimized

solver. This option is valid only for the Cray 2.

15

The above instructions for compiling the program refer to the computer system at the

National Magnetic Fusion Energy Center at Lawrence Livermore National Laboratory. On

other systems Step 3 should be replaced with system-specific FORTRAN compilation and

linking with a library containing Linpack routines for linear equation solvers, or if only

option ILOPT=0 is used, it is sufficient to provide dummy subroutine slots to the Linpack

routines DGBFA and DGBSL which are not used by this option. In order to compile on

the unix system use the "makefile" that is provided in the distribution.

A.3 Ordering the Elements to Minimize Bandwidth

The elements should be ordered in the ELEME data block so that the bandwidth will be

minimized. For a rectangular grid the elements should be ordered so that they run in the

smallest direction first. The one-half block bandwidth to set for NBHMX will then be the

number of elements on the shortest side of the grid. The model prints t ie half band width

value to the main output file immediately after the initialization data is outputted. A larger

value of NBHMX can be used and then readjusted to the value in the print out.

A .4 I n s t r u c t i o n s for R u n n i n g the P r o g r a m

The program will prompt for the run name. It then creates the following files by adding

the appropriate suffixes to the run name:

T input file

'o' output file

16

V save file

'b' energy and mass file

The run name must be seven characters or less in length.

A.5 N e w Input Op t ions

The new input options are now described. We follow the same format style as the TOUGH

manual [Preuss,1987|.

New data block called DTSTP

The original time stepping algorithm in TOUGH is no longer present. The new time step­

ping algorithm is always active. The Newton-Raphson iteration limit NOITE is still used;

time step is cut in halt'if the limit is reached. The switch MOP(16) is ignored. The algo­

rithm obeys the maximum time step constraints DELTMX as well as the specified output

times in the TIMES data block.

DTSTP automatic time step control parameters; if data block

is not present the default values described below are used

Format (4E10.3)

Card DTSTP.l

17

DPGMAX max. change in gas phase pressure (default = 8.e5);

setting to zero gives the default

DSGMAX max. change in gas saturation (default = 0.25);

setting to zero gives the default

DTEMPMAXmax. change in temperature (default = 20.0);

setting to zero gives the default

DXMAX max. change in mass fraction (default = 0.25);

setting to zero gives the default

Modified PARAM data block

PARAM

Card PARAM. 1 Add or change to following:

MOP (1) if > 9 print out automatic time step diagnostic information

if > 8 print out maximum solution changes per time step

if > 4 print out Newton Raphson convergence information

if > 2 print out cpu times of various parts of the

program each time step for the first few steps;

print out where Newton-Raphson failed to convergence

18

if > 1 print out when time step is reduced

M0P(18) if non-zero, prints out table of values of the characteristic

curves at different temperatures for each rock types

New Characteristic Curves Options

The data fields for the equivalent continuum characteristic curve option described in [Nitao, 1988] are-

IRP = 9 IRP(l) = absolute permeability of matrix

IRP(2J = van Genuchten alpha parameter for matrix

IRP(3) = van Genuchten beta parameter for mattix

IRP(4) = matrix porosity

IPR(5) = residual liquid saturation for matrix

ICP = 9 ICP{1) = absolute permeability of fracture

ICP(2) = van Genuchten alpha parameter for fracture

ICP(3) = van Genuchten beta parameter for fracture

ICP(4) = fracture porosity

ICP(5) = residual liquid saturation for fracture

Note that both IRP and ICP must be equal to 9. Different parameters can be set for

different rock types.

19

A modified Van Genuchten capillary pressure function is available which does not go

to infinity as the liquid saturation approaches the residual value but is smoothly linearly

extrapolated based on the slope of the Van Genuchten function at a user-specified satura­

tion point S'. This option is recommended over option ICP=7 which has a discontinuous

slope at the cutoff point where the maximum pressure is attained. The equations defining

the :v»w modified version is:

P-, =f(s:) + f'(s;}{s,-s;), se<=s;

= f(se), se > s;

where

Sc = (Si - Slr)/{Sl, - Slr)

s; = (s(* - slr)/(s,, - sir)

ICP = n ICP(I) = A

ICP(2) = 5 i r

ICP(3) = 1/Po

ICP(4) = umisrd

ICP(5) = Sh

20

ICP(6) = S*

New data block OPTN

Card OPTN.l

Format (SB)

ILIMSL, IDSOLC, KNUDSN, IPCTEM, IVPLOW, ILOPT

ILIMSL if non-zero, limits solution changes during each

Newton-Raphson inner iteration (recommended value: 0)

IDSOLC if not zero, Newton Raphson convergence criteria is based

on changes in the primary variables between iterations

being less than the tolerance (recommended value: 1)

KNUDSN if non-aero, turns Knudsen diffusion on; this

option is not complete and therefore not recommended

IPCTEM if non-zero, turns temperature dependent capillary

pressure on, multiplies a factor based on the dependence of

surface tension of water (the Leverett capillary curve

option ICP=6 which already has the temperature dependence

is unaffected by this option)

IVPLOW if non-zero, turns vapor pressure lowering on

21

ILOPT option for linear equation solver,

if equal to 0, uses block banded elimination as in

previous versions

1, calls Linpack banded elimination

routines sgbfa and sgbsl or their

double precision versions; user

needs to supply a local version of

these routines

2, calls the solver optimized for the

Cray 2 by S. White of the National Magnetic

Fusion Energy Center

Modification of connection data format

Each connection data line in the CONNE data block has a new field, and each line is followed

by an optional second line. For each connection data, columns 71-75 holds a flag ICONT.

If ICONT is non-zero then another line of data is read in. (The user should set ICONT to

1 if a non-zero value is desired in case, this flag is later used to denote the number of extra

data lines following the current data line.) This added line has the following format:

2el0.3

and contains the values for the following parameters:

RADCOEF coefficient for radiative transfer denned by defined by

22

Q = RADCOEF * AREA * {T2**4 - Tl**4)

where Q is the radiative heat flux (W.) T1,T2 are

absolute temperatures (K.) and AREA is flux area (M**2) set in the

first line of the connection data

CONDCOEF coefficient multiplying the computed thermal conductivity

for this connection; set to zero or blank if

no thermal conduction is desired

If ICONT is set to zero (or blank) this added line is not read in and the value of RADCOEF

is set to 0.0 and CONCOFT is set to 1.0.

A .6 F o r m a t of M a s s a n d E n e r g y Ba lance Fi le

First Line is header string indicating the number of rock typas and the time in seconds.

For each rock type:

(a3,a2) rock type name and no.

(el3.5) total volume of gas phase

(el3.5) total volume of liquid phase

(el3.5) total mass of gas phase

(el3.5) total mass of liquid phase

(el3.5) total mass of water vapor

(el3.5) total mass of air in gas and liquid phase

(el3.5) total mass of water in gas and liquid phase

(el3.5) total energy of gas phase

23

(el3.5) total energy of liquid phase

(el3.5) total energy of water vapor

(el3.5) total energy of a. t in gas and liquid phase

(el3.5) total energy of water in gas and liquid phase

(el3.5) total energy of solid rock

Between every pair of rock types*:

(a3,a2,lx,a3,a2) names of the two rock types

(el2.4) mass flux of air in gas phare

(el2.4) mass flux of steam in gas phase

(el2.4) liquid mass flux

(el2.4) fluid convective heat flux

(el2.4) conductive heat flux

(el2.4) cum. mass flux of air in gas phase

(el2.4) cum. mass flux of steam in gas phase

(el2.4) cum. liquid mass flux

(el2.4) cum. fluid convective heat flux

(el2.4) cum. conductive heat flux

* positive flow is from the second rock type to the first rock type

24

