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SSPX SIMULATION MODEL

T. K. Fowler

September 20, 1999

Abstract

An analytical approximation to an R-L-C circuit representing SSPX is shown to

reproduce the observed capacitor bank efficiency and gun optimization data. As in the

SPICE code, the spheromak gun is represented by a fixed resistance chosen to balance

energy transfer to the gun. A revised estimate of the magnetic decay time in SSPX Shot

1822 then brings our estimate of the gun efficiency itself in line with the observed

spheromak magnetic field for this shot. Prompted by these successes, we present a

turbulence-based theoretical model for the spheromak resistance that can be implemented in

the SPICE code, of the form:

RS = κ I (1 - Io /I)
2

where I is the gun current, Io = (λo /µo )Φ with bias flux and Taylor eigenvalue λo, and κ is

a coefficient based on the magnetic turbulence model employed in Dan Hua’s spheromak

simulation code. The value of κ giving a good energy balance (around 0.1 mΩ/KA) implies

substantial turbulence levels. Implementing our model in SPICE would provide a

calibration for theoretical calculations of the turbulence.

Our analytic approximation to the SPICE code provides guidance to optimize future

performance in SSPX, the greatest benefit appearing to come from reducing or eliminating

the protective resistor to increase bank efficiency. Eliminating the resistor altogether

doubles the bank efficiency and the spheromak magnetic energy.

1. Turbulent Resistance Model

We first present a theoretical model of the spheromak as a variable resistance

representing “dynamo” helicity injection, thus justifying the approximation of a resistive

load used to achieve an energy balance in the SPICE simulation code. In Section 2 we

derive an analytic approximation to the code, which we apply to SSPX Shot 1822 in

Section 3 and to the optimization of future performance in SSPX in Section 4.

Following Reference [1], we take as the gun  power into the flux core:
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I VGUN = ∫ dz 2π aC (vAB2/µo) <δB2/B2> (1)

< δB2/B2> = γδt (λ 'a/λ)2 ≈     γδt (1 - Io/I)
2 (2)

where in Eq. (1) the integration runs over the flux core of length ≈ R, the flux conserver

radius, and  aC is the flux core radius that varies along the length. Also vA = 2 x 1016 B

(1/√n) is the Alfven speed at density n. In Eq. (2), g is a “duty factor” giving the time

average with island growth constant γ and duration δt, and the final factor represents the

magnetic free energy approximated on the right in terms of the gun current I and the

threshold for helicity injection:

Io = (λo /µo )Φ (3)

with bias flux Φ and Taylor eigenvalue λo ≈10 in SSPX.

 Introducing B = µoI/2πaC into Eqs. (1) and (2) gives, after some algebra:

VGUN = I RS (4)

RS = κI (1 - Io  /I)
2 for I > Io (0 otherwise) (5)

κ = g(µo
2/4πR)(vA/B) =     g(0.16/√10-20n) mΩ/KA (6)

g = γδt ∫ dzR/aC
2 (7)

In Hua’s 1 D transport code, a quantity corresponding to g is determined self-consistently

to pump in power while maintaining a Taylor state in competition with ohmic decay. Here

we treat g as a parameter.

For SSPX Shot 1822, the calculated value of Io is 200 KA for a bias flux of 0.025

webers, to be compared to a measured threshold of 278 KA at which buildup of the

spheromak poloidal field begins and below which the gun voltage drops to zero during
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decay. The value of κ giving the measured maximum gun voltage of 1300 volts, using the

measured threshold current and measured maximum current of 400KA, is:

κEXP = 1300/(400 - 280)2 = 0.09 mΩ/KA    .  (8)

At probable densities in SSPX, Eqs. (6) and (8) agree for g of order unity, indicating

strong turbulence early in the shot when I/Io > 1. Estimates of the integral in Eq. (7) give a

duty factor γδt ≈ 0.1 ≈ 1/√S for this low temperature shot, suggestive of the likely

theoretical maximum turbulence levels for resistive modes [2].

The variable resistance in Eq. (5) can be substituted directly for the fixed resistance

now used in SPICE. Though the code also allows for gun inductance, it is sufficient to set

this inductance to zero, keeping only the external inductance which appears to explain the

L/R decay of the current after the bank is crowbarred. Both κ and tΩ can be treated as

adjustable constants to be compared with the theoretical estimates later. Implementation of

the model in SPICE would give a better calibration for theoretical estimates of the

turbulence than our crude estimate above.

2. An Analytic Approximation to SPICE

To anticipate results of using our resistive model in SPICE, we examine an

analytical approximation to the code, using a fixed value for the resistance RS representing

its maximum value during helicity injection.

The SPICE code simulates SSPX by an equivalent circuit in which the spheromak

is represented by a resistance RS together with an external resistance RX , inductance L and

capacitance C. For small R = RX + RS, the current is given by:

I = IC exp(-t/2τ) sin ωt (9)

where ω = 1/√LC , τ = L/R and IC = Vo (C/L)1/2, Vo being the charging voltage. Eq. (9) is

accurate to order (2ωτ)-2.

The maximum current occurs around ωt = π/2, giving:

IMAX = IC exp (-π/4ωτ) (10)
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VMAX = IMAX RS . (11)

For SSPX formation bank parameters (L= 0.8µH, C = 0.01 f, RX = 3.25mΩ), and taking

RS = RX as Stallard found to satisfy energy balance, the calculated values are IMAX = 438

KA and VMAX = 1424 volts in reasonable agreement with measured values of approximately

400 KA and 1300 volts, respectively.

3. Efficiencies

The injected helicity is given by integrating:

dK/dt =     2 V Φ  -   K/tΩ (12)

which gives approximately:

K = α fD 2 VMAXΦ ∆t (13) 

with dissipation efficiency given by:

fD = 1/[1   +   (∆t/tΩ)] . (14)  

where tΩ is the helicity and energy ohmic decay time. The averaging parameter α is

discussed below. Setting I = Io gives two values of t which determine the time interval

during which helicity is injected, giving approximately:

∆t = (4/ω)(1 - Io/IMAX)1/2 . (15)

From helicity we can calculate the magnetic energy in the spheromak:

 EMAG = fSC (λo /2µo) K = α fSC fD VMAX Io  ∆t (16)

      

where fSC is the fraction of magnetic energy in the flux conserver calculated by Corsica (the

short-circuit effect). Eq. (16) is usually accurate to 10% even though the spheromak is not
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in an exact Taylor state [3]. We also calculate the energy input to the gun and the total bank

energy:

EGUN = ∫ I V = α VMAX IMAX ∆t (17)

EBANK =  1/2 CVo
2 = 1/2 IC

2 L . (18)

We write the overall efficiency of delivering bank energy to spheromak magnetic

field energy as:    

Efficiency = EMAG/EBANK    =    fBANK fGUN (19)

where, using the relations above, we find:

fGUN = EMAG/EGUN = {f SC fD } f (20)

fBANK = EGUN/EBANK =   α (8RS/ωL) (1 - I0/IMAX)1/2 exp (- π/2ωτ) (21)

where in Eq. (20) f is the “fundamental efficiency” given by:

f = Io / IMAX = λo /λGUN . (22)

For estimation purposes, we choose the parameter α to insure energy conservation

for the case of zero external resistance, in which case we require:

fT EBANK = EGUN + 1/2 L Io
2 (23)

where the last term accounts for residual inductive storage when the bank is crowbarred

and the gun voltage drops to zero. The factor fT  represents additional bank inefficiencies

due to transient losses early in the shot that are not accounted for by the known resistance

and inductance listed above.

Note that, because fGUN goes up with increasing bias flux while ∆t and hence fBANK

go down, for a given system and charging voltage the overall efficiency is maximized by  a

bias flux such that I0 =  2/3 IMAX, giving:
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f = Io/IMAX =  2/3 . (24)

An optimization similar to Eq. (24) is observed in SSPX, Shot 1822 having been near

optimum (see Figure 1).

4. Optimization

For Shot 1822 for which Stallard has done an energy balance, 50KJ is not

accounted for with a 7 KV charging voltage (EBANK =245 KJ) giving fT  = 0.8 . Using

Corsica, Woodruff finds fSC = 0.75 for this shot in order to match 0.2 T poloidal field at

the wall. Other parameters for Shot 1822 give α = 0.58, ∆t = 0.21 ms (in good agreement

with the data), ω = 1.1 x 104s-1 and τ = 1.23x10-4s using RS = RX = 1/2 R as was found

necessary to balance energy.

We assume a decay time of 200µs giving fD = 0.49. Note that this decay time is less

than my previous estimates. Dr. Nagata has pointed out that I over-estimated the magnetic

decay time, due to recirculation of internal energy after the gun voltage drops to zero, and

also I confused field decay and energy decay, which differ by a factor of 2. I  now estimate

the field decay time from dB/dt late in the shot to be about 400µs yielding an energy and

helicity decay time of only 200µs.

Using these parameters and assuming optimized injection by Eq. (24), multiplying

factors in the order they appear in the efficiency formulas gives for Shot 1822:

fGUN = (0.75)(0.49)(2/3) = 0.25 (25%)

fBANK = (0.58)(2.95) (1/√3)exp(-1.16) = 0.31 (31%)

EMAG/EBANK = (0.25) (0.31) = 0.07  (7%)

Multiplying the efficiency times the bank energy gives 17 KJ, which is about 50% higher

than the spheromak field energy calculated by Corsica. The actual overall efficiency for

Shot 1822 is nearer to 5%.
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The best shots in CTX gave 17% efficiency compared to 5% in SSPX [4]. Since

SSPX has a fundamental efficiency comparable to SSPX (> 50% by the above estimate),

improvements must lie elsewhere.

While there has been much concern about the short circuit that might be remedied

by new bias coils, the above analysis suggests that there is much to be gained by attention

to the capacitor bank itself even before bias coils and additional capacitor bank capability

are available.

Our analytical model suggests that the main factor that could be improved is the

damping coefficient in Eq. (21), approximated here as:

exp(-π/2ωτ) =    exp[ - (π/2)(R√C/L)]   = exp(-1.16)  = 0.31 (24)

which accounts for the bank inefficiency in Shot 1822. Increasing this factor increases

overall efficiency if also the bias flux is increased to maintain the optimization condition Eq.

(24).

Perhaps the most practical way to increase this factor is to reduce the external

resistance RX, which is largely due to a protective resistor in the capacitor bank circuit. For

example, eliminating RX altogether would, for the same spheromak load, approximately

double the bank efficiency. Improved bank efficiency would appear directly as an increase

in spheromak field energy, from an actual 10 KJ in Shot 1822 to about 20 KJ.

Increasing the field by increasing the bank efficiency would provide early evidence

as to how well confinement is working. According to Hua’s simulations, at a fixed density

the temperature rises directly with the field energy, with the following scaling:

n TKeV ≈ 1020 B2                .

It is this scaling that allows buildup to continue, by increasing tΩ  so that the dissipation

factor fD continues to be order unity even as the helicity injection period is lengthened.

Increasing the temperature is imperative. With my revised estimate of a 200µs

energy decay time, the temperature is probably only 15 eV, corresponding to a density of

2 x 1020  if resistance rather than radiation is the dominant core loss. Decreasing the density

to increase the temperature might also improve efficiency, by decreasing the dissipative

losses. However, according to Hua’s simultaions, with sufficient power buildup to high

field and high temperature is possible even at present densities, which we estimated to be
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around 2 x 1020. High density may in fact be required to maintain the current at or near the

ion saturation current as the field increases [5].
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Table 1. SSPX Shot # 1822

(Vo = 7000 v, EBANK = 245 KJ)

Data SPICE Theory(1)

VMAX(V) 1300 1300 1424

IMAX(KA) 400 400 431

ITHRESHOLD(KA) 278 300 292 (2/3 IMAX)

EGUN(KJ) 75 75 76

fBANK 0.3 0.3 0.31

fGUN 0.13(=10/75) -- 0.25(2)

T(KeV) ? -- 0.015(3)

B(T) 0.18 -- 0.26

n(x10-20m-3) ? -- 2(4)

Optimum λGUN/λo ≈ 2 ? 1.5

(1) Treating spheromak as 3.25 mΩ resistance, (2) For optimum λGUN/λo = 2/3,

(2) From decay time 200µs, (4) To fit T = 0.015 Kev from Hua’s code


